1
|
Rozman J, Chaithanya K, Yeomans JM, Sknepnek R. Vertex model with internal dissipation enables sustained flows. Nat Commun 2025; 16:530. [PMID: 39789022 PMCID: PMC11718050 DOI: 10.1038/s41467-025-55820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos. When coupled to cell shape anisotropy, the internal viscous dissipation allows for long-range velocity correlations and thus enables the spontaneous emergence of flows with a large degree of spatiotemporal organisation. We demonstrate sustained flow in epithelial sheets confined to a channel, providing a link between the cell-level vertex model of tissue dynamics and continuum active nematics, whose behaviour in a channel is theoretically understood and experimentally realisable. Our findings also show a simple mechanism that could account for collective cell migration correlated over distances large compared to the cell size, as observed during morphogenesis.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Kvs Chaithanya
- School of Life Sciences, University of Dundee, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, UK.
- School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
2
|
Tah I, Haertter D, Crawford JM, Kiehart DP, Schmidt CF, Liu AJ. A minimal vertex model explains how the amnioserosa avoids fluidization during Drosophila dorsal closure. Proc Natl Acad Sci U S A 2025; 122:e2322732121. [PMID: 39793057 PMCID: PMC11725931 DOI: 10.1073/pnas.2322732121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 10/03/2024] [Indexed: 01/12/2025] Open
Abstract
Dorsal closure is a process that occurs during embryogenesis of Drosophila melanogaster. During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly. The standard 2-dimensional vertex model, which successfully describes tissue sheet mechanics in multiple contexts, would in this case predict that the tissue should fluidize via cell neighbor changes. Surprisingly, however, the amnioserosa remains an elastic solid with no such events. We here present a minimal extension to the vertex model that explains how the amnioserosa can achieve this unexpected behavior. We show that continuous shrinkage of the preferred cell perimeter and cell perimeter polydispersity lead to the retention of the solid state of the amnioserosa. Our model accurately captures measured cell shape and orientation changes and predicts nonmonotonic junction tension that we confirm with laser ablation experiments.
Collapse
Affiliation(s)
- Indrajit Tah
- Speciality Glass Division, Council of Scientific & Industrial Research-Central Glass and Ceramic Research Institute, Kolkata700029, India
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
| | - Daniel Haertter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen37075, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC27708
| | | | | | | | - Andrea J. Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
- Santa Fe Institute, Santa Fe, NM87501
| |
Collapse
|
3
|
Yan X, Ogita G, Ishihara S, Sugimura K. Bayesian parameter inference for epithelial mechanics. J Theor Biol 2024; 595:111960. [PMID: 39395535 DOI: 10.1016/j.jtbi.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Cell-based mechanical models, such as the Cell Vertex Model (CVM), have proven useful for studying the mechanical control of epithelial tissue dynamics. We recently developed a statistical method called image-based parameter inference for formulating CVM model functions and estimating their parameters from image data of epithelial tissues. In this study, we employed Bayesian statistics to improve the utility and flexibility of image-based parameter inference. Tests on synthetic data confirmed that both our non-hierarchical and hierarchical Bayesian models provide accurate estimates of model parameters. By applying this method to Drosophila wings, we demonstrated that the reliability of parameter estimation is closely linked to the mechanical anisotropies present in the tissue. Moreover, we revealed that the cortical elasticity term is dispensable for explaining force-shape correlations in vivo. We anticipate that the flexibility of the Bayesian statistical framework will facilitate the integration of various types of information, thereby contributing to the quantitative dissection of the mechanical control of tissue dynamics.
Collapse
Affiliation(s)
- Xin Yan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Goshi Ogita
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Shuji Ishihara
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kaoru Sugimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan; Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
4
|
Wen H, Li X, Lu Y, Liu X, Hu G. Stomatocyte-discocyte-echinocyte transformations of erythrocyte modulated by membrane-cytoskeleton mechanical properties. Biophys J 2024:S0006-3495(24)04062-1. [PMID: 39644092 DOI: 10.1016/j.bpj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Stomatocyte-discocyte-echinocyte (SDE) transformations in human red blood cells (RBCs) have significant influences on blood dynamics and related disorders. The mechanical properties of the RBC membrane, such as shear modulus and bending elasticity, play crucial roles in determining RBC shapes. Recent biophysical findings reveal that building a comprehensive model capable of describing SDE shape transformations is a challenging problem. Based on dissipative particle dynamics, this study develops a two-component RBC model considering the detachment between the lipid bilayer and cytoskeleton, as well as the cytoskeletal reorganization during echinocyte formation. This model is validated by comparing RBCs' geometric shape and the apparent membrane tension with previous experimental measurements. Results indicate that a complete SDE sequence represented by six typical shapes can be obtained by modulating the model's mechanical and geometric parameters. Furthermore, a phase diagram based on reduced variables is obtained using principal-component analysis, demonstrating the phase transformations among SDE shapes. Our result suggests that the transformation from discocyte to stomatocyte is primarily influenced by dimensionless bending rigidity, whereas, during echinocyte formation, three key variables, i.e., dimensionless bending rigidity, targeting cytoskeleton shrinkage ratio, and connecting pattern, have joint impacts on the formation of spicules or bumps and the development of the cytoskeletal framework. The present two-component RBC model and the associated findings provide a perspective for a deeper understanding of the SDE transformation mechanism. This framework offers new insights into biological science and potential applications in the field of biomedical engineering.
Collapse
Affiliation(s)
- Haizhou Wen
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China; Shanghai Institute of Aircraft Mechanics and Control, Shanghai, China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Yu Lu
- School of Mechanical Engineering, Nantong University, Nantong, China
| | - Xinyue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China.
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Oikonomou P, Calvary L, Cirne HC, Welch AE, Durel JF, Powell O, Kim K, Nerurkar NL. Application of tissue-scale tension to avian epithelia in vivo to study multiscale mechanics and inter-germ layer coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588089. [PMID: 38617324 PMCID: PMC11014599 DOI: 10.1101/2024.04.04.588089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
As cross-disciplinary approaches drawing from physics and mechanics have increasingly influenced our understanding of morphogenesis, the tools available to measure and perturb physical aspects of embryonic development have expanded as well. However, it remains a challenge to measure mechanical properties and apply exogenous tissue-scale forces in vivo, particularly for epithelia. Exploiting the size and accessibility of the developing chick embryo, here we describe a simple technique to quantitatively apply exogenous forces on the order of ~1-100 μN to the endodermal epithelium. To demonstrate the utility of this approach, we performed a series of proof-of-concept experiments that reveal fundamental and unexpected mechanical behaviors in the early chick embryo, including mechanotype heterogeneity among cells of the midgut endoderm, complex non-cell autonomous effects of actin disruption, and a high degree of mechanical coupling between the endoderm and adjacent paraxial mesoderm. To illustrate the broader utility of this method, we determined that forces on the order of ~ 10 μN are sufficient to unzip the neural tube during primary neurulation. Together, these findings provide basic insights into the mechanics of embryonic epithelia in vivo in the early avian embryo, and provide a useful tool for future investigations of how morphogenesis is influenced by mechanical factors.
Collapse
Affiliation(s)
| | | | - Helena C. Cirne
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Andreas E. Welch
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - John F. Durel
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Olivia Powell
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Kwantae Kim
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
6
|
Tah I, Haertter D, Crawford JM, Kiehart DP, Schmidt CF, Liu AJ. Minimal vertex model explains how the amnioserosa avoids fluidization during Drosophila dorsal closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572544. [PMID: 38187730 PMCID: PMC10769242 DOI: 10.1101/2023.12.20.572544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dorsal closure is a process that occurs during embryogenesis of Drosophila melanogaster . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly. The standard 2-dimensional vertex model, which successfully describes tissue sheet mechanics in multiple contexts, would in this case predict that the tissue should fluidize via cell neighbor changes. Surprisingly, however, the amnioserosa remains an elastic solid with no such events. We here present a minimal extension to the vertex model that explains how the amnioserosa can achieve this unexpected behavior. We show that continuous shrinkage of the preferred cell perimeter and cell perimeter polydispersity lead to the retention of the solid state of the amnioserosa. Our model accurately captures measured cell shape and orientation changes and predicts non-monotonic junction tension that we confirm with laser ablation experiments. Significance Statement During embryogenesis, cells in tissues can undergo significant shape changes. Many epithelial tissues fluidize, i.e. cells exchange neighbors, when the average cell shape index increases above a threshold value, consistent with the standard vertex model. During dorsal closure in Drosophila melanogaster , however, the amnioserosa tissue remains solid even as the average cell shape index increases well above threshold. We introduce perimeter polydispersity and allow the preferred cell perimeters, usually held fixed in vertex models, to decrease linearly with time as seen experimentally. With these extensions to the standard vertex model, we capture experimental observations quantitatively. Our results demonstrate that vertex models can describe the behavior of the amnioserosa in dorsal closure by allowing normally fixed parameters to vary with time.
Collapse
|
7
|
Molnar K, Suman SK, Eichelbrenner J, Plancke CN, Robin FB, Labouesse M. Conditional nmy-1 and nmy-2 alleles establish that nonmuscle myosins are required for late Caenorhabditis elegans embryonic elongation. Genetics 2024; 228:iyae109. [PMID: 39053622 DOI: 10.1093/genetics/iyae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The elongation of Caenorhabditis elegans embryos allows examination of mechanical interactions between adjacent tissues. Muscle contractions during late elongation induce the remodeling of epidermal circumferential actin filaments through mechanotransduction. Force inputs from the muscles deform circumferential epidermal actin filament, which causes them to be severed, eventually reformed, and shortened. This squeezing force drives embryonic elongation. We investigated the possible role of the nonmuscle myosins NMY-1 and NMY-2 in this process using nmy-1 and nmy-2 thermosensitive alleles. Our findings show these myosins act redundantly in late elongation, since double nmy-2(ts); nmy-1(ts) mutants immediately stop elongation when raised to 25°C. Their inactivation does not reduce muscle activity, as measured from epidermis deformation, suggesting that they are directly involved in the multistep process of epidermal remodeling. Furthermore, NMY-1 and NMY-2 inactivation is reversible when embryos are kept at the nonpermissive temperature for a few hours. However, after longer exposure to 25°C double mutant embryos fail to resume elongation, presumably because NMY-1 was seen to form protein aggregates. We propose that the two C. elegans nonmuscle myosin II act during actin remodeling either to bring severed ends or hold them.
Collapse
Affiliation(s)
- Kelly Molnar
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Shashi Kumar Suman
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Jeanne Eichelbrenner
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Camille N Plancke
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - François B Robin
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Michel Labouesse
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| |
Collapse
|
8
|
Sarkar T, Krajnc M. Graph topological transformations in space-filling cell aggregates. PLoS Comput Biol 2024; 20:e1012089. [PMID: 38743660 PMCID: PMC11093388 DOI: 10.1371/journal.pcbi.1012089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Cell rearrangements are fundamental mechanisms driving large-scale deformations of living tissues. In three-dimensional (3D) space-filling cell aggregates, cells rearrange through local topological transitions of the network of cell-cell interfaces, which is most conveniently described by the vertex model. Since these transitions are not yet mathematically properly formulated, the 3D vertex model is generally difficult to implement. The few existing implementations rely on highly customized and complex software-engineering solutions, which cannot be transparently delineated and are thus mostly non-reproducible. To solve this outstanding problem, we propose a reformulation of the vertex model. Our approach, called Graph Vertex Model (GVM), is based on storing the topology of the cell network into a knowledge graph with a particular data structure that allows performing cell-rearrangement events by simple graph transformations. Importantly, when these same transformations are applied to a two-dimensional (2D) polygonal cell aggregate, they reduce to a well-known T1 transition, thereby generalizing cell-rearrangements in 2D and 3D space-filling packings. This result suggests that the GVM's graph data structure may be the most natural representation of cell aggregates and tissues. We also develop a Python package that implements GVM, relying on a graph-database-management framework Neo4j. We use this package to characterize an order-disorder transition in 3D cell aggregates, driven by active noise and we find aggregates undergoing efficient ordering close to the transition point. In all, our work showcases knowledge graphs as particularly suitable data models for structured storage, analysis, and manipulation of tissue data.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Krajnc
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
9
|
Yin X, Liu YQ, Zhang LY, Liang D, Xu GK. Emergence, Pattern, and Frequency of Spontaneous Waves in Spreading Epithelial Monolayers. NANO LETTERS 2024; 24:3631-3637. [PMID: 38466240 DOI: 10.1021/acs.nanolett.3c04876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A striking phenomenon of collective cell motion is that they can exhibit a spontaneously emerging wave during epithelia expansions. However, the fundamental mechanism, governing the emergence and its crucial characteristics (e.g., the eigenfrequency and the pattern), remains an enigma. By introducing a mechanochemical feedback loop, we develop a highly efficient discrete vertex model to investigate the spatiotemporal evolution of spreading epithelia. We find both numerically and analytically that expanding cell monolayers display a power-law dependence of wave frequency on the local heterogeneities (i.e., cell density) with a scaling exponent of -1/2. Moreover, our study demonstrates the quantitative capability of the proposed model in capturing distinct X-, W-, and V-mode wave patterns. We unveil that the phase transition between these modes is governed by the distribution of active self-propulsion forces. Our work provides an avenue for rigorous quantitative investigations into the collective motion and pattern formation of cell groups.
Collapse
Affiliation(s)
- Xu Yin
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong-Quan Liu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Yuan Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Liang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Tah I, Haertter D, Crawford JM, Kiehart DP, Schmidt CF, Liu AJ. Minimal vertex model explains how the amnioserosa avoids fluidization during Drosophila dorsal closure. ARXIV 2023:arXiv:2312.12926v1. [PMID: 38196754 PMCID: PMC10775355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Dorsal closure is a process that occurs during embryogenesis of Drosophila melanogaster. During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, the aspect ratio of amnioserosa cells increases markedly. The standard 2-dimensional vertex model, which successfully describes tissue sheet mechanics in multiple contexts, would in this case predict that the tissue should fluidize via cell neighbor changes. Surprisingly, however, the amnioserosa remains an elastic solid with no such events. We here present a minimal extension to the vertex model that explains how the amnioserosa can achieve this unexpected behavior. We show that continuous shrink-age of the preferred cell perimeter and cell perimeter polydispersity lead to the retention of the solid state of the amnioserosa. Our model accurately captures measured cell shape and orientation changes and predicts non-monotonic junction tension that we confirm with laser ablation experiments.
Collapse
Affiliation(s)
- Indrajit Tah
- Speciality Glass Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Department of Physics and Astronomy, University of Pennsylvania, PA, USA
| | - Daniel Haertter
- Institute of Pharmacology and Toxicology, University Medical Center and Campus Institute Data Science (CIDAS), University of Göttingen, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC, USA
| | | | | | | | - Andrea J. Liu
- Department of Physics and Astronomy, University of Pennsylvania, PA, USA
| |
Collapse
|
11
|
Serra M, Serrano Nájera G, Chuai M, Plum AM, Santhosh S, Spandan V, Weijer CJ, Mahadevan L. A mechanochemical model recapitulates distinct vertebrate gastrulation modes. SCIENCE ADVANCES 2023; 9:eadh8152. [PMID: 38055823 PMCID: PMC10699781 DOI: 10.1126/sciadv.adh8152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
During vertebrate gastrulation, an embryo transforms from a layer of epithelial cells into a multilayered gastrula. This process requires the coordinated movements of hundreds to tens of thousands of cells, depending on the organism. In the chick embryo, patterns of actomyosin cables spanning several cells drive coordinated tissue flows. Here, we derive a minimal theoretical framework that couples actomyosin activity to global tissue flows. Our model predicts the onset and development of gastrulation flows in normal and experimentally perturbed chick embryos, mimicking different gastrulation modes as an active stress instability. Varying initial conditions and a parameter associated with active cell ingression, our model recapitulates distinct vertebrate gastrulation morphologies, consistent with recently published experiments in the chick embryo. Altogether, our results show how changes in the patterning of critical cell behaviors associated with different force-generating mechanisms contribute to distinct vertebrate gastrulation modes via a self-organizing mechanochemical process.
Collapse
Affiliation(s)
- Mattia Serra
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Manli Chuai
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alex M. Plum
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Sreejith Santhosh
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Vamsi Spandan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - L. Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Departments of Physics, and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Ioratim-Uba A, Liverpool TB, Henkes S. Mechanochemical Active Feedback Generates Convergence Extension in Epithelial Tissue. PHYSICAL REVIEW LETTERS 2023; 131:238301. [PMID: 38134807 DOI: 10.1103/physrevlett.131.238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023]
Abstract
Convergence extension, the simultaneous elongation of tissue along one axis while narrowing along a perpendicular axis, occurs during embryonic development. A fundamental process that contributes to shaping the organism, it happens in many different species and tissue types. Here, we present a minimal continuum model, that can be directly linked to the controlling microscopic biochemistry, which shows spontaneous convergence extension. It is comprised of a 2D viscoelastic active material with a mechanochemical active feedback mechanism coupled to a substrate via friction. Robust convergent extension behavior emerges beyond a critical value of the activity parameter and is controlled by the boundary conditions and the coupling to the substrate. Oscillations and spatial patterns emerge in this model when internal dissipation dominates over friction, as well as in the active elastic limit.
Collapse
Affiliation(s)
| | | | - Silke Henkes
- School of Mathematics, University of Bristol, Bristol BS8 1UG, United Kingdom
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden 2333 CA, The Netherlands
| |
Collapse
|
13
|
Tervonen A, Korpela S, Nymark S, Hyttinen J, Ihalainen TO. The Effect of Substrate Stiffness on Elastic Force Transmission in the Epithelial Monolayers over Short Timescales. Cell Mol Bioeng 2023; 16:475-495. [PMID: 38099211 PMCID: PMC10716100 DOI: 10.1007/s12195-023-00772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/26/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose The importance of mechanical forces and microenvironment in guiding cellular behavior has been widely accepted. Together with the extracellular matrix (ECM), epithelial cells form a highly connected mechanical system subjected to various mechanical cues from their environment, such as ECM stiffness, and tensile and compressive forces. ECM stiffness has been linked to many pathologies, including tumor formation. However, our understanding of the effect of ECM stiffness and its heterogeneities on rapid force transduction in multicellular systems has not been fully addressed. Methods We used experimental and computational methods. Epithelial cells were cultured on elastic hydrogels with fluorescent nanoparticles. Single cells were moved by a micromanipulator, and epithelium and substrate deformation were recorded. We developed a computational model to replicate our experiments and quantify the force distribution in the epithelium. Our model further enabled simulations with local stiffness gradients. Results We found that substrate stiffness affects the force transduction and the cellular deformation following an external force. Also, our results indicate that the heterogeneities, e.g., gradients, in the stiffness can substantially influence the strain redistribution in the cell monolayers. Furthermore, we found that the cells' apico-basal elasticity provides a level of mechanical isolation between the apical cell-cell junctions and the basal focal adhesions. Conclusions Our simulation results show that increased ECM stiffness, e.g., due to a tumor, can mechanically isolate cells and modulate rapid mechanical signaling between cells over distances. Furthermore, the developed model has the potential to facilitate future studies on the interactions between epithelial monolayers and elastic substrates. Supplementary Information The online version of this article (10.1007/s12195-023-00772-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aapo Tervonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Department of Biological and Environmental Science, Faculty of Mathematics and Science, University of Jyväskylä, Survontie 9 C, 40500 Jyväskylä, Finland
| | - Sanna Korpela
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Soile Nymark
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| |
Collapse
|
14
|
Rozman J, Yeomans JM, Sknepnek R. Shape-Tension Coupling Produces Nematic Order in an Epithelium Vertex Model. PHYSICAL REVIEW LETTERS 2023; 131:228301. [PMID: 38101347 DOI: 10.1103/physrevlett.131.228301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
We study the vertex model for epithelial tissue mechanics extended to include coupling between the cell shapes and tensions in cell-cell junctions. This coupling represents an active force which drives the system out of equilibrium and leads to the formation of nematic order interspersed with prominent, long-lived +1 defects. The defects in the nematic ordering are coupled to the shape of the cell tiling, affecting cell areas and coordinations. This intricate interplay between cell shape, size, and coordination provides a possible mechanism by which tissues could spontaneously develop long-range polarity through local mechanical forces without resorting to long-range chemical patterning.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
15
|
Pérez-Verdugo F, Banerjee S. Tension Remodeling Regulates Topological Transitions in Epithelial Tissues. PRX LIFE 2023; 1:023006. [PMID: 39450340 PMCID: PMC11500814 DOI: 10.1103/prxlife.1.023006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Cell neighbor exchanges play a critical role in regulating tissue fluidity during epithelial morphogenesis and repair. In vivo, these neighbor exchanges are often hindered by the formation of transiently stable fourfold vertices, which can develop into complex multicellular rosettes where five or more cell junctions meet. Despite their importance, the mechanical origins of multicellular rosettes have remained elusive, and current cellular models lack the ability to explain their formation and maintenance. Here we present a dynamic vertex model of epithelial tissues with strain-dependent tension remodeling and mechanical memory dissipation. We show that an increase in cell junction tension upon contraction and reduction in tension upon extension can stabilize higher-order vertices, temporarily stalling cell rearrangements. On the other hand, inducing mechanical memory dissipation via relaxation of junction strain and stress promotes the resolution of higher-order vertices, facilitating cell neighbor exchanges. We demonstrate that by tuning the rates of tension remodeling and mechanical memory dissipation, we can control topological transitions and tissue material properties, recapitulating complex cellular topologies seen in developing organisms.
Collapse
Affiliation(s)
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
16
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
17
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
18
|
Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 2023; 26:106583. [PMID: 37128612 PMCID: PMC10148130 DOI: 10.1016/j.isci.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Collapse
Affiliation(s)
- Lautaro Baro
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Hannah M. Brown
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Zoë A. Bell
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - M. Angeles Juanes
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
19
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Nishizawa K, Lin SZ, Chardès C, Rupprecht JF, Lenne PF. Two-point optical manipulation reveals mechanosensitive remodeling of cell-cell contacts in vivo. Proc Natl Acad Sci U S A 2023; 120:e2212389120. [PMID: 36947511 PMCID: PMC10068846 DOI: 10.1073/pnas.2212389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 03/23/2023] Open
Abstract
Biological tissues acquire reproducible shapes during development through dynamic cell behaviors. Most of these behaviors involve the remodeling of cell-cell contacts. During epithelial morphogenesis, contractile actomyosin networks remodel cell-cell contacts by shrinking and extending junctions between lateral cell surfaces. However, actomyosin networks not only generate mechanical stresses but also respond to them, confounding our understanding of how mechanical stresses remodel cell-cell contacts. Here, we develop a two-point optical manipulation method to impose different stress patterns on cell-cell contacts in the early epithelium of the Drosophila embryo. The technique allows us to produce junction extension and shrinkage through different push and pull manipulations at the edges of junctions. We use these observations to expand classical vertex-based models of tissue mechanics, incorporating negative and positive mechanosensitive feedback depending on the type of remodeling. In particular, we show that Myosin-II activity responds to junction strain rate and facilitates full junction shrinkage. Altogether our work provides insight into how stress produces efficient deformation of cell-cell contacts in vivo and identifies unanticipated mechanosensitive features of their remodeling.
Collapse
Affiliation(s)
- Kenji Nishizawa
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living systems, Marseille UMR 7332, France
| | - Claire Chardès
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living systems, Marseille UMR 7332, France
| | - Pierre-François Lenne
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| |
Collapse
|
21
|
Andersen T, Wörthmüller D, Probst D, Wang I, Moreau P, Fitzpatrick V, Boudou T, Schwarz US, Balland M. Cell size and actin architecture determine force generation in optogenetically activated cells. Biophys J 2023; 122:684-696. [PMID: 36635962 PMCID: PMC9989885 DOI: 10.1016/j.bpj.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Adherent cells use actomyosin contractility to generate mechanical force and to sense the physical properties of their environment, with dramatic consequences for migration, division, differentiation, and fate. However, the organization of the actomyosin system within cells is highly variable, with its assembly and function being controlled by small GTPases from the Rho family. To understand better how activation of these regulators translates into cell-scale force generation in the context of different physical environments, here we combine recent advances in non-neuronal optogenetics with micropatterning and traction force microscopy on soft elastic substrates. We find that, after whole-cell RhoA activation by the CRY2/CIBN optogenetic system with a short pulse of 100 ms, single cells contract on a minute timescale in proportion to their original traction force, before returning to their original tension setpoint with near perfect precision, on a longer timescale of several minutes. To decouple the biochemical and mechanical elements of this response, we introduce a mathematical model that is parametrized by fits to the dynamics of the substrate deformation energy. We find that the RhoA response builds up quickly on a timescale of 20 s, but decays slowly on a timescale of 50 s. The larger the cells and the more polarized their actin cytoskeleton, the more substrate deformation energy is generated. RhoA activation starts to saturate if optogenetic pulse length exceeds 50 ms, revealing the intrinsic limits of biochemical activation. Together our results suggest that adherent cells establish tensional homeostasis by the RhoA system, but that the setpoint and the dynamics around it are strongly determined by cell size and the architecture of the actin cytoskeleton, which both are controlled by the extracellular environment.
Collapse
Affiliation(s)
- T Andersen
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - D Wörthmüller
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - D Probst
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - I Wang
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - P Moreau
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - V Fitzpatrick
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - T Boudou
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - U S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| | - M Balland
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| |
Collapse
|
22
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
23
|
Dow LP, Gaietta G, Kaufman Y, Swift MF, Lemos M, Lane K, Hopcroft M, Bezault A, Sauvanet C, Volkmann N, Pruitt BL, Hanein D. Morphological control enables nanometer-scale dissection of cell-cell signaling complexes. Nat Commun 2022; 13:7831. [PMID: 36539423 PMCID: PMC9768166 DOI: 10.1038/s41467-022-35409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.
Collapse
Affiliation(s)
- Liam P. Dow
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Guido Gaietta
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Yair Kaufman
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Mark F. Swift
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Moara Lemos
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Kerry Lane
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Matthew Hopcroft
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Armel Bezault
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Cécile Sauvanet
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Niels Volkmann
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Beth L. Pruitt
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Dorit Hanein
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France ,grid.133342.40000 0004 1936 9676Present Address: Department of Chemistry and Biochemistry, and of Biomedical Engineering, University of California, Santa Barbara, CA USA
| |
Collapse
|
24
|
Fernandez-Gonzalez R, Peifer M. Powering morphogenesis: multiscale challenges at the interface of cell adhesion and the cytoskeleton. Mol Biol Cell 2022; 33. [PMID: 35696393 DOI: 10.1091/mbc.e21-09-0452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among the defining features of the animal kingdom is the ability of cells to change shape and move. This underlies embryonic and postembryonic development, tissue homeostasis, regeneration, and wound healing. Cell shape change and motility require linkage of the cell's force-generating machinery to the plasma membrane at cell-cell and cell-extracellular matrix junctions. Connections of the actomyosin cytoskeleton to cell-cell adherens junctions need to be both resilient and dynamic, preventing tissue disruption during the dramatic events of embryonic morphogenesis. In the past decade, new insights radically altered the earlier simple paradigm that suggested simple linear linkage via the cadherin-catenin complex as the molecular mechanism of junction-cytoskeleton interaction. In this Perspective we provide a brief overview of our current state of knowledge and then focus on selected examples highlighting what we view as the major unanswered questions in our field and the approaches that offer exciting new insights at multiple scales from atomic structure to tissue mechanics.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G5, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3280.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
25
|
Cavanaugh KE, Staddon MF, Chmiel TA, Harmon R, Budnar S, Yap AS, Banerjee S, Gardel ML. Force-dependent intercellular adhesion strengthening underlies asymmetric adherens junction contraction. Curr Biol 2022; 32:1986-2000.e5. [PMID: 35381185 PMCID: PMC9123775 DOI: 10.1016/j.cub.2022.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022]
Abstract
Tissue morphogenesis arises from the culmination of changes in cell-cell junction length. Mechanochemical signaling in the form of RhoA underlies these ratcheted contractions, which occur asymmetrically. The underlying mechanisms of asymmetry remain unknown. We use optogenetically controlled RhoA in model epithelia together with biophysical modeling to uncover the mechanism lending to asymmetric vertex motion. Using optogenetic and pharmacological approaches, we find that both local and global RhoA activation can drive asymmetric junction contraction in the absence of tissue-scale patterning. We find that standard vertex models with homogeneous junction properties are insufficient to recapitulate the observed junction dynamics. Furthermore, these experiments reveal a local coupling of RhoA activation with E-cadherin accumulation. This motivates a coupling of RhoA-mediated increases in tension and E-cadherin-mediated adhesion strengthening. We then demonstrate that incorporating this force-sensitive adhesion strengthening into a continuum model is successful in capturing the observed junction dynamics. Thus, we find that a force-dependent intercellular "clutch" at tricellular vertices stabilizes vertex motion under increasing tension and is sufficient to generate asymmetries in junction contraction.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Staddon
- Center for Systems Biology Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Theresa A Chmiel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Robert Harmon
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Condensation of the Drosophila nerve cord is oscillatory and depends on coordinated mechanical interactions. Dev Cell 2022; 57:867-882.e5. [PMID: 35413236 DOI: 10.1016/j.devcel.2022.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
During development, organs reach precise shapes and sizes. Organ morphology is not always obtained through growth; a classic counterexample is the condensation of the nervous system during Drosophila embryogenesis. The mechanics underlying such condensation remain poorly understood. Here, we characterize the condensation of the embryonic ventral nerve cord (VNC) at both subcellular and tissue scales. This analysis reveals that condensation is not a unidirectional continuous process but instead occurs through oscillatory contractions. The VNC mechanical properties spatially and temporally vary, and forces along its longitudinal axis are spatially heterogeneous. We demonstrate that the process of VNC condensation is dependent on the coordinated mechanical activities of neurons and glia. These outcomes are consistent with a viscoelastic model of condensation, which incorporates time delays and effective frictional interactions. In summary, we have defined the progressive mechanics driving VNC condensation, providing insights into how a highly viscous tissue can autonomously change shape and size.
Collapse
|
27
|
Staddon MF, Munro EM, Banerjee S. Pulsatile contractions and pattern formation in excitable actomyosin cortex. PLoS Comput Biol 2022; 18:e1009981. [PMID: 35353813 PMCID: PMC9000090 DOI: 10.1371/journal.pcbi.1009981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
The actin cortex is an active adaptive material, embedded with complex regulatory networks that can sense, generate, and transmit mechanical forces. The cortex exhibits a wide range of dynamic behaviours, from generating pulsatory contractions and travelling waves to forming organised structures. Despite the progress in characterising the biochemical and mechanical components of the actin cortex, the emergent dynamics of this mechanochemical system is poorly understood. Here we develop a reaction-diffusion model for the RhoA signalling network, the upstream regulator for actomyosin assembly and contractility, coupled to an active actomyosin gel, to investigate how the interplay between chemical signalling and mechanical forces regulates stresses and patterns in the cortex. We demonstrate that mechanochemical feedback in the cortex acts to destabilise homogeneous states and robustly generate pulsatile contractions. By tuning active stress in the system, we show that the cortex can generate propagating contraction pulses, form network structures, or exhibit topological turbulence. The cellular actin cortex is a dynamic sub-membranous network of filamentous actin, myosin motors, and other accessory proteins that regulates the ability of cells to maintain or change shapes. While the key molecular components and mechanical properties of the actin cortex have been characterized, the ways in which biochemical signalling and mechanical forces interact to regulate cortex behaviours remain poorly understood. In this article, we develop a mathematical model for the actomyosin cortex that combines the reaction-diffusion dynamics of signalling proteins with active force generation by actomyosin networks. Using this model, we investigate how the feedback between mechanics and biochemical signalling regulates the propagation of actomyosin flows, mechanical stresses, and pattern formation in the cortex. Our work reveals a variety of ways in which the cortex can tune the dynamic coupling between biochemical activity, force production, and advective transport to control mechanical behaviours.
Collapse
Affiliation(s)
- Michael F. Staddon
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Edwin M. Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sutton AA, Molter CW, Amini A, Idicula J, Furman M, Tirgar P, Tao Y, Ghagre A, Koushki N, Khavari A, Ehrlicher AJ. Cell monolayer deformation microscopy reveals mechanical fragility of cell monolayers following EMT. Biophys J 2022; 121:629-643. [PMID: 34999131 PMCID: PMC8873957 DOI: 10.1016/j.bpj.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue and cell mechanics are crucial factors in maintaining homeostasis and in development, with aberrant mechanics contributing to many diseases. During the epithelial-to-mesenchymal transition (EMT), a highly conserved cellular program in organismal development and cancer metastasis, cells gain the ability to detach from their original location and autonomously migrate. While a great deal of biochemical and biophysical changes at the single-cell level have been revealed, how the physical properties of multicellular assemblies change during EMT, and how this may affect disease progression, is unknown. Here we introduce cell monolayer deformation microscopy (CMDM), a new methodology to measure the planar mechanical properties of cell monolayers by locally applying strain and measuring their resistance to deformation. We employ this new method to characterize epithelial multicellular mechanics at early and late stages of EMT, finding the epithelial monolayers to be relatively compliant, ductile, and mechanically homogeneous. By comparison, the transformed mesenchymal monolayers, while much stiffer, were also more brittle, mechanically heterogeneous, displayed more viscoelastic creep, and showed sharp yield points at significantly lower strains. Here, CMDM measurements identify specific biophysical functional states of EMT and offer insight into how cell aggregates fragment under mechanical stress. This mechanical fingerprinting of multicellular assemblies using new quantitative metrics may also offer new diagnostic applications in healthcare to characterize multicellular mechanical changes in disease.
Collapse
Affiliation(s)
- Amy A. Sutton
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Ali Amini
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Johanan Idicula
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Max Furman
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Pouria Tirgar
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Adele Khavari
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada,Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada,Centre for Structural Biology, McGill University, Montreal, Quebec, Canada,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada,Corresponding author
| |
Collapse
|
29
|
Chen Y, Gao Q, Li J, Mao F, Tang R, Jiang H. Activation of Topological Defects Induces a Brittle-to-Ductile Transition in Epithelial Monolayers. PHYSICAL REVIEW LETTERS 2022; 128:018101. [PMID: 35061486 DOI: 10.1103/physrevlett.128.018101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Epithelial monolayers are subjected to various mechanical forces, such as stretching, shearing, and compression. Thus, its mechanical response to external loadings is essential for its biological functions. However, the mechanism of the fracture failure of the epithelial monolayer remains poorly understood. Here, by introducing a new type of topological transition, i.e., detach transition or T4 transition, we develop a modified cellular vertex model to investigate the rupture of the cell monolayer. Interestingly, we find a brittle-to-ductile transition in epithelial monolayers, which is controlled by the mechanical properties of single cells and cell-cell contacts. We reveal that the external loadings can activate cell rearrangement in ductile cell monolayers. The plastic deformation results from the nucleation and propagation of "pentagon-heptagon defects" in analogy with the topological defects commonly seen in 2D materials. By using a simplified four-cell model, we further demonstrate that the brittle-to-ductile transition is induced by the competition between cell rearrangement and cell detachment. Our work provides a new theoretical framework to study the rupture of living tissues and may have important implications for many other biological processes, such as wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Yixia Chen
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qigan Gao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingchen Li
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangtao Mao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruowen Tang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Nestor-Bergmann A, Blanchard GB, Hervieux N, Fletcher AG, Étienne J, Sanson B. Adhesion-regulated junction slippage controls cell intercalation dynamics in an Apposed-Cortex Adhesion Model. PLoS Comput Biol 2022; 18:e1009812. [PMID: 35089922 PMCID: PMC8887740 DOI: 10.1371/journal.pcbi.1009812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 01/06/2022] [Indexed: 02/02/2023] Open
Abstract
Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.
Collapse
Affiliation(s)
- Alexander Nestor-Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Guy B. Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nathan Hervieux
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Jocelyn Étienne
- LIPHY, CNRS, Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Bénédicte Sanson
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
31
|
Krajnc M, Stern T, Zankoc C. Active Instability and Nonlinear Dynamics of Cell-Cell Junctions. PHYSICAL REVIEW LETTERS 2021; 127:198103. [PMID: 34797151 DOI: 10.1103/physrevlett.127.198103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Active cell-junction remodeling is important for tissue morphogenesis, yet its underlying physics is not understood. We study a mechanical model that describes junctions as dynamic active force dipoles. Their instability can trigger cell intercalations by a critical collapse. Nonlinearities in tissue's elastic response can stabilize the collapse either by a limit cycle or condensation of junction lengths at cusps of the energy landscape. Furthermore, active junction networks undergo collective instability to drive active in-plane ordering or develop a limit cycle of collective oscillations, which extends over regions of the energy landscape corresponding to distinct network topologies.
Collapse
Affiliation(s)
- Matej Krajnc
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Clément Zankoc
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Lawson-Keister E, Manning ML. Jamming and arrest of cell motion in biological tissues. Curr Opin Cell Biol 2021; 72:146-155. [PMID: 34461581 DOI: 10.1016/j.ceb.2021.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Collective cell motility is crucial to many biological processes including morphogenesis, wound healing, and cancer invasion. Recently, the biology and biophysics communities have begun to use the term 'cell jamming' to describe the collective arrest of cell motion in tissues. Although this term is widely used, the underlying mechanisms are varied. In this review, we highlight three independent mechanisms that can potentially drive arrest of cell motion - crowding, tension-driven rigidity, and reduction of fluctuations - and propose a framework that connects all three. Because multiple mechanisms may be operating simultaneously, this emphasizes that experiments should strive to identify which mechanism dominates in a given situation. We also discuss how specific cell-scale and molecular-scale biological processes, such as cell-cell and cell-substrate interactions, control aspects of these underlying physical mechanisms.
Collapse
Affiliation(s)
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
33
|
Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng 2021; 23:61-87. [PMID: 33722063 PMCID: PMC10436267 DOI: 10.1146/annurev-bioeng-083120-111648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Evan J Underhill
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| |
Collapse
|
34
|
Cavanaugh KE, Oakes PW, Gardel ML. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry. ACTA ACUST UNITED AC 2021; 86:e102. [PMID: 32031760 DOI: 10.1002/cpcb.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spatiotemporal localization of protein function is essential for physiological processes from subcellular to tissue scales. Genetic and pharmacological approaches have played instrumental roles in isolating molecular components necessary for subcellular machinery. However, these approaches have limited capabilities to reveal the nature of the spatiotemporal regulation of subcellular machineries like those of cytoskeletal organelles. With the recent advancement of optogenetic probes, the field now has a powerful tool to localize cytoskeletal stimuli in both space and time. Here, we detail the use of tunable light-controlled interacting protein tags (TULIPs) to manipulate RhoA signaling in vivo. This is an optogenetic dimerization system that rapidly, reversibly, and efficiently directs a cytoplasmic RhoGEF to the plasma membrane for activation of RhoA using light. We first compare this probe to other available optogenetic systems and outline the engineering logic for the chosen recruitable RhoGEFs. We also describe how to generate the cell line, spatially control illumination, confirm optogenetic control of RhoA, and mechanically induce cell-cell junction deformation in cultured tissues. Together, these protocols detail how to probe the mechanochemical circuitry downstream of RhoA signaling. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of a stable cell line expressing TULIP constructs Basic Protocol 2: Preparation of collagen substrate for imaging Basic Protocol 3: Transient transfection for visualization of downstream effectors Basic Protocol 4: Calibration of spatial illumination Basic Protocol 5: Optogenetic activation of a region of interest.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Margaret L Gardel
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Erdemci-Tandogan G, Manning ML. Effect of cellular rearrangement time delays on the rheology of vertex models for confluent tissues. PLoS Comput Biol 2021; 17:e1009049. [PMID: 34097706 PMCID: PMC8211246 DOI: 10.1371/journal.pcbi.1009049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Large-scale tissue deformation during biological processes such as morphogenesis requires cellular rearrangements. The simplest rearrangement in confluent cellular monolayers involves neighbor exchanges among four cells, called a T1 transition, in analogy to foams. But unlike foams, cells must execute a sequence of molecular processes, such as endocytosis of adhesion molecules, to complete a T1 transition. Such processes could take a long time compared to other timescales in the tissue. In this work, we incorporate this idea by augmenting vertex models to require a fixed, finite time for T1 transitions, which we call the "T1 delay time". We study how variations in T1 delay time affect tissue mechanics, by quantifying the relaxation time of tissues in the presence of T1 delays and comparing that to the cell-shape based timescale that characterizes fluidity in the absence of any T1 delays. We show that the molecular-scale T1 delay timescale dominates over the cell shape-scale collective response timescale when the T1 delay time is the larger of the two. We extend this analysis to tissues that become anisotropic under convergent extension, finding similar results. Moreover, we find that increasing the T1 delay time increases the percentage of higher-fold coordinated vertices and rosettes, and decreases the overall number of successful T1s, contributing to a more elastic-like-and less fluid-like-tissue response. Our work suggests that molecular mechanisms that act as a brake on T1 transitions could stiffen global tissue mechanics and enhance rosette formation during morphogenesis.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, New York, United States of America
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - M. Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York, United States of America
- BioInspired Institute, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
36
|
Huebner RJ, Malmi-Kakkada AN, Sarıkaya S, Weng S, Thirumalai D, Wallingford JB. Mechanical heterogeneity along single cell-cell junctions is driven by lateral clustering of cadherins during vertebrate axis elongation. eLife 2021; 10:e65390. [PMID: 34032216 PMCID: PMC8205493 DOI: 10.7554/elife.65390] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis is governed by the interplay of molecular signals and mechanical forces across multiple length scales. The last decade has seen tremendous advances in our understanding of the dynamics of protein localization and turnover at subcellular length scales, and at the other end of the spectrum, of mechanics at tissue-level length scales. Integrating the two remains a challenge, however, because we lack a detailed understanding of the subcellular patterns of mechanical properties of cells within tissues. Here, in the context of the elongating body axis of Xenopus embryos, we combine tools from cell biology and physics to demonstrate that individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their length. We show that such local mechanical patterning is essential for the cell movements of convergent extension and is imparted by locally patterned clustering of a classical cadherin. Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in diverse human birth defects.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Abdul Naseer Malmi-Kakkada
- Department of Chemistry, University of TexasAustinUnited States
- Department of Chemistry and Physics, Augusta UniversityAugustaGeorgia
| | - Sena Sarıkaya
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Shinuo Weng
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - D Thirumalai
- Department of Chemistry, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
37
|
Abstract
Epithelial cells possess the ability to change their shape in response to mechanical stress by remodelling their junctions and their cytoskeleton. This property lies at the heart of tissue morphogenesis in embryos. A key feature of embryonic cell shape changes is that they result from repeated mechanical inputs that make them partially irreversible at each step. Past work on cell rheology has rarely addressed how changes can become irreversible in a complex tissue. Here, we review new and exciting findings dissecting some of the physical principles and molecular mechanisms accounting for irreversible cell shape changes. We discuss concepts of mechanical ratchets and tension thresholds required to induce permanent cell deformations akin to mechanical plasticity. Work in different systems has highlighted the importance of actin remodelling and of E-cadherin endocytosis. We also list some novel experimental approaches to fine-tune mechanical tension, using optogenetics, magnetic beads or stretching of suspended epithelial tissues. Finally, we discuss some mathematical models that have been used to describe the quantitative aspects of accounting for mechanical cell plasticity and offer perspectives on this rapidly evolving field.
Collapse
Affiliation(s)
- Kelly Molnar
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| | - Michel Labouesse
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR7622, 9 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
38
|
Lenne PF, Rupprecht JF, Viasnoff V. Cell Junction Mechanics beyond the Bounds of Adhesion and Tension. Dev Cell 2021; 56:202-212. [PMID: 33453154 DOI: 10.1016/j.devcel.2020.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
Cell-cell junctions, in particular adherens junctions, are major determinants of tissue mechanics during morphogenesis and homeostasis. In attempts to link junctional mechanics to tissue mechanics, many have utilized explicitly or implicitly equilibrium approaches based on adhesion energy, surface energy, and contractility to determine the mechanical equilibrium at junctions. However, it is increasingly clear that they have significant limitations, such as that it remains challenging to link the dynamics of the molecular components to the resulting physical properties of the junction, to its remodeling ability, and to its adhesion strength. In this perspective, we discuss recent attempts to consider the aspect of energy dissipation at junctions to draw contact points with soft matter physics where energy loss plays a critical role in adhesion theories. We set the grounds for a theoretical framework of the junction mechanics that bridges the dynamics at the molecular scale to the mechanics at the tissue scale.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille Université, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France.
| | - Jean-François Rupprecht
- Aix Marseille Université, CNRS, CPT, Turing Centre for Living Systems, 13288 Marseille, France.
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; CNRS Biomechanics of Cell Contacts, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
39
|
Gómez-Gálvez P, Vicente-Munuera P, Anbari S, Buceta J, Escudero LM. The complex three-dimensional organization of epithelial tissues. Development 2021; 148:148/1/dev195669. [PMID: 33408064 DOI: 10.1242/dev.195669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Chemical and Biomolecular Engineering Department, Lehigh University, Bethlehem, PA 18018, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, 46980 Paterna (Valencia), Spain
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013 Seville, Spain .,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
40
|
Sui L, Dahmann C. Increased lateral tension is sufficient for epithelial folding in Drosophila. Development 2020; 147:147/23/dev194316. [DOI: 10.1242/dev.194316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The folding of epithelial sheets is important for tissues, organs and embryos to attain their proper shapes. Epithelial folding requires subcellular modulations of mechanical forces in cells. Fold formation has mainly been attributed to mechanical force generation at apical cell sides, but several studies indicate a role of mechanical tension at lateral cell sides in this process. However, whether lateral tension increase is sufficient to drive epithelial folding remains unclear. Here, we have used optogenetics to locally increase mechanical force generation at apical, lateral or basal sides of epithelial Drosophila wing disc cells, an important model for studying morphogenesis. We show that optogenetic recruitment of RhoGEF2 to apical, lateral or basal cell sides leads to local accumulation of F-actin and increase in mechanical tension. Increased lateral tension, but not increased apical or basal tension, results in sizeable fold formation. Our results stress the diversification of folding mechanisms between different tissues and highlight the importance of lateral tension increase for epithelial folding.
Collapse
Affiliation(s)
- Liyuan Sui
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
41
|
Abstract
We consider disordered solids in which the microscopic elements can deform plastically in response to stresses on them. We show that by driving the system periodically, this plasticity can be exploited to train in desired elastic properties, both in the global moduli and in local "allosteric" interactions. Periodic driving can couple an applied "source" strain to a "target" strain over a path in the energy landscape. This coupling allows control of the system's response, even at large strains well into the nonlinear regime, where it can be difficult to achieve control simply by design.
Collapse
|
42
|
Zankoc C, Krajnc M. Elasticity, Stability, and Quasioscillations of Cell-Cell Junctions in Solid Confluent Epithelia. Biophys J 2020; 119:1706-1711. [PMID: 33086043 DOI: 10.1016/j.bpj.2020.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
Macroscopic properties and shapes of biological tissues depend on the remodeling of cell-cell junctions at the microscopic scale. We propose a theoretical framework that couples a vertex model of solid confluent tissues with the dynamics describing generation of local force dipoles in the junctional actomyosin. Depending on the myosin turnover rate, junctions either preserve stable length or collapse to initiate cell rearrangements. We find that noise can amplify and sustain transient oscillations to the fixed point, giving rise to quasiperiodic junctional dynamics. We also discover that junctional stability is affected by cell arrangements and junctional rest tensions, which may explain junctional collapse during convergence and extension in embryos.
Collapse
|
43
|
Mosaffa P, Tetley RJ, Rodríguez-Ferran A, Mao Y, Muñoz JJ. Junctional and cytoplasmic contributions in wound healing. J R Soc Interface 2020; 17:20200264. [PMID: 32752998 PMCID: PMC7482570 DOI: 10.1098/rsif.2020.0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Wound healing is characterized by the re-epitheliation of a tissue through the activation of contractile forces concentrated mainly at the wound edge. While the formation of an actin purse string has been identified as one of the main mechanisms, far less is known about the effects of the viscoelastic properties of the surrounding cells, and the different contribution of the junctional and cytoplasmic contractilities. In this paper, we simulate the wound healing process, resorting to a hybrid vertex model that includes cell boundary and cytoplasmic contractilities explicitly, together with a differentiated viscoelastic rheology based on an adaptive rest-length. From experimental measurements of the recoil and closure phases of wounds in the Drosophila wing disc epithelium, we fit tissue viscoelastic properties. We then analyse in terms of closure rate and energy requirements the contributions of junctional and cytoplasmic contractilities. Our results suggest that reduction of junctional stiffness rather than cytoplasmic stiffness has a more pronounced effect on shortening closure times, and that intercalation rate has a minor effect on the stored energy, but contributes significantly to shortening the healing duration, mostly in the later stages.
Collapse
Affiliation(s)
- Payman Mosaffa
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Barcelona–Tech, Barcelona, Spain
| | - Robert J. Tetley
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Antonio Rodríguez-Ferran
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Barcelona–Tech, Barcelona, Spain
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People’s Republic of China
| | - José J. Muñoz
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Barcelona–Tech, Barcelona, Spain
| |
Collapse
|
44
|
Cavanaugh KE, Staddon MF, Banerjee S, Gardel ML. Adaptive viscoelasticity of epithelial cell junctions: from models to methods. Curr Opin Genet Dev 2020; 63:86-94. [PMID: 32604032 PMCID: PMC7483996 DOI: 10.1016/j.gde.2020.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
Epithelial morphogenesis relies on constituent cells' ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell-cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Staddon
- Department of Physics and Astronomy, and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago 60637 IL, USA; James Franck Institute, and Department ofPhysics, University of Chicago, Chicago 60637 IL, USA.
| |
Collapse
|
45
|
Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE. Anisotropy links cell shapes to tissue flow during convergent extension. Proc Natl Acad Sci U S A 2020; 117:13541-13551. [PMID: 32467168 PMCID: PMC7306759 DOI: 10.1073/pnas.1916418117] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
Collapse
Affiliation(s)
- Xun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
- Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
| | - Leo B Sutter
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
46
|
Sahu P, Kang J, Erdemci-Tandogan G, Manning ML. Linear and nonlinear mechanical responses can be quite different in models for biological tissues. SOFT MATTER 2020; 16:1850-1856. [PMID: 31984411 PMCID: PMC7453973 DOI: 10.1039/c9sm01068h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fluidity of biological tissues - whether cells can change neighbors and rearrange - is important for their function. In traditional materials, researchers have used linear response functions, such as the shear modulus, to accurately predict whether a material will behave as a fluid. Similarly, in disordered 2D vertex models for confluent biological tissues, the shear modulus becomes zero precisely when the cells can change neighbors and the tissue fluidizes, at a critical value of control parameter s0* = 3.81. However, the ordered ground states of 2D vertex models become linearly unstable at a lower value of control parameter (3.72), suggesting that there may be a decoupling between linear and nonlinear response. We demonstrate that the linear response does not correctly predict the nonlinear behavior in these systems: when the control parameter is between 3.72 and 3.81, cells cannot freely change neighbors even though the shear modulus is zero. These results highlight that the linear response of vertex models should not be expected to generically predict their rheology. We develop a simple geometric ansatz that correctly predicts the nonlinear response, which may serve as a framework for making nonlinear predictions in other vertex-like models.
Collapse
Affiliation(s)
- Preeti Sahu
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
The EMBO/EMBL Symposium 'Mechanical Forces in Development' was held in Heidelberg, Germany, on 3-6 July 2019. This interdisciplinary symposium brought together an impressive and diverse line-up of speakers seeking to address the origin and role of mechanical forces in development. Emphasising the importance of integrative approaches and theoretical simulations to obtain comprehensive mechanistic insights into complex morphogenetic processes, the meeting provided an ideal platform to discuss the concepts and methods of developmental mechanobiology in an era of fast technical and conceptual progress. Here, we summarise the concepts and findings discussed during the meeting, as well as the agenda it sets for the future of developmental mechanobiology.
Collapse
Affiliation(s)
- Adrien Hallou
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK .,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Cavanaugh KE, Staddon MF, Munro E, Banerjee S, Gardel ML. RhoA Mediates Epithelial Cell Shape Changes via Mechanosensitive Endocytosis. Dev Cell 2020; 52:152-166.e5. [PMID: 31883774 PMCID: PMC7565439 DOI: 10.1016/j.devcel.2019.12.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
Epithelial remodeling involves ratcheting behavior whereby periodic contractility produces transient changes in cell-cell contact lengths, which stabilize to produce lasting morphogenetic changes. Pulsatile RhoA activity is thought to underlie morphogenetic ratchets, but how RhoA governs transient changes in junction length, and how these changes are rectified to produce irreversible deformation, remains poorly understood. Here, we use optogenetics to characterize responses to pulsatile RhoA in model epithelium. Short RhoA pulses drive reversible junction contractions, while longer pulses produce irreversible junction length changes that saturate with prolonged pulse durations. Using an enhanced vertex model, we show this is explained by two effects: thresholded tension remodeling and continuous strain relaxation. Our model predicts that structuring RhoA into multiple pulses overcomes the saturation of contractility and confirms this experimentally. Junction remodeling also requires formin-mediated E-cadherin clustering and dynamin-dependent endocytosis. Thus, irreversible junction deformations are regulated by RhoA-mediated contractility, membrane trafficking, and adhesion receptor remodeling.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Staddon
- Department of Physics and Astronomy and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago 60637, IL, USA
| | - Shiladitya Banerjee
- Department of Physics and Astronomy and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK; Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago 60637, IL, USA; James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago 60637, IL, USA.
| |
Collapse
|