1
|
Favetta B, Wang H, Cubuk J, Barai M, Ramirez C, Gormley AJ, Murthy S, Soranno A, Shi Z, Schuster BS. Phosphorylation Toggles the SARS-CoV-2 Nucleocapsid Protein Between Two Membrane-Associated Condensate States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618867. [PMID: 39464032 PMCID: PMC11507936 DOI: 10.1101/2024.10.17.618867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The SARS-CoV-2 Nucleocapsid protein (N) performs several functions during the viral lifecycle, including transcription regulation and viral genome encapsulation. We hypothesized that N toggles between these functions via phosphorylation-induced conformational change, thereby altering N interactions with membranes and RNA. We found that phosphorylation changes how biomolecular condensates composed of N and RNA interact with membranes: phosphorylated N (pN) condensates form thin films, while condensates with unmodified N are engulfed. This partly results from changes in material properties, with pN forming less viscous and elastic condensates. The weakening of protein-RNA interaction in condensates upon phosphorylation is driven by a decrease in binding between pN and unstructured RNA. We show that phosphorylation induces a conformational change in the serine/arginine-rich region of N that increases interaction between pN monomers and decreases nonspecific interaction with RNA. These findings connect the conformation, material properties, and membrane-associated states of N, with potential implications for COVID-19 treatment.
Collapse
Affiliation(s)
- Bruna Favetta
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO 63110
| | - Mayur Barai
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Cesar Ramirez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sanjeeva Murthy
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO 63110
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
2
|
Santamaria A, Hutin S, Doucet CM, Zubieta C, Milhiet PE, Costa L. Quantifying surface tension and viscosity in biomolecular condensates by FRAP-ID. Biophys J 2024; 123:3366-3374. [PMID: 39113361 PMCID: PMC11480758 DOI: 10.1016/j.bpj.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Many proteins with intrinsically disordered regions undergo liquid-liquid phase separation under specific conditions in vitro and in vivo. These complex biopolymers form a metastable phase with distinct mechanical properties defining the timescale of their biological functions. However, determining these properties is nontrivial, even in vitro, and often requires multiple techniques. Here we report the measurement of both viscosity and surface tension of biomolecular condensates via correlative fluorescence microscopy and atomic force microscopy (AFM) in a single experiment (fluorescence recovery after probe-induced dewetting, FRAP-ID). Upon surface tension evaluation via regular AFM-force spectroscopy, controlled AFM indentations induce dry spots in fluorescent condensates on a glass coverslip. The subsequent rewetting exhibits a contact line velocity that is used to quantify the condensed-phase viscosity. Therefore, in contrast with fluorescence recovery after photobleaching (FRAP), where molecular diffusion is observed, in FRAP-ID fluorescence recovery is obtained through fluid rewetting and the subsequent morphological relaxation. We show that the latter can be used to cross-validate viscosity values determined during the rewetting regime. Making use of fluid mechanics, FRAP-ID is a valuable tool to evaluate the mechanical properties that govern the dynamics of biomolecular condensates and determine how these properties impact the temporal aspects of condensate functionality.
Collapse
Affiliation(s)
- Andreas Santamaria
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, France
| | - Christine M Doucet
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, France
| | - Pierre-Emmanuel Milhiet
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Luca Costa
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France.
| |
Collapse
|
3
|
Rizvi A, Favetta B, Jaber N, Lee YK, Jiang J, Idris NS, Schuster BS, Dai W, Patterson JP. Revealing nanoscale structure and interfaces of protein and polymer condensates via cryo-electron microscopy. NANOSCALE 2024; 16:16706-16717. [PMID: 39171763 PMCID: PMC11392623 DOI: 10.1039/d4nr01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Liquid-liquid phase separation (LLPS) is a ubiquitous demixing phenomenon observed in various molecular solutions, including in polymer and protein solutions. Demixing of solutions results in condensed, phase separated droplets which exhibit a range of liquid-like properties driven by transient intermolecular interactions. Understanding the organization within these condensates is crucial for deciphering their material properties and functions. This study explores the distinct nanoscale networks and interfaces in the condensate samples using a modified cryo-electron microscopy (cryo-EM) method. The method involves initiating condensate formation on electron microscopy grids to limit droplet growth as large droplet sizes are not ideal for cryo-EM imaging. The versatility of this method is demonstrated by imaging three different classes of condensates. We further investigate the condensate structures using cryo-electron tomography which provides 3D reconstructions, uncovering porous internal structures, unique core-shell morphologies, and inhomogeneities within the nanoscale organization of protein condensates. Comparison with dry-state transmission electron microscopy emphasizes the importance of preserving the hydrated structure of condensates for accurate structural analysis. We correlate the internal structure of protein condensates with their amino acid sequences and material properties by performing viscosity measurements that support that more viscous condensates exhibit denser internal assemblies. Our findings contribute to a comprehensive understanding of nanoscale condensate structure and its material properties. Our approach here provides a versatile tool for exploring various phase-separated systems and their nanoscale structures for future studies.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Bruna Favetta
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yun-Kyung Lee
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jennifer Jiang
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nehal S Idris
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2025, USA
| |
Collapse
|
4
|
Cohen SR, Banerjee PR, Pappu RV. Direct computations of viscoelastic moduli of biomolecular condensates. J Chem Phys 2024; 161:095103. [PMID: 39225536 PMCID: PMC11374380 DOI: 10.1063/5.0223001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Biomolecular condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model that leverages information regarding intra- and inter-chain contacts, which we extract from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations of phase separation. The key ingredient of the generalized Rouse model is a graph Laplacian that we compute from equilibrium MMC simulations. We compute two flavors of graph Laplacians, one based on a single-chain graph that accounts only for intra-chain contacts, and the other referred to as a collective graph that accounts for inter-chain interactions. Calculations based on the single-chain graph systematically overestimate the storage and loss moduli, whereas calculations based on the collective graph reproduce the measured moduli with greater fidelity. However, in the long time, low-frequency domain, a mixture of the two graphs proves to be most accurate. In line with the theory of Rouse and contrary to recent assertions, we find that a continuous distribution of relaxation times exists in condensates. The single crossover frequency between dominantly elastic vs dominantly viscous behaviors does not imply a single relaxation time. Instead, it is influenced by the totality of the relaxation modes. Hence, our analysis affirms that viscoelastic fluid-like condensates are best described as generalized Maxwell fluids. Finally, we show that the complex shear moduli can be used to solve an inverse problem to obtain the relaxation time spectra that underlie the dynamics within condensates. This is of practical importance given advancements in passive and active microrheology measurements of condensate viscoelasticity.
Collapse
Affiliation(s)
- Samuel R Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
5
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. Nat Commun 2024; 15:7686. [PMID: 39227569 PMCID: PMC11372141 DOI: 10.1038/s41467-024-51840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart directional motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced enhanced motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
6
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-Cell Quantification Reveals Viscoelastic Regulation of Synapsin Condensates by α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605529. [PMID: 39211102 PMCID: PMC11361170 DOI: 10.1101/2024.07.28.605529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a significant challenge. To address this, we develop MAPAC (micropipette aspiration and whole-cell patch clamp), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify 4 molecular factors that distinctly regulate the viscosity and interfacial tension of synapsin condensates, verifying the cellular effects of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo. .
Collapse
|
7
|
Banerjee P, Mahendran TS, Wadsworth G, Singh A. Biomolecular condensates can enhance pathological RNA clustering. RESEARCH SQUARE 2024:rs.3.rs-4557520. [PMID: 39070659 PMCID: PMC11276000 DOI: 10.21203/rs.3.rs-4557520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which drives a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
|
8
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
9
|
Mahendran TS, Wadsworth GM, Singh A, Banerjee PR. Biomolecular Condensates Can Enhance Pathological RNA Clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598371. [PMID: 38915678 PMCID: PMC11195159 DOI: 10.1101/2024.06.11.598371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which drives a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
Affiliation(s)
| | | | - Anurag Singh
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA
| | - Priya R. Banerjee
- Department of Biology, University at Buffalo, Buffalo, NY, 14260, USA
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
10
|
Cohen SR, Banerjee PR, Pappu RV. Direct computations of viscoelastic moduli of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598543. [PMID: 38915484 PMCID: PMC11195242 DOI: 10.1101/2024.06.11.598543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In vitro facsimiles of biomolecular condensates are formed by different types of intrinsically disordered proteins including prion-like low complexity domains (PLCDs). PLCD condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model and information regarding intra- and inter-chain contacts that is extracted from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations. The key ingredient of the generalized Rouse model is the Zimm matrix that we compute from equilibrium MMC simulations. We compute two flavors of Zimm matrices, one referred to as the single-chain model that accounts only for intra-chain contacts, and the other referred to as a collective model, that accounts for inter-chain interactions. The single-chain model systematically overestimates the storage and loss moduli, whereas the collective model reproduces the measured moduli with greater fidelity. However, in the long time, low-frequency domain, a mixture of the two models proves to be most accurate. In line with the theory of Rouse, we find that a continuous distribution of relaxation times exists in condensates. The single crossover frequency between dominantly elastic versus dominantly viscous behaviors is influenced by the totality of the relaxation modes. Hence, our analysis suggests that viscoelastic fluid-like condensates are best described as generalized Maxwell fluids. Finally, we show that the complex shear moduli can be used to solve an inverse problem to obtain distributions of relaxation times that underlie the dynamics within condensates.
Collapse
|
11
|
Roggeveen JV, Wang H, Shi Z, Stone HA. A calibration-free model of micropipette aspiration for measuring properties of protein condensates. Biophys J 2024; 123:1393-1403. [PMID: 37789618 PMCID: PMC11163300 DOI: 10.1016/j.bpj.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
There is growing evidence that biological condensates, which are also referred to as membraneless organelles, and liquid-liquid phase separation play critical roles regulating many important cellular processes. Understanding the roles these condensates play in biology is predicated on understanding the material properties of these complex substances. Recently, micropipette aspiration (MPA) has been proposed as a tool to assay the viscosity and surface tension of condensates. This tool allows the measurement of both material properties in one relatively simple experiment, in contrast to many other techniques that only provide one or a ratio of parameters. While this technique has been commonly used in the literature to determine the material properties of membrane-bound objects dating back decades, the model describing the dynamics of MPA for objects with an external membrane does not correctly capture the hydrodynamics of unbounded fluids, leading to a calibration parameter several orders of magnitude larger than predicted. In this work we derive a new model for MPA of biological condensates that does not require any calibration and is consistent with the hydrodynamics of the MPA geometry. We validate the predictions of this model by conducting MPA experiments on a standard silicone oil of known material properties and are able to predict the viscosity and surface tension using MPA. Finally, we reanalyze with this new model the MPA data presented in previous works for condensates formed from LAF-1 RGG domains.
Collapse
Affiliation(s)
- James V Roggeveen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
12
|
Gil-Garcia M, Benítez-Mateos AI, Papp M, Stoffel F, Morelli C, Normak K, Makasewicz K, Faltova L, Paradisi F, Arosio P. Local environment in biomolecular condensates modulates enzymatic activity across length scales. Nat Commun 2024; 15:3322. [PMID: 38637545 PMCID: PMC11026464 DOI: 10.1038/s41467-024-47435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
The mechanisms that underlie the regulation of enzymatic reactions by biomolecular condensates and how they scale with compartment size remain poorly understood. Here we use intrinsically disordered domains as building blocks to generate programmable enzymatic condensates of NADH-oxidase (NOX) with different sizes spanning from nanometers to microns. These disordered domains, derived from three distinct RNA-binding proteins, each possessing different net charge, result in the formation of condensates characterized by a comparable high local concentration of the enzyme yet within distinct environments. We show that only condensates with the highest recruitment of substrate and cofactor exhibit an increase in enzymatic activity. Notably, we observe an enhancement in enzymatic rate across a wide range of condensate sizes, from nanometers to microns, indicating that emergent properties of condensates can arise within assemblies as small as nanometers. Furthermore, we show a larger rate enhancement in smaller condensates. Our findings demonstrate the ability of condensates to modulate enzymatic reactions by creating distinct effective solvent environments compared to the surrounding solution, with implications for the design of protein-based heterogeneous biocatalysts.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marcell Papp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Florence Stoffel
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Chiara Morelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Karl Normak
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Katarzyna Makasewicz
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Sundaravadivelu Devarajan D, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim YC, Mittal J. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations. Nat Commun 2024; 15:1912. [PMID: 38429263 PMCID: PMC10907393 DOI: 10.1038/s41467-024-46223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Material properties of phase-separated biomolecular condensates, enriched with disordered proteins, dictate many cellular functions. Contrary to the progress made in understanding the sequence-dependent phase separation of proteins, little is known about the sequence determinants of condensate material properties. Using the hydropathy scale and Martini models, we computationally decipher these relationships for charge-rich disordered protein condensates. Our computations yield dynamical, rheological, and interfacial properties of condensates that are quantitatively comparable with experimentally characterized condensates. Interestingly, we find that the material properties of model and natural proteins respond similarly to charge segregation, despite different sequence compositions. Molecular interactions within the condensates closely resemble those within the single-chain ensembles. Consequently, the material properties strongly correlate with molecular contact dynamics and single-chain structural properties. We demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
Collapse
Affiliation(s)
| | - Jiahui Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062, Dresden, Germany
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, 20375, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Li S, Zhang Y, Chen J. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochem Soc Trans 2024; 52:319-329. [PMID: 38348795 DOI: 10.1042/bst20230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Intrinsically disordered proteins (IDPs) are one of the major drivers behind the formation and characteristics of biomolecular condensates. Due to their inherent flexibility, the backbones of IDPs are significantly exposed, rendering them highly influential and susceptible to biomolecular phase separation. In densely packed condensates, exposed backbones have a heightened capacity to interact with neighboring protein chains, which might lead to strong coupling between the secondary structures and phase separation and further modulate the subsequent transitions of the condensates, such as aging and fibrillization. In this mini-review, we provide an overview of backbone-mediated interactions and secondary structures within biomolecular condensates to underscore the importance of protein backbones in phase separation. We further focus on recent advances in experimental techniques and molecular dynamics simulation methods for probing and exploring the roles of backbone interactions and secondary structures in biomolecular phase separation involving IDPs.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A
| |
Collapse
|
15
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.03.547532. [PMID: 37461689 PMCID: PMC10350024 DOI: 10.1101/2023.07.03.547532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
16
|
Alshareedah I, Singh A, Yang S, Ramachandran V, Quinn A, Potoyan DA, Banerjee PR. Determinants of viscoelasticity and flow activation energy in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadi6539. [PMID: 38363841 PMCID: PMC10871536 DOI: 10.1126/sciadv.adi6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
The form and function of biomolecular condensates are intimately linked to their material properties. Here, we integrate microrheology with molecular simulations to dissect the physical determinants of condensate fluid phase dynamics. By quantifying the timescales and energetics of network relaxation in a series of heterotypic viscoelastic condensates, we uncover distinctive roles of sticker motifs, binding energy, and chain length in dictating condensate dynamical properties. We find that the mechanical relaxation times of condensate-spanning networks are determined by both intermolecular interactions and chain length. We demonstrate, however, that the energy barrier for network reconfiguration, termed flow activation energy, is independent of chain length and only varies with the strengths of intermolecular interactions. Biomolecular diffusion in the dense phase depends on a complex interplay between viscoelasticity and flow activation energy. Our results illuminate distinctive roles of chain length and sequence-specific multivalent interactions underlying the complex material and transport properties of biomolecular condensates.
Collapse
Affiliation(s)
| | - Anurag Singh
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Sean Yang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Alexander Quinn
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
17
|
Devarajan DS, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim YC, Mittal J. Sequence-Dependent Material Properties of Biomolecular Codensates and their Relation to Dilute Phase Conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540038. [PMID: 37215004 PMCID: PMC10197689 DOI: 10.1101/2023.05.09.540038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Material properties of phase-separated biomolecular assemblies, enriched with disordered proteins, dictate their ability to participate in many cellular functions. Despite the significant effort dedicated to understanding how the sequence of the disordered protein drives its phase separation to form condensates, little is known about the sequence determinants of condensate material properties. Here, we computationally decipher these relationships for charged disordered proteins using model sequences comprised of glutamic acid and lysine residues as well as naturally occurring sequences of LAF1's RGG domain and DDX4's N-terminal domain. We do so by delineating how the arrangement of oppositely charged residues within these sequences influences the dynamical, rheological, and interfacial properties of the condensed phase through equilibrium and non-equilibrium molecular simulations using the hydropathy scale and Martini models. Our computations yield material properties that are quantitatively comparable with experimentally characterized condensate systems. Interestingly, we find that the material properties of both the model and natural proteins respond similarly to the segregation of charges, despite their very different sequence compositions. Condensates of the highly charge-segregated sequences exhibit slower dynamics than the uniformly charge-patterned sequences, because of their comparatively long-lived molecular contacts between oppositely charged residues. Surprisingly, the molecular interactions within the condensate are highly similar to those within a single-chain for all sequences. Consequently, the condensate material properties of charged disordered proteins are strongly correlated with their dense phase contact dynamics and their single-chain structural properties. Our findings demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
Collapse
Affiliation(s)
| | - Jiahui Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
18
|
Alshareedah I, Borcherds WM, Cohen SR, Singh A, Posey AE, Farag M, Bremer A, Strout GW, Tomares DT, Pappu RV, Mittag T, Banerjee PR. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535902. [PMID: 37066350 PMCID: PMC10104120 DOI: 10.1101/2023.04.06.535902] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Biomolecular condensates are viscoelastic materials. Here, we report results from investigations into molecular-scale determinants of sequence-encoded and age-dependent viscoelasticity of condensates formed by prion-like low-complexity domains (PLCDs). The terminally viscous forms of PLCD condensates are Maxwell fluids. Measured viscoelastic moduli of these condensates are reproducible using a Rouse-Zimm model that accounts for the network-like organization engendered by reversible physical crosslinks among PLCDs in the dense phase. Measurements and computations show that the strengths of aromatic inter-sticker interactions determine the sequence-specific amplitudes of elastic and viscous moduli as well as the timescales over which elastic properties dominate. PLCD condensates also undergo physical aging on sequence-specific timescales. This is driven by mutations to spacer residues that weaken the metastability of terminally viscous phases. The aging of PLCD condensates is accompanied by disorder-to-order transitions, leading to the formation of non-fibrillar, beta-sheet-containing, semi-crystalline, terminally elastic, Kelvin-Voigt solids. Our results suggest that sequence grammars, which refer to the identities of stickers versus spacers in PLCDs, have evolved to afford control over the metastabilities of terminally viscous fluid phases of condensates. This selection can, in some cases, render barriers for conversion from metastable fluids to globally stable solids to be insurmountable on functionally relevant timescales.
Collapse
|
19
|
Testa A, Spanke HT, Jambon-Puillet E, Yasir M, Feng Y, Küffner AM, Arosio P, Dufresne ER, Style RW, Rebane AA. Surface Passivation Method for the Super-repellence of Aqueous Macromolecular Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14626-14637. [PMID: 37797324 PMCID: PMC10586374 DOI: 10.1021/acs.langmuir.3c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.
Collapse
Affiliation(s)
- Andrea Testa
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Etienne Jambon-Puillet
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- LadHyX,
CNRS, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau 91120, France
| | - Mohammad Yasir
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanxia Feng
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas M. Küffner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Robert W. Style
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksander A. Rebane
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Life
Molecules and Materials Laboratory, Programs in Chemistry and in Physics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. RESEARCH SQUARE 2023:rs.3.rs-3171749. [PMID: 37546778 PMCID: PMC10402192 DOI: 10.21203/rs.3.rs-3171749/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and active transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
21
|
Malhotra I, Potoyan DA. Re-entrant transitions of locally stiff RNA chains in the presence of polycations leads to gelated architectures. SOFT MATTER 2023. [PMID: 37449795 PMCID: PMC10369498 DOI: 10.1039/d3sm00320e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The liquid-liquid phase separation of protein and nucleic acid mixtures drives the formation of numerous membraneless compartments in cells. Temperature variation is commonly used for mapping condensate phase diagrams, which often display unique upper critical temperatures. Recent report on peptide-RNA mixtures has shown the existence of lower and upper critical solution temperatures, highlighting the importance of temperature-dependent solvent and ion-mediated forces. In the present work, we employ residue-level coarse-grained models of RNA and polycation peptide chains for simulating temperature-induced re-entrant transitions and shedding light on the role played by mobile ions, temperature-dependent dielectric permittivity, and local chain stiffness. We show that differences in bending rigidity can significantly modulate condensate topology leading to the formation of gelated or fibril like architectures. The study also finds that temperature dependence of water permittivity is generally sufficient for recapitulating experimentally observed closed loop and LCST phase diagrams of highly charged protein-RNA mixtures. However, we find that similar-looking closed-loop phase diagrams can correspond to vastly different condensate topologies.
Collapse
Affiliation(s)
- Isha Malhotra
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| |
Collapse
|
22
|
Morishita K, Watanabe K, Naguro I, Ichijo H. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response. Cell Rep 2023; 42:112315. [PMID: 37019112 DOI: 10.1016/j.celrep.2023.112315] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Biomolecular condensates are membraneless structures formed through phase separation. Recent studies have demonstrated that the material properties of biomolecular condensates are crucial for their biological functions and pathogenicity. However, the phase maintenance of biomolecular condensates in cells remains elusive. Here, we show that sodium ion (Na+) influx regulates the condensate liquidity under hyperosmotic stress. ASK3 condensates have higher fluidity at the high intracellular Na+ concentration derived from extracellular hyperosmotic solution. Moreover, we identified TRPM4 as a cation channel that allows Na+ influx under hyperosmotic stress. TRPM4 inhibition causes the liquid-to-solid phase transition of ASK3 condensates, leading to impairment of the ASK3 osmoresponse. In addition to ASK3 condensates, intracellular Na+ widely regulates the condensate liquidity and aggregate formation of biomolecules, including DCP1A, TAZ, and polyQ-protein, under hyperosmotic stress. Our findings demonstrate that changes in Na+ contribute to the cellular stress response via liquidity maintenance of biomolecular condensates.
Collapse
Affiliation(s)
- Kazuhiro Morishita
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Sato Y, Takinoue M. Sequence-dependent fusion dynamics and physical properties of DNA droplets. NANOSCALE ADVANCES 2023; 5:1919-1925. [PMID: 36998664 PMCID: PMC10044877 DOI: 10.1039/d3na00073g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 06/19/2023]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymer molecules generates liquid-like droplets. Physical properties such as viscosity and surface tension play important roles in the functions of these droplets. DNA-nanostructure-based LLPS systems provide useful model tools to investigate the influence of molecular design on the physical properties of the droplets, which has so far remained unclear. Herein, we report changes in the physical properties of DNA droplets by sticky end (SE) design in DNA nanostructures. We used a Y-shaped DNA nanostructure (Y-motif) with three SEs as a model structure. Seven different SE designs were used. The experiments were performed at the phase transition temperature where the Y-motifs self-assembled into droplets. We found that the DNA droplets assembled from the Y-motifs with longer SEs exhibited a longer coalescence period. In addition, the Y-motifs with the same length but different sequence SEs showed slight variations in the coalescence period. Our results suggest that the SE length greatly affected the surface tension at the phase transition temperature. We believe that these findings will accelerate our understanding of the relationship between molecular design and the physical properties of droplets formed via LLPS.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Department of Intelligent and Control Systems, Kyushu Institute of Technology 680-4 Kawazu, IIzuka Fukuoka 820-8502 Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
24
|
Ji J, Wang W, Chen C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1023-1033. [PMID: 36876423 PMCID: PMC10415186 DOI: 10.3724/abbs.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Biomolecules forming membraneless structures via liquid-liquid phase separation (LLPS) is a common event in living cells. Some liquid-like condensates can convert into solid-like aggregations, and such a phase transition process is related to some neurodegenerative diseases. Liquid-like condensates and solid-like aggregations usually exhibit distinctive fluidity and are commonly distinguished via their morphology and dynamic properties identified through ensemble methods. Emerging single-molecule techniques are a group of highly sensitive techniques, which can offer further mechanistic insights into LLPS and phase transition at the molecular level. Here, we summarize the working principles of several commonly used single-molecule techniques and demonstrate their unique power in manipulating LLPS, examining mechanical properties at the nanoscale, and monitoring dynamic and thermodynamic properties at the molecular level. Thus, single-molecule techniques are unique tools to characterize LLPS and liquid-to-solid phase transition under close-to-physiological conditions.
Collapse
Affiliation(s)
- Jinyao Ji
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| | - Wenjuan Wang
- School of Life SciencesTechnology Center for Protein SciencesTsinghua UniversityBeijing100084China
| | - Chunlai Chen
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| |
Collapse
|
25
|
Incicco JJ, Roy D, Stuchell-Brereton MD, Soranno A. Fluorescence Correlation Spectroscopy and Phase Separation. Methods Mol Biol 2023; 2563:161-198. [PMID: 36227473 DOI: 10.1007/978-1-0716-2663-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A quantitative understanding of the forces controlling the assembly and functioning of biomolecular condensates requires the identification of phase boundaries at which condensates form as well as the determination of tie-lines. Here, we describe in detail how Fluorescence Correlation Spectroscopy (FCS) provides a versatile approach to estimate phase boundaries of single-component and multicomponent solutions as well as insights about the transport properties of the condensate.
Collapse
Affiliation(s)
- Juan Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Debjit Roy
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
26
|
Alshareedah I, Banerjee PR. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy. Methods Mol Biol 2023; 2563:199-213. [PMID: 36227474 PMCID: PMC9884114 DOI: 10.1007/978-1-0716-2663-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation of protein and RNA complexes into biomolecular condensates has emerged as a ubiquitous phenomenon in living systems. These protein-RNA condensates are thought to be involved in many biological functions in all forms of life. One of the most sought-after properties of these condensates is their dynamical properties, as they are a major determinant of condensate physiological function and disease processes. Measurement of the diffusion dynamics of individual components in a multicomponent biomolecular condensate is therefore routinely performed. Here, we outline the experimental procedure for performing in-droplet fluorescence correlation spectroscopy (FCS) measurements to extract the diffusion coefficient of individual molecules within a biomolecular condensate in vitro. Unlike more common experiments such as fluorescence recovery after photobleaching (FRAP), where data interpretation is not straightforward and strictly model dependent, FCS offers a robust and more accurate way to quantify biomolecular diffusion rates in the dense phase. The small observation volume allows FCS experiments to report on the local diffusion coefficient within a spatial resolution of <1 μm, making it ideal for probing spatial inhomogeneities within condensates as well as variable dynamics within subcompartments of multiphasic condensates.
Collapse
Affiliation(s)
| | - Priya R Banerjee
- Department of Physics, University at Buffalo SUNY, Buffalo, NY, USA.
| |
Collapse
|
27
|
Erkamp NA, Qi R, Welsh TJ, Knowles TPJ. Microfluidics for multiscale studies of biomolecular condensates. LAB ON A CHIP 2022; 23:9-24. [PMID: 36269080 PMCID: PMC9764808 DOI: 10.1039/d2lc00622g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Membraneless organelles formed through condensation of biomolecules in living cells have become the focus of sustained efforts to elucidate their mechanisms of formation and function. These condensates perform a range of vital functions in cells and are closely connected to key processes in functional and aberrant biology. Since these systems occupy a size scale intermediate between single proteins and conventional protein complexes on the one hand, and cellular length scales on the other hand, they have proved challenging to probe using conventional approaches from either protein science or cell biology. Additionally, condensate can form, solidify and perform functions on various time-scales. From a physical point of view, biomolecular condensates are colloidal soft matter systems, and microfluidic approaches, which originated in soft condensed matter research, have successfully been used to study biomolecular condensates. This review explores how microfluidics have aided condensate research into the thermodynamics, kinetics and other properties of condensates, by offering high-throughput and novel experimental setups.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK
| |
Collapse
|
28
|
Otis JB, Sharpe S. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules 2022; 23:5225-5238. [PMID: 36378745 DOI: 10.1021/acs.biomac.2c01027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.
Collapse
Affiliation(s)
- James Brandt Otis
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
29
|
Zhang R, Zhang J, Tan F, Yang D, Wang B, Dai J, Qi Y, Ran L, He W, Lv Y, Wang F, Fang Y. Multi-channel AgNWs-doped interdigitated organic electrochemical transistors enable sputum-based device towards noninvasive and portable diagnosis of lung cancer. Mater Today Bio 2022; 16:100385. [PMID: 35991625 PMCID: PMC9386496 DOI: 10.1016/j.mtbio.2022.100385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022] Open
Abstract
Biochemical monitoring of bodily fluidics such as sweat, urine, and tears have been extensively developed, but reliable biochemical analysis of sputum biospecimens remains limited and challenging due to the low abundance of biomarkers in intrinsically viscous sputum. We reported a portable multi-channel sputum-based interdigitated organic electrochemical transistors (SiOECTs) device for noninvasive sputum diagnosis. We tailored the AgNWs-doped organic electrochemical transistors, integrating with multiplexed aptamer-antigen assays, to realize the signal amplification and simultaneous detection of biomarkers in raw sputum biospecimens from lung cancer patients. Clinical validation studies demonstrated favorable correlation coefficients between the sputum and serum biospecimens. By utilizing our portable multi-channel iOECTs devices, lung cancer patients were differentiated from health control with an optimum area under the curve (AUC) of 0.931, sensitivity of 87.0%, and specificity of 86.5%. Our miniaturized and portable device could even realize the continuous in-home tracking of the biomarkers change for lung cancer patients after radiotherapy/chemotherapy. It is envisaged that the SiOECTs will shed light on noninvasive diagnostics platforms for sputum-related diseases.
Collapse
Affiliation(s)
- Ru Zhang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, And School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons of England, London, UK
| | - Deqi Yang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Dai
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yin Qi
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Linyu Ran
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Wenjuan He
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai, 200444, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
30
|
Yewdall NA, André AAM, van Haren MHI, Nelissen FHT, Jonker A, Spruijt E. ATP:Mg 2+ shapes material properties of protein-RNA condensates and their partitioning of clients. Biophys J 2022; 121:3962-3974. [PMID: 36004782 PMCID: PMC9674983 DOI: 10.1016/j.bpj.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Many cellular condensates are heterotypic mixtures of proteins and RNA formed in complex environments. Magnesium ions (Mg2+) and ATP can impact RNA folding, and local intracellular levels of these factors can vary significantly. However, the effect of ATP:Mg2+ on the material properties of protein-RNA condensates is largely unknown. Here, we use an in vitro condensate model of nucleoli, made from nucleophosmin 1 (NPM1) proteins and ribosomal RNA (rRNA), to study the effect of ATP:Mg2+. While NPM1 dynamics remain unchanged at increasing Mg2+ concentrations, the internal RNA dynamics dramatically slowed until a critical point, where gel-like states appeared, suggesting the RNA component alone forms a viscoelastic network that undergoes maturation driven by weak multivalent interactions. ATP reverses this arrest and liquefies the gel-like structures. ATP:Mg2+ also influenced the NPM1-rRNA composition of condensates and enhanced the partitioning of two clients: an arginine-rich peptide and a small nuclear RNA. By contrast, larger ribosome partitioning shows dependence on ATP:Mg2+ and can become reversibly trapped around NPM1-rRNA condensates. Lastly, we show that dissipative enzymatic reactions that deplete ATP can be used to control the shape, composition, and function of condensates. Our results illustrate how intracellular environments may regulate the state and client partitioning of RNA-containing condensates.
Collapse
Affiliation(s)
- N Amy Yewdall
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| | - Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Aafke Jonker
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
31
|
Xiang YX, Shan Y, Lei QL, Ren CL, Ma YQ. Dynamics of protein condensates in weak-binding regime. Phys Rev E 2022; 106:044403. [PMID: 36397514 DOI: 10.1103/physreve.106.044403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Weak complementary interactions between proteins and nucleic acids are the main driving forces of intracellular liquid-liquid phase separation. The sticker-spacer model has emerged as a unifying principle for understanding the phase behavior of these multivalent molecules. It remains elusive how specific interactions mediated by stickers contribute to the rheological properties of the liquid condensates. Previous studies have revealed that for strong binding strength ɛ_{b}, the bulk diffusivity D depends on the effective bond lifetime τ, viz., D∝τ^{-1}. Consequently, equal concentrations of the complementary stickers induce a slow down in the dynamics of the condensates D∝e^{-1.5ɛ_{b}}. However, for weak-binding strength, it is expected that the resulting condensates are dynamic, loose network liquids rather than kinetically arrested, compact clusters. We develop a mean-field theory using the thermodynamics of the associative polymers and perform molecular-dynamics simulations based on the sticker-spacer model to study the controlling factors in the structure and dynamics of such condensates in the weak-binding regime. Through scaling analysis, we delineate how the free sticker fraction W_{f} and the bulk diffusivity D decrease with increasing binding energy and find that the internal dynamics of such network liquids are controlled by the free sticker fraction D∝W_{f}∝e^{-0.5ɛ_{b}} rather than the effective bond lifetime. Referred to as the free-sticker-dominated diffusivity, the microscopic slowdown due to a gradual loss of the free stickers affects the viscosity of the condensates as well, with the scaling of the zero-shear viscosity η∝e^{0.5ɛ_{b}}. Therefore, the way of controlling the structure, diffusivity, and viscosity of the condensates through the binding energy can be tested experimentally.
Collapse
Affiliation(s)
- Ya-Xin Xiang
- National Laboratory of Solid State Microstructures and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yue Shan
- National Laboratory of Solid State Microstructures and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qun-Li Lei
- National Laboratory of Solid State Microstructures and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Davis RB, Moosa MM, Banerjee PR. Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends Cell Biol 2022; 32:681-695. [PMID: 35484036 PMCID: PMC9288518 DOI: 10.1016/j.tcb.2022.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that are enriched in specific proteins and nucleic acids, compartmentalized to perform biochemical functions. Such condensates are formed by phase separation (PS) enabled by protein domains that allow multivalent interactions. Chromosomal translocation-derived in-frame gene fusions often generate proteins with non-native domain combinations that rewire protein-protein interaction networks. Several recent studies have shown that, for a subset of these fusion proteins, pathogenesis can be driven by the ability of the fusion protein to undergo phase transitions at non-physiological cellular locations to form ectopic condensates. We highlight how such ectopic phase transitions can alter biological processes and posit that dysfunction via protein PS at non-physiological locations represents a generic route to oncogenic transformation.
Collapse
Affiliation(s)
- Richoo B Davis
- Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA
| | - Mahdi Muhammad Moosa
- Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.
| | - Priya R Banerjee
- Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
33
|
Michieletto D, Marenda M. Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. JACS AU 2022; 2:1506-1521. [PMID: 35911447 PMCID: PMC9326828 DOI: 10.1021/jacsau.2c00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase separation is as familiar as watching vinegar separating from oil in vinaigrette. The observation that phase separation of proteins and nucleic acids is widespread in living cells has opened an entire field of research into the biological significance and the biophysical mechanisms of phase separation and protein condensation in biology. Recent evidence indicates that certain proteins and nucleic acids condensates are not simple liquids and instead display both viscous and elastic behaviors, which in turn may have biological significance. The aim of this Perspective is to review the state-of-the-art of this quickly emerging field focusing on the material and rheological properties of protein condensates. Finally, we discuss the different techniques that can be employed to quantify the viscoelasticity of condensates and highlight potential future directions and opportunities for interdisciplinary cross-talk between chemists, physicists, and biologists.
Collapse
Affiliation(s)
- Davide Michieletto
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| | - Mattia Marenda
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| |
Collapse
|
34
|
Laghmach R, Alshareedah I, Pham M, Raju M, Banerjee PR, Potoyan DA. RNA chain length and stoichiometry govern surface tension and stability of protein-RNA condensates. iScience 2022; 25:104105. [PMID: 35378855 PMCID: PMC8976129 DOI: 10.1016/j.isci.2022.104105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Proteomic studies have shown that cellular condensates are frequently enriched in diverse RNA molecules, which is suggestive of mechanistic links between phase separation and transcriptional activities. Here, we report a systematic experimental and computational study of thermodynamic landscapes and interfacial properties of protein-RNA condensates. We have studied the affinity of protein-RNA condensation as a function of variable RNA sequence length and RNA-protein stoichiometry under different ionic environments and external crowding. We have chosen the PolyU sequences for RNA and arginine/glycine-rich intrinsically disordered peptide (RGG) for proteins as a model system of RNA-protein condensates, which we then investigate through in vitro microscopy measurements and coarse-grained molecular dynamics simulations. We find that crowding and RNA chain length can have a major stabilizing effect on the condensation. We also find that the RNA-protein charge ratio is a crucial variable controlling stability, interfacial properties, and the reentrant phase behavior of RGG-RNA mixtures.
Collapse
Affiliation(s)
- Rabia Laghmach
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Matthew Pham
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Priya R. Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Membrane surfaces regulate assembly of ribonucleoprotein condensates. Nat Cell Biol 2022; 24:461-470. [PMID: 35411085 PMCID: PMC9035128 DOI: 10.1038/s41556-022-00882-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Biomolecular condensates organize biochemistry, yet little is known about how cells control the position and scale of these structures. In cells, condensates often appear as relatively small assemblies that do not coarsen into a single droplet despite their propensity to fuse. Here we report that ribonucleoprotein condensates of the Q-rich protein Whi3 interact with the endoplasmic reticulum, prompting us to examine how membrane association controls condensate size. Reconstitution reveals that membrane recruitment promotes Whi3 condensation under physiological conditions. These assemblies rapidly arrest, resembling size distributions seen in cells. The temporal ordering of molecular interactions and the slow diffusion of membrane-bound complexes can limit condensate size. Our experiments reveal a tradeoff between locally-enhanced protein concentration at membranes, favoring condensation, and an accompanying reduction in diffusion, restricting coarsening. Given that many condensates bind endomembranes, we predict that the biophysical properties of lipid bilayers are key for controlling condensate sizes throughout the cell.
Collapse
|
36
|
Abstract
Biomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS–DNA polymer that collapses and finally forms a dynamic, reversible FUS–DNA co-condensate. We speculate that protein monolayer-based protein–nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles. Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive force-induced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS–DNA polymer that can collapse to form a liquid-like FUS–DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.
Collapse
|
37
|
Pyo AG, Zhang Y, Wingreen NS. Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates. iScience 2022; 25:103852. [PMID: 35198903 PMCID: PMC8851291 DOI: 10.1016/j.isci.2022.103852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Cells can achieve internal organization by exploiting liquid-liquid phase separation to form biomolecular condensates. Here we focus on the surface properties of condensates composed of two multivalent associative polymers held together by one-to-one "sticker" bonds. Using coarse-grained molecular-dynamics simulations, we study the influence of component stoichiometry on condensate surface properties. We find that unequal stoichiometry results in enrichment of the majority species at the interface and a sharp reduction of surface tension. To relate these two effects, we show that the reduction in surface tension scales linearly with the excess concentration of free binding sites at the interface. Our results imply that each excess free site contributes an approximately fixed additional energy and entropy to the interface, with the latter dominating such that enrichment of free majority sites lowers the surface tension. Our work provides insight into novel physical mechanisms by which cells can regulate condensate surface properties.
Collapse
Affiliation(s)
- Andrew G.T. Pyo
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Yaojun Zhang
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Physics and Astronomy and Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
38
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
39
|
Pullara P, Alshareedah I, Banerjee PR. Temperature-dependent reentrant phase transition of RNA-polycation mixtures. SOFT MATTER 2022; 18:1342-1349. [PMID: 34984429 PMCID: PMC8854377 DOI: 10.1039/d1sm01557e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Liquid-liquid phase separation (LLPS) of multivalent biopolymers is a ubiquitous process in biological systems and is of importance in bio-mimetic soft matter design. The phase behavior of biomolecules, such as proteins and nucleic acids, is typically encoded by the primary chain sequence and regulated by solvent properties. One of the most important physical modulators of LLPS is temperature. Solutions of proteins and/or nucleic acids have been shown to undergo liquid-liquid phase separation either upon cooling (with an upper critical solution temperature, UCST) or upon heating (with a lower critical solution temperature, LCST). However, many theoretical frameworks suggest the possibility of more complex temperature-dependent phase behaviors, such as an hourglass or a closed-loop phase diagram with concurrent UCST and LCST transitions. Here, we report that RNA-polyamine mixtures undergo a reentrant phase separation with temperature. Specifically, at low temperatures, RNA-polyamine mixtures form a homogenous phase. Increasing the temperature leads to the formation of RNA-polyamine condensates. A further increase in temperature leads to the dissolution of condensates, rendering a reentrant homogenous phase. This dual-response phase separation of RNA is not unique to polyamines but also observed with short cationic peptides. The immiscibility gap is controlled by the charge of the polycation, salt concentration, and mixture composition. Based on the existing theories of complex coacervation, our results point to a complex interplay between desolvation entropy, ion-pairing, and electrostatic interactions in dictating the closed-loop phase behavior of RNA-polycation mixtures.
Collapse
Affiliation(s)
- Paul Pullara
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA.
| | | | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
40
|
Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput Biol 2022; 18:e1009810. [PMID: 35108264 PMCID: PMC8896709 DOI: 10.1371/journal.pcbi.1009810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/04/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
41
|
Michels JJ, Brzezinski M, Scheidt T, Lemke EA, Parekh SH. Role of Solvent Compatibility in the Phase Behavior of Binary Solutions of Weakly Associating Multivalent Polymers. Biomacromolecules 2022; 23:349-364. [PMID: 34866377 PMCID: PMC8753604 DOI: 10.1021/acs.biomac.1c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Condensate formation of biopolymer solutions, prominently those of various intrinsically disordered proteins (IDPs), is often driven by "sticky" interactions between associating residues, multivalently present along the polymer backbone. Using a ternary mean-field "stickers-and-spacers" model, we demonstrate that if sticker association is of the order of a few times the thermal energy, a delicate balance between specific binding and nonspecific polymer-solvent interactions gives rise to a particularly rich ternary phase behavior under physiological circumstances. For a generic system represented by a solution comprising multiassociative scaffold and client polymers, the difference in solvent compatibility between the polymers modulates the nature of isothermal liquid-liquid phase separation (LLPS) between associative and segregative. The calculations reveal regimes of dualistic phase behavior, where both types of LLPS occur within the same phase diagram, either associated with the presence of multiple miscibility gaps or a flip in the slope of the tie-lines belonging to a single coexistence region.
Collapse
Affiliation(s)
- Jasper J. Michels
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mateusz Brzezinski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tom Scheidt
- Institute
for Molecular Biology, Johannes Gutenberg
University, Ackermannweg
4, 55128 Mainz, Germany
| | - Edward A. Lemke
- Institute
for Molecular Biology, Johannes Gutenberg
University, Ackermannweg
4, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street Stop C0800, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Forman-Kay JD, Ditlev JA, Nosella ML, Lee HO. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? RNA (NEW YORK, N.Y.) 2022; 28:36-47. [PMID: 34772786 PMCID: PMC8675286 DOI: 10.1261/rna.079026.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.
Collapse
Affiliation(s)
- Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathon A Ditlev
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. 'RNA modulation of transport properties and stability in phase-separated condensates. Biophys J 2021; 120:5169-5186. [PMID: 34762868 DOI: 10.1101/2021.03.05.434111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 05/25/2023] Open
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adiran Garaizar
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jorge R Espinosa
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
44
|
Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. 'RNA modulation of transport properties and stability in phase-separated condensates. Biophys J 2021; 120:5169-5186. [PMID: 34762868 PMCID: PMC8715277 DOI: 10.1016/j.bpj.2021.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adiran Garaizar
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jorge R Espinosa
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
45
|
Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun 2021; 12:6620. [PMID: 34785657 PMCID: PMC8595643 DOI: 10.1038/s41467-021-26733-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Liquid-liquid phase separation of multivalent proteins and RNAs drives the formation of biomolecular condensates that facilitate membrane-free compartmentalization of subcellular processes. With recent advances, it is becoming increasingly clear that biomolecular condensates are network fluids with time-dependent material properties. Here, employing microrheology with optical tweezers, we reveal molecular determinants that govern the viscoelastic behavior of condensates formed by multivalent Arg/Gly-rich sticker-spacer polypeptides and RNA. These condensates behave as Maxwell fluids with an elastically-dominant rheological response at shorter timescales and a liquid-like behavior at longer timescales. The viscous and elastic regimes of these condensates can be tuned by the polypeptide and RNA sequences as well as their mixture compositions. Our results establish a quantitative link between the sequence- and structure-encoded biomolecular interactions at the microscopic scale and the rheological properties of the resulting condensates at the mesoscale, enabling a route to systematically probe and rationally engineer biomolecular condensates with programmable mechanics.
Collapse
Affiliation(s)
| | | | - Matthew Pham
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
46
|
Sankaranarayanan M, Emenecker RJ, Wilby EL, Jahnel M, Trussina IREA, Wayland M, Alberti S, Holehouse AS, Weil TT. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Dev Cell 2021; 56:2886-2901.e6. [PMID: 34655524 PMCID: PMC8555633 DOI: 10.1016/j.devcel.2021.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development.
Collapse
Affiliation(s)
- M Sankaranarayanan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marcus Jahnel
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irmela R E A Trussina
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Matt Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
47
|
Ghosh A, Kota D, Zhou HX. Shear relaxation governs fusion dynamics of biomolecular condensates. Nat Commun 2021; 12:5995. [PMID: 34645832 PMCID: PMC8514506 DOI: 10.1038/s41467-021-26274-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Phase-separated biomolecular condensates must respond agilely to biochemical and environmental cues in performing their wide-ranging cellular functions, but our understanding of condensate dynamics is lagging. Ample evidence now indicates biomolecular condensates as viscoelastic fluids, where shear stress relaxes at a finite rate, not instantaneously as in viscous liquids. Yet the fusion dynamics of condensate droplets has only been modeled based on viscous liquids, with fusion time given by the viscocapillary ratio (viscosity over interfacial tension). Here we used optically trapped polystyrene beads to measure the viscous and elastic moduli and the interfacial tensions of four types of droplets. Our results challenge the viscocapillary model, and reveal that the relaxation of shear stress governs fusion dynamics. These findings likely have implications for other dynamic processes such as multiphase organization, assembly and disassembly, and aging.
Collapse
Affiliation(s)
- Archishman Ghosh
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
48
|
Garaizar A, Espinosa JR. Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. J Chem Phys 2021; 155:125103. [PMID: 34598583 DOI: 10.1063/5.0062687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multivalent proteins and nucleic acids can self-assemble into biomolecular condensates that contribute to compartmentalize the cell interior. Computer simulations offer a unique view to elucidate the mechanisms and key intermolecular interactions behind the dynamic formation and dissolution of these condensates. In this work, we present a novel approach to include explicit water and salt in sequence-dependent coarse-grained (CG) models for proteins and RNA, enabling the study of biomolecular condensate formation in a salt-dependent manner. Our framework combines a reparameterized version of the HPS protein force field with the monoatomic mW water model and the mW-ion potential for NaCl. We show how our CG model qualitatively captures the experimental radius of the gyration trend of a subset of intrinsically disordered proteins and reproduces the experimental protein concentration and water percentage of the human fused in sarcoma (FUS) low-complexity-domain droplets at physiological salt concentration. Moreover, we perform seeding simulations as a function of salt concentration for two antagonist systems: the engineered peptide PR25 and poly-uridine/poly-arginine mixtures, finding good agreement with their reported in vitro phase behavior with salt concentration in both cases. Taken together, our work represents a step forward towards extending sequence-dependent CG models to include water and salt, and to consider their key role in biomolecular condensate self-assembly.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
49
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
50
|
Wang H, Kelley FM, Milovanovic D, Schuster BS, Shi Z. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. BIOPHYSICAL REPORTS 2021; 1:100011. [PMID: 36247368 PMCID: PMC9563586 DOI: 10.1016/j.bpr.2021.100011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
The material properties of biomolecular condensates have been suggested to play important biological and pathological roles. Despite the rapid increase in the number of biomolecules identified that undergo liquid-liquid phase separation, quantitative studies and direct measurements of the material properties of the resulting condensates have been severely lagging behind. Here, we develop a micropipette-based technique that uniquely, to our knowledge, allows quantifications of both the surface tension and viscosity of biomolecular condensates, independent of labeling and surface-wetting effects. We demonstrate the accuracy and versatility of this technique by measuring condensates of LAF-1 RGG domains and a polymer-based aqueous two-phase system. We further confirm our measurements using established condensate fusion and fluorescence recovery after photobleaching assays. We anticipate the micropipette-based technique will be widely applicable to biomolecular condensates and will resolve several limitations regarding current approaches.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Chemical Biology
| | - Fleurie M. Kelley
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Benjamin S. Schuster
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Zheng Shi
- Department of Chemistry and Chemical Biology
| |
Collapse
|