1
|
Coulon D, Nacir H, Bahammou D, Jouhet J, Bessoule JJ, Fouillen L, Bréhélin C. Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6542-6562. [PMID: 38995052 DOI: 10.1093/jxb/erae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
Collapse
Affiliation(s)
- Denis Coulon
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Houda Nacir
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Delphine Bahammou
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Laboratoire de Physiologie Cellulaire et Végétale, F-38000 Grenoble, France
| | - Jean-Jacques Bessoule
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Laëtitia Fouillen
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Claire Bréhélin
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
2
|
Kataoka-Hamai C. Triacylglycerol-droplet-induced bilayer spontaneous curvature in giant unilamellar vesicles. Biophys J 2024; 123:1857-1868. [PMID: 38822522 PMCID: PMC11267425 DOI: 10.1016/j.bpj.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
This study investigated the incorporation of triacylglycerol droplets in the bilayers of giant unilamellar vesicles (GUVs) using four triacylglycerols and four phosphatidylcholines by confocal laser scanning microscopy. The triacylglycerol droplets were incorporated between the monolayer leaflets of the GUVs. Among the spherical droplets protruding on only one side of the bilayers, the droplets bound to the outer leaflets outnumbered those bound to the inner leaflets. The more frequent droplet binding to the outer leaflet caused transbilayer asymmetry in the droplet surface density. A vesicle consisting of a single-bilayer spherical segment and a double-bilayer spherical segment was also observed. The yield of these vesicles was comparable with or higher than that of the droplet-incorporating GUVs for many of the phosphatidylcholine-triacylglycerol combinations. In a vesicle consisting of single-bilayer and double-bilayer segments, most of the triacylglycerol droplets were localized on the outermost membrane surface along the segment boundary and in the double-bilayer segment. To rationalize the formation of these vesicle structures, we propose that the transbilayer asymmetry in the droplet surface density induces spontaneous curvature of the bilayer, with the bilayer spontaneously bending away from the droplets. Energy calculations performed assuming the existence of spontaneous curvature of the bilayer corroborated the experimentally determined membrane shapes for the vesicles consisting of unilamellar and bilamellar regions.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Santinho A, Carpentier M, Lopes Sampaio J, Omrane M, Thiam AR. Giant organelle vesicles to uncover intracellular membrane mechanics and plasticity. Nat Commun 2024; 15:3767. [PMID: 38704407 PMCID: PMC11069511 DOI: 10.1038/s41467-024-48086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.
Collapse
Affiliation(s)
- Alexandre Santinho
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Maxime Carpentier
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Julio Lopes Sampaio
- Institut Curie, PSL Research University, Plateforme de Métabolomique et Lipidomique, 26 rue d'Ulm, Paris, France
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
4
|
Sapia J, Vanni S. Molecular dynamics simulations of intracellular lipid droplets: a new tool in the toolbox. FEBS Lett 2024; 598:1143-1153. [PMID: 38627196 DOI: 10.1002/1873-3468.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.
Collapse
Affiliation(s)
- Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Wang M, Yi X. Area difference between monolayers facilitates budding of lipid droplets from vesicles. SOFT MATTER 2023; 19:7494-7501. [PMID: 37674469 DOI: 10.1039/d3sm00728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles that play a central role in cellular lipid balance and energy homeostasis. Though extensive experimental studies have been carried out on LD biogenesis, relatively little is known about the mechanical interaction between LDs and vesicles, and in particular effects of area difference between vesicle leaflets on LD evolution are not theoretically rationalized. Here we theoretically explore how the monolayer area difference regulates the budding and morphological evolution of an LD embedded in the vesicle membrane. It is shown that both the monolayer area difference and interfacial energy strength, attributed to the LD-membrane contact, facilitate the LD budding with the confined LD evolving from a bulge to a spherical protrusion. The budding direction is towards the monolayer with more phospholipids. Outward and inward budding phase diagrams are established with respect to the interfacial energy strength and area ratio between the outer and inner monolayers. Moreover, the osmotic pressure of the vesicle promotes the LD budding at a small monolayer area difference and inhibits the budding at a relatively large monolayer area difference.
Collapse
Affiliation(s)
- Meng Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Omrane M, Ben M'Barek K, Santinho A, Nguyen N, Nag S, Melia TJ, Thiam AR. LC3B is lipidated to large lipid droplets during prolonged starvation for noncanonical autophagy. Dev Cell 2023; 58:1266-1281.e7. [PMID: 37315562 PMCID: PMC10686041 DOI: 10.1016/j.devcel.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Lipid droplets (LDs) store lipids that can be utilized during times of scarcity via autophagic and lysosomal pathways, but how LDs and autophagosomes interact remained unclear. Here, we discovered that the E2 autophagic enzyme, ATG3, localizes to the surface of certain ultra-large LDs in differentiated murine 3T3-L1 adipocytes or Huh7 human liver cells undergoing prolonged starvation. Subsequently, ATG3 lipidates microtubule-associated protein 1 light-chain 3B (LC3B) to these LDs. In vitro, ATG3 could bind alone to purified and artificial LDs to mediate this lipidation reaction. We observed that LC3B-lipidated LDs were consistently in close proximity to collections of LC3B-membranes and were lacking Plin1. This phenotype is distinct from macrolipophagy, but it required autophagy because it disappeared following ATG5 or Beclin1 knockout. Our data suggest that extended starvation triggers a noncanonical autophagy mechanism, similar to LC3B-associated phagocytosis, in which the surface of large LDs serves as an LC3B lipidation platform for autophagic processes.
Collapse
Affiliation(s)
- Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Kalthoum Ben M'Barek
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Alexandre Santinho
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathan Nguyen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
| |
Collapse
|
7
|
Cholesterol esters form supercooled lipid droplets whose nucleation is facilitated by triacylglycerols. Nat Commun 2023; 14:915. [PMID: 36807572 PMCID: PMC9938224 DOI: 10.1038/s41467-023-36375-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Cellular cholesterol can be metabolized to its fatty acid esters, cholesteryl esters (CEs), to be stored in lipid droplets (LDs). With triacylglycerols (TGs), CEs represent the main neutral lipids in LDs. However, while TG melts at ~4 °C, CE melts at ~44 °C, raising the question of how CE-rich LDs form in cells. Here, we show that CE forms supercooled droplets when the CE concentration in LDs is above 20% to TG and, in particular, liquid-crystalline phases when the fraction of CEs is above 90% at 37 °C. In model bilayers, CEs condense and nucleate droplets when the CE/phospholipid ratio reaches over 10-15%. This concentration is reduced by TG pre-clusters in the membrane that thereby facilitate CE nucleation. Accordingly, blocking TG synthesis in cells is sufficient to strongly dampen CE LD nucleation. Finally, CE LDs emerged at seipins, which cluster and nucleate TG LDs in the ER. However, when TG synthesis is inhibited, similar numbers of LDs are generated in the presence and absence of seipin, suggesting that seipin controls CE LD formation via its TG clustering capacity. Our data point to a unique model whereby TG pre-clusters, favorable at seipins, catalyze the nucleation of CE LDs.
Collapse
|
8
|
Castillo-Quan JI, Steinbaugh MJ, Fernández-Cárdenas LP, Pohl NK, Wu Z, Zhu F, Moroz N, Teixeira V, Bland MS, Lehrbach NJ, Moronetti L, Teufl M, Blackwell TK. An antisteatosis response regulated by oleic acid through lipid droplet-mediated ERAD enhancement. SCIENCE ADVANCES 2023; 9:eadc8917. [PMID: 36598980 PMCID: PMC9812393 DOI: 10.1126/sciadv.adc8917] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/23/2022] [Indexed: 05/19/2023]
Abstract
Although excessive lipid accumulation is a hallmark of obesity-related pathologies, some lipids are beneficial. Oleic acid (OA), the most abundant monounsaturated fatty acid (FA), promotes health and longevity. Here, we show that OA benefits Caenorhabditis elegans by activating the endoplasmic reticulum (ER)-resident transcription factor SKN-1A (Nrf1/NFE2L1) in a lipid homeostasis response. SKN-1A/Nrf1 is cleared from the ER by the ER-associated degradation (ERAD) machinery and stabilized when proteasome activity is low and canonically maintains proteasome homeostasis. Unexpectedly, OA increases nuclear SKN-1A levels independently of proteasome activity, through lipid droplet-dependent enhancement of ERAD. In turn, SKN-1A reduces steatosis by reshaping the lipid metabolism transcriptome and mediates longevity from OA provided through endogenous accumulation, reduced H3K4 trimethylation, or dietary supplementation. Our findings reveal an unexpected mechanism of FA signal transduction, as well as a lipid homeostasis pathway that provides strategies for opposing steatosis and aging, and may mediate some benefits of the OA-rich Mediterranean diet.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael J. Steinbaugh
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Paulette Fernández-Cárdenas
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nancy K. Pohl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ziyun Wu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Feimei Zhu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Natalie Moroz
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biology Department, Emmanuel College, Boston, MA, USA
| | - Veronica Teixeira
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Monet S. Bland
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Lehrbach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorenza Moronetti
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Magdalena Teufl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - T. Keith Blackwell
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
9
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
10
|
Rogers S, Gui L, Kovalenko A, Zoni V, Carpentier M, Ramji K, Ben Mbarek K, Bacle A, Fuchs P, Campomanes P, Reetz E, Speer NO, Reynolds E, Thiam AR, Vanni S, Nicastro D, Henne WM. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. J Cell Biol 2022; 221:213472. [PMID: 36112368 PMCID: PMC9485706 DOI: 10.1083/jcb.202205053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
Lipid droplets (LDs) are reservoirs for triglycerides (TGs) and sterol-esters (SEs), but how these lipids are organized within LDs and influence their proteome remain unclear. Using in situ cryo-electron tomography, we show that glucose restriction triggers lipid phase transitions within LDs generating liquid crystalline lattices inside them. Mechanistically this requires TG lipolysis, which decreases the LD's TG:SE ratio, promoting SE transition to a liquid crystalline phase. Molecular dynamics simulations reveal TG depletion promotes spontaneous TG and SE demixing in LDs, additionally altering the lipid packing of the PL monolayer surface. Fluorescence imaging and proteomics further reveal that liquid crystalline phases are associated with selective remodeling of the LD proteome. Some canonical LD proteins, including Erg6, relocalize to the ER network, whereas others remain LD-associated. Model peptide LiveDrop also redistributes from LDs to the ER, suggesting liquid crystalline phases influence ER-LD interorganelle transport. Our data suggests glucose restriction drives TG mobilization, which alters the phase properties of LD lipids and selectively remodels the LD proteome.
Collapse
Affiliation(s)
- Sean Rogers
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anastasiia Kovalenko
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maxime Carpentier
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Kamran Ramji
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Kalthoum Ben Mbarek
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Amelie Bacle
- Institute Jacques Monod, Centre national de la recherche scientifique, University of Paris, Paris, France
| | - Patrick Fuchs
- Laboratoire des Biomolécules, Paris, France.,Université de Paris, UFR Sciences du Vivant, Paris, France
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Natalie Ortiz Speer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Emma Reynolds
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
11
|
Kim S, Li C, Farese RV, Walther TC, Voth GA. Key Factors Governing Initial Stages of Lipid Droplet Formation. J Phys Chem B 2022; 126:453-462. [PMID: 34990551 PMCID: PMC8922452 DOI: 10.1021/acs.jpcb.1c09683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipid droplets (LDs) are neutral lipid storage organelles surrounded by a phospholipid (PL) monolayer. LD biogenesis from the endoplasmic reticulum is driven by phase separation of neutral lipids, overcoming surface tension and membrane deformation. However, the core biophysics of the initial steps of LD formation remains relatively poorly understood. Here, we use a tunable, phenomenological coarse-grained model to study triacylglycerol (TG) nucleation in a bilayer membrane. We show that PL rigidity has a strong influence on TG lensing and membrane remodeling: when membrane rigidity increases, TG clusters remain more planar with high anisotropy but a minor degree of phase nucleation. This finding is confirmed by advanced sampling simulations that calculate nucleation free energy as a function of the degree of nucleation and anisotropy. We also show that asymmetric tension, controlled by the number of PL molecules on each membrane leaflet, determines the budding direction. A TG lens buds in the direction of the monolayer containing excess PL molecules to allow for better PL coverage of TG, consistent with the reported experiments. Finally, two governing mechanisms of the LD growth, Ostwald ripening and merging, are observed. Taken together, this study characterizes the interplay between two thermodynamic quantities during the initial LD phases, the TG bulk free energy and membrane remodeling energy.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637 USA
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637 USA
| | - Robert V. Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tobias C. Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637 USA,Corresponding Author:
| |
Collapse
|
12
|
Chorlay A, Forêt L, Thiam AR. Origin of gradients in lipid density and surface tension between connected lipid droplet and bilayer. Biophys J 2021; 120:5491-5503. [PMID: 34808099 DOI: 10.1016/j.bpj.2021.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022] Open
Abstract
We combined theory and experiments to depict physical parameters modulating the phospholipid (PL) density and tension equilibrium between a bilayer and an oil droplet in contiguity. This situation is encountered during a neutral lipid (NL) droplet formation in the endoplasmic reticulum. We set up macroscopic and microscopic models to uncover free parameters and the origin of molecular interactions controlling the PL densities of the droplet monolayer and the bilayer. The established physical laws and predictions agreed with experiments performed with droplet-embedded vesicles. We found that the droplet monolayer is always by a few percent (∼10%) less packed with PLs than the bilayer. Such a density gradient arises from PL-NL interactions on the droplet, which are lower than PL-PL trans interactions in the bilayer, i.e., interactions between PLs belonging to different leaflets of the bilayer. Finally, despite the pseudo-surface tension for the water/PL acyl chains in the bilayer being higher than the water/NL surface tension, the droplet monolayer always has a higher surface tension than the bilayer because of its lower PL density. Thus, a PL density gradient is mandatory to maintain the mechanical and thermodynamic equilibrium of the droplet-bilayer continuity. Our study sheds light on the origin of the molecular interactions responsible for the unique surface properties of lipid droplets compared with cellular bilayer membranes.
Collapse
Affiliation(s)
- Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Lionel Forêt
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
13
|
Wang M, Yi X. Bulging-to-Budding Transition of Lipid Droplets Confined within Vesicle Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12867-12873. [PMID: 34709829 DOI: 10.1021/acs.langmuir.1c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles that act as reservoirs for energy homeostasis and phospholipid balance between supply and consumption. In comparison with extensive studies on LD biogenesis from a biological viewpoint, little is known about the mechanical interaction between LDs and vesicles. Here we perform a systematic theoretical study on the budding and morphological evolution of an artificial LD embedded within the lipid membrane of a pressurized vesicle. It is found that LD bulging and budding depend on the bending rigidity and spontaneous curvature of the vesicle membrane, LD-vesicle interfacial interaction energy strength and size ratio, and osmotic pressure of the vesicle. Beyond critical interfacial interaction strength, the embedded LD undergoes a discontinuous shape transition from a lens-shaped bulge to a spherical protrusion connecting to the nearly spherical vesicle lumen via an infinitesimally small monolayer neck. Moreover, a positive monolayer spontaneous curvature promotes budding transition. As the vesicle becomes smaller, higher cost of the monolayer stretching energy is required for an LD to achieve budding transition. Budding phase diagrams distinguishing the embedded and budding states of the LD-vesicle complex accounting for osmotic pressure and interfacial interaction strength are established with the budding transition boundary displaying a nonmonotonic feature. Our results reveal how embedded LDs overcome soft membrane confinement and protrude, and provide fundamental insights into the clustering of nanoparticles between vesicle monolayers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Ajjaji D, Ben M'barek K, Boson B, Omrane M, Gassama-Diagne A, Blaud M, Penin F, Diaz E, Ducos B, Cosset FL, Thiam AR. Hepatitis C virus core protein uses triacylglycerols to fold onto the endoplasmic reticulum membrane. Traffic 2021; 23:63-80. [PMID: 34729868 DOI: 10.1111/tra.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.
Collapse
Affiliation(s)
- Dalila Ajjaji
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Kalthoum Ben M'barek
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, France.,Université Paris-Sud, UMR-S 1193, Villejuif, France
| | - Magali Blaud
- Université de Paris, CiTCoM, CNRS, Paris, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - Elise Diaz
- High Throughput qPCR Core Facility of the ENS, IBENS, PSL Research University, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France.,High Throughput qPCR Core Facility of the ENS, IBENS, PSL Research University, Paris, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| |
Collapse
|
15
|
Palaia I, Paraschiv A, Debets VE, Storm C, Šarić A. Durotaxis of Passive Nanoparticles on Elastic Membranes. ACS NANO 2021; 15:15794-15802. [PMID: 34550677 DOI: 10.1101/2021.04.01.438065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial aspect in many physiological processes. This directional motion is generally controlled via active mechanical and chemical processes. Here we show, by means of molecular dynamics simulations and an analytical theory, that completely passive nanoparticles can exhibit directional motion when embedded in nonuniform mechanical environments. Specifically, we study the motion of a passive nanoparticle adhering to a mechanically nonuniform elastic membrane. We observe a nonmonotonic affinity of the particle to the membrane as a function of the membrane's rigidity, which results in the particle transport. This transport can be both up or down the rigidity gradient, depending on the absolute values of the rigidities that the gradient spans across. We conclude that rigidity gradients can be used to direct average motion of passive macromolecules and nanoparticles on deformable membranes, resulting in the preferential accumulation of the macromolecules in regions of certain mechanical properties.
Collapse
Affiliation(s)
- Ivan Palaia
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Palaia I, Paraschiv A, Debets VE, Storm C, Šarić A. Durotaxis of Passive Nanoparticles on Elastic Membranes. ACS NANO 2021; 15:15794-15802. [PMID: 34550677 DOI: 10.1021/acsnano.1c02777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial aspect in many physiological processes. This directional motion is generally controlled via active mechanical and chemical processes. Here we show, by means of molecular dynamics simulations and an analytical theory, that completely passive nanoparticles can exhibit directional motion when embedded in nonuniform mechanical environments. Specifically, we study the motion of a passive nanoparticle adhering to a mechanically nonuniform elastic membrane. We observe a nonmonotonic affinity of the particle to the membrane as a function of the membrane's rigidity, which results in the particle transport. This transport can be both up or down the rigidity gradient, depending on the absolute values of the rigidities that the gradient spans across. We conclude that rigidity gradients can be used to direct average motion of passive macromolecules and nanoparticles on deformable membranes, resulting in the preferential accumulation of the macromolecules in regions of certain mechanical properties.
Collapse
Affiliation(s)
- Ivan Palaia
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Rao MJ, Goodman JM. Seipin: harvesting fat and keeping adipocytes healthy. Trends Cell Biol 2021; 31:912-923. [PMID: 34215489 DOI: 10.1016/j.tcb.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
Seipin is a key protein in the assembly of cytoplasmic lipid droplets (cLDs) and their maintenance at endoplasmic reticulum (ER)-LD junctions; the absence of seipin results in generalized lipodystrophy. How seipin mediates LD dynamics and prevents lipodystrophy are not well understood. New evidence suggests that seipin attracts triglyceride monomers from the ER to sites of droplet formation. By contrast, seipin may not be directly involved in the assembly of nuclear LDs and may actually suppress their formation at a distance. Seipin promotes adipogenesis, but lipodystrophy may also involve postadipogenic effects. We hypothesize that among these are a cycle of runaway lipolysis and lipotoxicity caused by aberrant LDs, resulting in a depletion of fat stores and a failure of adipose and other cells to thrive.
Collapse
Affiliation(s)
- Monala Jayaprakash Rao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA.
| |
Collapse
|
18
|
Kim S, Voth GA. Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis. J Phys Chem B 2021; 125:6874-6888. [PMID: 34139844 DOI: 10.1021/acs.jpcb.1c03559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are neutral lipid-storing organelles surrounded by a phospholipid (PL) monolayer. At present, how LDs are formed in the endoplasmic reticulum (ER) bilayer is poorly understood. In this study, we present a revised all-atom (AA) triolein (TG) model, the main constituent of the LD core, and characterize its properties in a bilayer membrane to demonstrate the implications of its behavior in LD biogenesis. In bilayer simulations, TG resides at the surface, adopting PL-like conformations (denoted in this work as SURF-TG). Free energy sampling simulation results estimate the barrier for TG relocating from the bilayer surface to the bilayer center to be ∼2 kcal/mol in the absence of an oil lens. SURF-TG is able to modulate membrane properties by increasing PL ordering, decreasing bending modulus, and creating local negative curvature. The other neutral lipid, dioleoyl-glycerol (DAG), also reduces the membrane bending modulus and populates negative curvature regions. A phenomenological coarse-grained (CG) model is also developed to observe larger-scale SURF-TG-mediated membrane deformation. CG simulations confirm that TG nucleates between the bilayer leaflets at a critical concentration when SURF-TG is evenly distributed. However, when one monolayer contains more SURF-TG, the membrane bends toward the other leaflet, followed by TG nucleation if a concentration is higher than the critical threshold. The central conclusion of this study is that SURF-TG is a negative curvature inducer, as well as a membrane modulator. To this end, a model is proposed in which the accumulation of SURF-TG in the luminal leaflet bends the ER bilayer toward the cytosolic side, followed by TG nucleation.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Zoni V, Campomanes P, Vanni S. Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. SOFT MATTER 2021; 17:5329-5335. [PMID: 33969832 PMCID: PMC8170560 DOI: 10.1039/d0sm02270e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In vitro reconstitutions of lipid membranes have proven to be an indispensable tool to rationalize their molecular complexity and to understand their role in countless cellular processes. However, amongst the various techniques used to reconstitute lipid bilayers in vitro, several approaches are not solvent-free, but rather contain residual hydrophobic solvents in between the two bilayer leaflets, generally as a consequence of the procedure used to generate the bilayer. To what extent the presence of these hydrophobic solvents modifies bilayer properties with respect to native, solvent-free, conditions remains an open question that has important implications for the appropriate interpretation of numerous experimental observations. Here, we thorouhgly characterize hydrophobic solvent-rich lipid bilayers using atomistic molecular dynamics simulations. Our data indicate that while the presence of hydrophobic solvents at high concentrations, such as hexadecane, has a significant effect on membrane thickness, their effects on surface properties, membrane order and lateral stress are quite moderate. Our results corroborate the validity of in vitro approaches as model systems for the investigations of biological membranes but raise a few cautionary aspects that must be considered when investigating specific membrane properties.
Collapse
Affiliation(s)
- Valeria Zoni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|