1
|
Poulsen R, Williams Z, Dwyer P, Pellicano E, Sowman PF, McAlpine D. How auditory processing influences the autistic profile: A review. Autism Res 2024; 17:2452-2470. [PMID: 39552096 PMCID: PMC11638897 DOI: 10.1002/aur.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
We need to combine sensory data from various sources to make sense of the world around us. This sensory data helps us understand our surroundings, influencing our experiences and interactions within our everyday environments. Recent interest in sensory-focused approaches to supporting autistic people has fixed on auditory processing-the sense of hearing and the act of listening-and its crucial role in language, communications, and social domains, as well as non-social autism-specific attributes, to understand better how sensory processing might differ in autistic people. In this narrative review, we synthesize published research into auditory processing in autistic people and the relationship between auditory processing and autistic attributes in a contextually novel way. The purpose is to understand the relationship between these domains more fully, drawing on evidence gleaned from experiential perspectives through to neurological investigations. We also examine the relationship between auditory processing and diagnosable auditory conditions, such as hyperacusis, misophonia, phonophobia, and intolerance to loud sounds, as well as its relation to sleep, anxiety, and sensory overload. Through reviewing experiential, behavioral and neurological literature, we demonstrate that auditory processes interact with and shape the broader autistic profile-something not previously considered. Through a better understanding of the potential impact of auditory experiences, our review aims to inform future research on investigating the relationship between auditory processing and autistic traits through quantitative measures or using qualitative experiential inquiry to examine this relationship more holistically.
Collapse
Affiliation(s)
- R. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Z. Williams
- Medical Scientist Training Program, Vanderbilt University School of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Frist Center for Autism and InnovationVanderbilt University School of EngineeringNashvilleTennesseeUSA
| | - P. Dwyer
- Center for the Mind and BrainDepartment of PsychologyMIND InstituteUniversity of CaliforniaDavisCaliforniaUSA
- Olga Tennison Autism Research Centre, School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
| | - E. Pellicano
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| | - P. F. Sowman
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of Clinical SciencesAuckland University of TechnologyAucklandNew Zealand
| | - D. McAlpine
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Michelini G, Carlisi CO, Eaton NR, Elison JT, Haltigan JD, Kotov R, Krueger RF, Latzman RD, Li JJ, Levin-Aspenson HF, Salum GA, South SC, Stanton K, Waldman ID, Wilson S. Where do neurodevelopmental conditions fit in transdiagnostic psychiatric frameworks? Incorporating a new neurodevelopmental spectrum. World Psychiatry 2024; 23:333-357. [PMID: 39279404 PMCID: PMC11403200 DOI: 10.1002/wps.21225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Features of autism spectrum disorder, attention-deficit/hyperactivity disorder, learning disorders, intellectual disabilities, and communication and motor disorders usually emerge early in life and are associated with atypical neurodevelopment. These "neurodevelopmental conditions" are grouped together in the DSM-5 and ICD-11 to reflect their shared characteristics. Yet, reliance on categorical diagnoses poses significant challenges in both research and clinical settings (e.g., high co-occurrence, arbitrary diagnostic boundaries, high within-disorder heterogeneity). Taking a transdiagnostic dimensional approach provides a useful alternative for addressing these limitations, accounting for shared underpinnings across neurodevelopmental conditions, and characterizing their common co-occurrence and developmental continuity with other psychiatric conditions. Neurodevelopmental features have not been adequately considered in transdiagnostic psychiatric frameworks, although this would have fundamental implications for research and clinical practices. Growing evidence from studies on the structure of neurodevelopmental and other psychiatric conditions indicates that features of neurodevelopmental conditions cluster together, delineating a "neurodevelopmental spectrum" ranging from normative to impairing profiles. Studies on shared genetic underpinnings, overlapping cognitive and neural profiles, and similar developmental course and efficacy of support/treatment strategies indicate the validity of this neurodevelopmental spectrum. Further, characterizing this spectrum alongside other psychiatric dimensions has clinical utility, as it provides a fuller view of an individual's needs and strengths, and greater prognostic utility than diagnostic categories. Based on this compelling body of evidence, we argue that incorporating a new neurodevelopmental spectrum into transdiagnostic frameworks has considerable potential for transforming our understanding, classification, assessment, and clinical practices around neurodevelopmental and other psychiatric conditions.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nicholas R Eaton
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - John D Haltigan
- Department of Psychiatry, Division of Child and Youth Mental Health, University of Toronto, Toronto, ON, Canada
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Giovanni A Salum
- Child Mind Institute, New York, NY, USA
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para a Infância e Adolescência, São Paulo, Brazil
| | - Susan C South
- Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Kasey Stanton
- Department of Psychology, University of Wyoming, Laramie, WY, USA
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Crasta JE, Jacoby EC. The Effect of Attention on Auditory Processing in Adults on the Autism Spectrum. J Autism Dev Disord 2024; 54:3197-3210. [PMID: 37349596 DOI: 10.1007/s10803-023-06040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
This study examined the effect of attention on auditory processing in autistic individuals. Electroencephalography data were recorded during two attention conditions (passive and active) from 24 autistic adults and 24 neurotypical controls, ages 17-30 years. The passive condition involved only listening to the clicks and the active condition involved a button press following single clicks in a modified paired-click paradigm. Participants completed the Adolescent/Adult Sensory Profile and the Social Responsiveness Scale 2. The autistic group showed delayed N1 latencies and reduced evoked and phase-locked gamma power compared to neurotypical peers across both clicks and conditions. Longer N1 latencies and reduced gamma synchronization predicted greater social and sensory symptoms. Directing attention to auditory stimuli may be associated with more typical neural auditory processing in autism.
Collapse
Affiliation(s)
- Jewel E Crasta
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, 80523, USA.
- Occupational Therapy, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA.
| | - Erica C Jacoby
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, 80523, USA
- , Miamisburg, USA
| |
Collapse
|
4
|
Ahlfors SP, Graham S, Bharadwaj H, Mamashli F, Khan S, Joseph RM, Losh A, Pawlyszyn S, McGuiggan NM, Vangel M, Hämäläinen MS, Kenet T. No Differences in Auditory Steady-State Responses in Children with Autism Spectrum Disorder and Typically Developing Children. J Autism Dev Disord 2024; 54:1947-1960. [PMID: 36932270 PMCID: PMC11463296 DOI: 10.1007/s10803-023-05907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 03/19/2023]
Abstract
Auditory steady-state response (ASSR) has been studied as a potential biomarker for abnormal auditory sensory processing in autism spectrum disorder (ASD), with mixed results. Motivated by prior somatosensory findings of group differences in inter-trial coherence (ITC) between ASD and typically developing (TD) individuals at twice the steady-state stimulation frequency, we examined ASSR at 25 and 50 as well as 43 and 86 Hz in response to 25-Hz and 43-Hz auditory stimuli, respectively, using magnetoencephalography. Data were recorded from 22 ASD and 31 TD children, ages 6-17 years. ITC measures showed prominent ASSRs at the stimulation and double frequencies, without significant group differences. These results do not support ASSR as a robust ASD biomarker of abnormal auditory processing in ASD. Furthermore, the previously observed atypical double-frequency somatosensory response in ASD did not generalize to the auditory modality. Thus, the hypothesis about modality-independent abnormal local connectivity in ASD was not supported.
Collapse
Affiliation(s)
- Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Rm. 2301, Charlestown, MA, 02129, USA.
| | - Steven Graham
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Hari Bharadwaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
- Department of Speech, Language, & Hearing Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ainsley Losh
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie Pawlyszyn
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole M McGuiggan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Vangel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Tal Kenet
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Day TC, Malik I, Boateng S, Hauschild KM, Lerner MD. Vocal Emotion Recognition in Autism: Behavioral Performance and Event-Related Potential (ERP) Response. J Autism Dev Disord 2024; 54:1235-1248. [PMID: 36694007 DOI: 10.1007/s10803-023-05898-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Autistic youth display difficulties in emotion recognition, yet little research has examined behavioral and neural indices of vocal emotion recognition (VER). The current study examines behavioral and event-related potential (N100, P200, Late Positive Potential [LPP]) indices of VER in autistic and non-autistic youth. Participants (N = 164) completed an emotion recognition task, the Diagnostic Analyses of Nonverbal Accuracy (DANVA-2) which included VER, during EEG recording. The LPP amplitude was larger in response to high intensity VER, and social cognition predicted VER errors. Verbal IQ, not autism, was related to VER errors. An interaction between VER intensity and social communication impairments revealed these impairments were related to larger LPP amplitudes during low intensity VER. Taken together, differences in VER may be due to higher order cognitive processes, not basic, early perception (N100, P200), and verbal cognitive abilities may underlie behavioral, yet occlude neural, differences in VER processing.
Collapse
Affiliation(s)
- Talena C Day
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA
| | - Isha Malik
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA
| | - Sydney Boateng
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA
| | | | - Matthew D Lerner
- Psychology Department, Stony Brook University, Stony Brook, Psychology B-354, Stony Brook, NY, 11794-2500, USA.
| |
Collapse
|
6
|
Cary E, Pacheco D, Kaplan-Kahn E, McKernan E, Matsuba E, Prieve B, Russo N. Brain Signatures of Early and Late Neural Measures of Auditory Habituation and Discrimination in Autism and Their Relationship to Autistic Traits and Sensory Overresponsivity. J Autism Dev Disord 2024; 54:1344-1360. [PMID: 36626009 DOI: 10.1007/s10803-022-05866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Sensory differences are included in the DSM-5 criteria of autism for the first time, yet it is unclear how they relate to neural indicators of perception. We studied early brain signatures of perception and examined their relationship to sensory behaviors and autistic traits. Thirteen autistic children and 13 Typically Developing (TD) children matched on age and nonverbal IQ participated in a passive oddball task, during which P1 habituation and P1 and MMN discrimination were evoked by pure tones. Autistic children had less neural habituation than the TD comparison group, and the MMN, but not P1, mapped on to sensory overresponsivity. Findings highlight the significance of temporal and contextual factors in neural information processing as it relates to autistic traits and sensory behaviors.
Collapse
Affiliation(s)
- Emily Cary
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Devon Pacheco
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Rd. Suite 1200, 13244, Syracuse, NY, USA
| | - Elizabeth Kaplan-Kahn
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Elizabeth McKernan
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Erin Matsuba
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA
| | - Beth Prieve
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Rd. Suite 1200, 13244, Syracuse, NY, USA
| | - Natalie Russo
- Department of Psychology, Syracuse University, 430 Huntington Hall, 13244 2340, Syracuse, NY, USA.
| |
Collapse
|
7
|
Mazer P, Garcez H, Macedo I, Pasion R, Silveira C, Sempf F, Ferreira-Santos F. Autistic traits and event-related potentials in the general population: A scoping review and meta-analysis. Biol Psychol 2024; 186:108758. [PMID: 38309513 DOI: 10.1016/j.biopsycho.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Differences in short and long-latency Event-Related Potentials (ERPs) can help us infer abnormalities in brain processing, considering early and later stages of stimuli processing across tasks and conditions. In autism research, the adult population remains largely understudied compared to samples at early stages of development. In this context, this scoping review briefly summarises what has been described in community and subclinical adult samples of autism. METHOD The current scoping review and meta-analysis includes 50 records (N = 1652) and comprehensively explores short and long-latency ERP amplitudes and their relationship with autistic traits in adult community samples. RESULTS This meta-analysis identified, with small to medium effect sizes, distinctive patterns in late ERP amplitudes, indicating enhanced responses to visual stimuli and the opposite patterns to auditory tasks in the included sample. Additionally, a pattern of higher amplitudes was also found for the component P3b in autistic traits. DISCUSSION Differential effects in visual and auditory domains are explored in light of the predictive processing framework for Autism. It remains possible that different brain mechanisms operate to explain symptoms related with different sensory modalities. P3b is discussed as a possible component of interest in future studies as it revealed a more robust effect for differentiating severity in the expression of autistic traits in adulthood.
Collapse
Affiliation(s)
- Prune Mazer
- ESS, Polytechnic of Porto, Portugal; Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal.
| | - Helena Garcez
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Pasion
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Portugal; HEI-LAB, Lusófona University, Porto, Portugal
| | - Celeste Silveira
- Faculty of Medicine, University of Porto, Portugal; Psychiatry Department, Hospital S. João, Porto, Portugal
| | | | - Fernando Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Portugal
| |
Collapse
|
8
|
Dwyer P, Vukusic S, Williams ZJ, Saron CD, Rivera SM. "Neural Noise" in Auditory Responses in Young Autistic and Neurotypical Children. J Autism Dev Disord 2024; 54:642-661. [PMID: 36434480 PMCID: PMC10209352 DOI: 10.1007/s10803-022-05797-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Elevated "neural noise" has been advanced as an explanation of autism and autistic sensory experiences. However, functional neuroimaging measures of neural noise may be vulnerable to contamination by recording noise. This study explored variability of electrophysiological responses to tones of different intensities in 127 autistic and 79 typically-developing children aged 2-5 years old. A rigorous data processing pipeline, including advanced visualizations of different signal sources that were maximally independent across different time lags, was used to identify and eliminate putative recording noise. Inter-trial variability was measured using median absolute deviations (MADs) of EEG amplitudes across trials and inter-trial phase coherence (ITPC). ITPC was elevated in autism in the 50 and 60 dB intensity conditions, suggesting diminished (rather than elevated) neural noise in autism, although reduced ITPC to soft 50 dB sounds was associated with increased loudness discomfort. Autistic and non-autistic participants did not differ in MADs, and indeed, the vast majority of the statistical tests examined in this study yielded no significant effects. These results appear inconsistent with the neural noise account.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, Davis, CA, USA.
- Center for Mind and Brain, UC Davis, Davis, CA, USA.
- MIND Institute, UC Davis Health, Sacramento, CA, USA.
| | | | - Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clifford D Saron
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
| | - Susan M Rivera
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
- College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Hudac CM, Webb SJ. EEG Biomarkers for Autism: Rational, Support, and the Qualification Process. ADVANCES IN NEUROBIOLOGY 2024; 40:545-576. [PMID: 39562457 DOI: 10.1007/978-3-031-69491-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this chapter, we highlight the advantages, progress, and pending challenges of developing electroencephalography (EEG) and event-related potential (ERP) biomarkers for use in autism spectrum disorder (ASD). We describe reasons why global efforts towards precision treatment in ASD are utilizing EEG indices to quantify biological mechanisms. We overview common sensory processing and attention biomarkers and provide translational examples examining the genetic etiology of autism across animal models and human subgroups. We describe human-specific social biomarkers related to face perception, a complex social cognitive process that may prove informative of autistic social behaviors. Lastly, we discuss outstanding considerations for quantifying EEG biomarkers, the challenges associated with rigor and reproducibility, contexts of future use, and propose opportunities for combinatory multidimensional biomarkers.
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychology, University of South Carolina, Columbia, SC, USA.
- Carolina Autism and Neurodevelopmental Research Center, University of South Carolina, Columbia, SC, USA.
| | - Sara Jane Webb
- Center on Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Roberts TPL, Gaetz WC, Birnbaum C, Bloy L, Berman JI. Towards Biomarkers for Autism Spectrum Disorder: Contributions of Magnetoencephalography (MEG). ADVANCES IN NEUROBIOLOGY 2024; 40:455-489. [PMID: 39562454 DOI: 10.1007/978-3-031-69491-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
There is no simple blood test for autism. Consequently, much attention has been paid to identifying noninvasive biomarkers using imaging (e.g., Magnetic resonance imaging, MRI) and electrophysiological (e.g., electroencephalography, EEG and magnetoencephalography, MEG) methods. While, in general, these lack direct biological specificity, they can (in principle) provide a useful tool, or suite of tools, for diagnostic, prognostic, stratification, and response monitoring purposes.This chapter focuses on the pursuit of biomarkers using magnetoencephalography (MEG). While closely related to the more common electroencephalography (EEG), MEG offers some unique characteristics (such as improved spatial resolution, in combination with real-time temporal resolution and spectral discrimination), that might be considered impactful in the pursuit of biomarkers.Given the widely-acknowledged heterogeneity of ASD ("if you've seen one child with autism, then you've seen one child with autism"), the tide of research is perhaps shifting away from diagnostic biomarkers toward biomarkers that can help stratify patients according to some similarity in biological basis, etiology, or pathway. This approach, somewhat pragmatic, may be of benefit when designing and conducting clinical trials of putative therapeutics, or when optimally designing behavioral supports (when "therapy" may not be indicated).Ultimately, MEG-derived biomarkers, however advantageous in themselves, may likely find a place as reference in the prioritization and roll-out of candidate biomarkers established using other modalities, more accessible and available to the global community.
Collapse
Affiliation(s)
- Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| | - William C Gaetz
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Charlotte Birnbaum
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
van Huizen JC, van Dijk J, Staal WG, van der Voort MC. Bringing the autistic lifeworld to supportive technology design: an enactive approach. CODESIGN : INTERNATIONAL JOURNAL OF COCREATION IN DESIGN AND THE ARTS 2023; 20:243-265. [PMID: 39410951 PMCID: PMC11473053 DOI: 10.1080/15710882.2023.2295952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/11/2023] [Indexed: 10/19/2024]
Abstract
Supportive technologies for autistic individuals are promising in principle, yet their uptake remains limited. Critics argue that in current designs of supportive technologies, autism is mostly framed as a 'disorder' whose limitations can be pragmatically compensated for. To increase uptake, designers should get a better handle on how to incorporate the full richness of the autistic experience into the design process. This paper presents an integrative framework of the autistic lifeworld, called Autistic Lifeworld Design (hereafter: ALD). ALD evolved in a transdisciplinary research setting, substantiated by 11 design case studies with autistic young adults as well as theoretical inquiries into enactivism, design and autism. It consists of four dimensions of experience - sensory, habitual, social, and affective -, each providing specific pointers on how to better understand how autistic people experience the world and how supportive technologies may complement that experience. By adopting an enactive approach, ALD enables a reframing of supportive technology as helping to sustain different levels of homoeostasis. It offers a novel lens that allows designers to put the lived experiences of autistic individuals at the centre of the design process, with special attention to the role of bodily structures and processing in shaping these experiences.
Collapse
Affiliation(s)
| | - Jelle van Dijk
- Human-Centred Design, University of Twente, Enschede, Netherlands
| | - Wouter G Staal
- Faculty of Social Sciences, University of Leiden, Leiden, Netherlands
| | | |
Collapse
|
12
|
Arao H, Suwazono S, Kimura A, Asano H, Suzuki H. Measuring auditory event-related potentials at the external ear canal: A demonstrative study using a new electrode and error-feedback paradigm. Eur J Neurosci 2023; 58:4310-4327. [PMID: 37875165 DOI: 10.1111/ejn.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Although ear canal electroencephalogram (EEG) recording has received interest from basic and applied research communities, evidence on how it can be implemented in practice is limited. The present study involving eight male participants including the authors presents the utility of our ear canal electrode and method by demonstrating both comparability of ear canal EEG to those at nearby sites and distinctiveness that ear canal event-related potentials (ERPs) could have. For this purpose, we used the balanced noncephalic electrode reference and an experimental paradigm with an error-feedback sound. Clear auditory ERPs were detected at the ear canal sites with a sufficiently low noise level comparable with those at conventional sites. The N1c, a temporal maximum subcomponent, spread over the bilateral temporal sites, including the ear canals and earlobes. While consecutive signals are generally highly similar between the ear canal and the earlobe, the N1c was larger at the ear canal than the earlobe, as demonstrated by the conventional frequentist and the hierarchical Bayesian modelling approaches. Although an evident caveat is that our sample was limited in terms of size and sex, the general capability indicates that the structure of our ear canal electrode provides EEG measurement that can be used in basic and applied settings. Our experimental method can also be an ERP-based test that conveniently assesses the capability of existing and future ear canal electrodes. The distinctive nature of the ERPs to the error-feedback sound may be utilized to examine the basic aspects of auditory ERPs and to test the processes involved in feedback-guided behaviour of participants.
Collapse
Affiliation(s)
- Hiroshi Arao
- Department of Human Sciences, Taisho University, Tokyo, Japan
| | - Shugo Suwazono
- Department of Neurology and Center for Clinical Neuroscience, National Hospital Organization Okinawa National Hospital, Ginowan, Japan
| | | | - Hirotoshi Asano
- Department of Computer Science, Kogakuin University, Tokyo, Japan
| | - Hiroaki Suzuki
- Department of Human Sciences, Taisho University, Tokyo, Japan
| |
Collapse
|
13
|
Yu L, Huang D, Wang S, Zhang Y. Reduced Neural Specialization for Word-level Linguistic Prosody in Children with Autism. J Autism Dev Disord 2023; 53:4351-4367. [PMID: 36038793 DOI: 10.1007/s10803-022-05720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Children with autism often show atypical brain lateralization for speech and language processing, however, it is unclear what linguistic component contributes to this phenomenon. Here we measured event-related potential (ERP) responses in 21 school-age autistic children and 25 age-matched neurotypical (NT) peers during listening to word-level prosodic stimuli. We found that both groups displayed larger late negative response (LNR) amplitude to native prosody than to nonnative prosody; however, unlike the NT group exhibiting left-lateralized LNR distinction of prosodic phonology, the autism group showed no evidence of LNR lateralization. Moreover, in both groups, the LNR effects were only present for prosodic phonology but not for phoneme-free prosodic acoustics. These results extended the findings of inadequate neural specialization for language in autism to sub-lexical prosodic structures.
Collapse
Affiliation(s)
- Luodi Yu
- Center for Autism Research, School of Education, Guangzhou University, Wenyi Bldg, Guangzhou, China.
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) , Ministry of Education, Guangzhou, China.
| | - Dan Huang
- Guangzhou Rehabilitation & Research Center for Children with ASD, Guangzhou Cana School, Guangzhou, China
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) , Ministry of Education, Guangzhou, China.
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Green HL, Shen G, Franzen RE, Mcnamee M, Berman JI, Mowad TG, Ku M, Bloy L, Liu S, Chen YH, Airey M, McBride E, Goldin S, Dipiero MA, Blaskey L, Kuschner ES, Kim M, Konka K, Roberts TPL, Edgar JC. Differential Maturation of Auditory Cortex Activity in Young Children with Autism and Typical Development. J Autism Dev Disord 2023; 53:4076-4089. [PMID: 35960416 PMCID: PMC9372967 DOI: 10.1007/s10803-022-05696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Maturation of auditory cortex neural encoding processes was assessed in children with typical development (TD) and autism. Children 6-9 years old were enrolled at Time 1 (T1), with follow-up data obtained ~ 18 months later at Time 2 (T2), and ~ 36 months later at Time 3 (T3). Findings suggested an initial period of rapid auditory cortex maturation in autism, earlier than TD (prior to and surrounding the T1 exam), followed by a period of faster maturation in TD than autism (T1-T3). As a result of group maturation differences, post-stimulus group differences were observed at T1 but not T3. In contrast, stronger pre-stimulus activity in autism than TD was found at all time points, indicating this brain measure is stable across time.
Collapse
Affiliation(s)
- Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Guannan Shen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose E Franzen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marybeth Mcnamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa G Mowad
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yu-Han Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan Airey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma McBride
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sophia Goldin
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marissa A Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Konka
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Bang P, Igelström K. Modality-specific associations between sensory differences and autistic traits. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:2158-2172. [PMID: 36802917 PMCID: PMC10504810 DOI: 10.1177/13623613231154349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
LAY ABSTRACT Sensory symptoms are a major source of distress for many autistic people, causing anxiety, stress, and avoidance. Sensory problems are thought to be passed on genetically together with other autistic characteristics, such as social preferences. This means that people who report cognitive rigidity and autistic-like social function are more likely to suffer from sensory issues. We do not know what role the individual senses, such as vision, hearing, smell, or touch, play in this relationship, because sensory processing is generally measured with questionnaires that target general, multisensory issues. This study aimed to investigate the individual importance of the different senses (vision, hearing, touch, smell, taste, balance, and proprioception) in the correlation with autistic traits. To ensure the results were replicable, we repeated the experiment in two large groups of adults. The first group contained 40% autistic participants, whereas the second group resembled the general population. We found that problems with auditory processing were more strongly predictive of general autistic characteristics than were problems with the other senses. Problems with touch were specifically related to differences in social interaction, such as avoiding social settings. We also found a specific relationship between proprioceptive differences and autistic-like communication preferences. The sensory questionnaire had limited reliability, so our results may underestimate the contribution of some senses. With that reservation in mind, we conclude that auditory differences are dominant over other modalities in predicting genetically based autistic traits and may therefore be of special interest for further genetic and neurobiological studies.
Collapse
|
16
|
Schwartz S, Wang L, Uribe S, Shinn-Cunningham B, Tager-Flusberg H. Auditory evoked potentials in adolescents with autism: An investigation of brain development, intellectual impairment, and neural encoding. Autism Res 2023; 16:1859-1876. [PMID: 37735966 PMCID: PMC10676753 DOI: 10.1002/aur.3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/21/2023] [Indexed: 09/23/2023]
Abstract
Limited research has evaluated neural encoding of sounds from a developmental perspective in individuals with autism (ASD), especially among those with intellectual disability. We compared auditory evoked potentials (AEPs) in autistic adolescents with a wide range of intellectual abilities (n = 40, NVIQ 30-160) to both age-matched cognitively able neurotypical adolescent controls (NT-A, n = 37) and younger neurotypical children (NT-C, n = 27) to assess potential developmental delays. In addition to a classic measure of peak amplitude, we calculated a continuous measure of intra-class correlation (ICC) between each adolescent participant's AEP and the age-normative, average AEP waveforms calculated from NT-C and NT-A to study differences in signal morphology. We found that peak amplitudes of neural responses were significantly smaller in autistic adolescents compared to NT-A. We also found that the AEP morphology of autistic adolescents looked more like NT-A peers than NT-C but was still significantly different from NT-A AEP waveforms. Results suggest that AEPs of autistic adolescents present differently from NTs, regardless of age, and differences cannot be accounted for by developmental delay. Nonverbal intelligence significantly predicted how closely each adolescent's AEP resembled the age-normed waveform. These results support an evolving theory that the degree of disruption in early neural responses to low-level inputs is reflected in the severity of intellectual impairments in autism.
Collapse
Affiliation(s)
- Sophie Schwartz
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Le Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Sofia Uribe
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | | | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Dwyer P, Williams ZJ, Vukusic S, Saron CD, Rivera SM. Habituation of auditory responses in young autistic and neurotypical children. Autism Res 2023; 16:1903-1923. [PMID: 37688470 PMCID: PMC10651062 DOI: 10.1002/aur.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Prior studies suggest that habituation of sensory responses is reduced in autism and that diminished habituation could be related to atypical autistic sensory experiences, for example, by causing brain responses to aversive stimuli to remain strong over time instead of being suppressed. While many prior studies exploring habituation in autism have repeatedly presented identical stimuli, other studies suggest group differences can still be observed in habituation to intermittent stimuli. The present study explored habituation of electrophysiological responses to auditory complex tones of varying intensities (50-80 dB SPL), presented passively in an interleaved manner, in a well-characterized sample of 127 autistic (MDQ = 65.41, SD = 20.54) and 79 typically developing (MDQ = 106.02, SD = 11.50) children between 2 and 5 years old. Habituation was quantified as changes in the amplitudes of single-trial responses to tones of each intensity over the course of the experiment. Habituation of the auditory N2 response was substantially reduced in autistic participants as compared to typically developing controls, although diagnostic groups did not clearly differ in habituation of the P1 response. Interestingly, the P1 habituated less to loud 80 dB sounds than softer sounds, whereas the N2 habituated less to soft 50 dB sounds than louder sounds. No associations were found between electrophysiological habituation and cognitive ability or participants' caregiver-reported sound tolerance (Sensory Profile Hyperacusis Index). The results present study results extend prior research suggesting habituation of certain sensory responses is reduced in autism; however, they also suggest that habituation differences observed using this study's paradigm might not be a primary driver of autistic participants' real-world sound intolerance.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis, Davis, CA, USA
| | - Zachary J. Williams
- Medical Scientist Training Program, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Hearing & Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN,
USA
- Frist Center for Autism and Innovation, Vanderbilt University,
Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Svjetlana Vukusic
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- Department of General Practice, Melbourne Medical School, the
University of Melbourne, Melbourne, VIC, Australia
| | - Clifford D. Saron
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis, Sacramento, CA, USA
| | - Susan M. Rivera
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis, Sacramento, CA, USA
| |
Collapse
|
18
|
Berman JI, Bloy L, Blaskey L, Jackel CR, Miller JS, Ross J, Edgar JC, Roberts TPL. Contributions to auditory system conduction velocity: insights with multi-modal neuroimaging and machine learning in children with ASD and XYY syndrome. Front Psychiatry 2023; 14:1057221. [PMID: 37252131 PMCID: PMC10219612 DOI: 10.3389/fpsyt.2023.1057221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The M50 electrophysiological auditory evoked response time can be measured at the superior temporal gyrus with magnetoencephalography (MEG) and its latency is related to the conduction velocity of auditory input passing from ear to auditory cortex. In children with autism spectrum disorder (ASD) and certain genetic disorders such as XYY syndrome, the auditory M50 latency has been observed to be elongated (slowed). Methods The goal of this study is to use neuroimaging (diffusion MR and GABA MRS) measures to predict auditory conduction velocity in typically developing (TD) children and children with autism ASD and XYY syndrome. Results Non-linear TD support vector regression modeling methods accounted for considerably more M50 latency variance than linear models, likely due to the non-linear dependence on neuroimaging factors such as GABA MRS. While SVR models accounted for ~80% of the M50 latency variance in TD and the genetically homogenous XYY syndrome, a similar approach only accounted for ~20% of the M50 latency variance in ASD, implicating the insufficiency of diffusion MR, GABA MRS, and age factors alone. Biologically based stratification of ASD was performed by assessing the conformance of the ASD population to the TD SVR model and identifying a sub-population of children with unexpectedly long M50 latency. Discussion Multimodal integration of neuroimaging data can help build a mechanistic understanding of brain connectivity. The unexplained M50 latency variance in ASD motivates future hypothesis generation and testing of other contributing biological factors.
Collapse
Affiliation(s)
- Jeffrey I. Berman
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Luke Bloy
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lisa Blaskey
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Carissa R. Jackel
- Division of Developmental and Behavioral Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Judith S. Miller
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Judith Ross
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
- Nemours Children's Hospital-Delaware, Wilmington, DE, United States
| | - J. Christopher Edgar
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Timothy P. L. Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Williams ZJ, Suzman E, Bordman SL, Markfeld JE, Kaiser SM, Dunham KA, Zoltowski AR, Failla MD, Cascio CJ, Woynaroski TG. Characterizing Interoceptive Differences in Autism: A Systematic Review and Meta-analysis of Case-control Studies. J Autism Dev Disord 2023; 53:947-962. [PMID: 35819587 PMCID: PMC9832174 DOI: 10.1007/s10803-022-05656-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/13/2023]
Abstract
Interoception, the body's perception of its own internal states, is thought to be altered in autism, though results of empirical studies have been inconsistent. The current study systematically reviewed and meta-analyzed the extant literature comparing interoceptive outcomes between autistic (AUT) and neurotypical (NT) individuals, determining which domains of interoception demonstrate robust between-group differences. A three-level Bayesian meta-analysis compared heartbeat counting performance, heartbeat discrimination performance, heartbeat counting confidence ratings, and self-reported interoceptive attention between AUT and NT groups (15 studies; nAUT = 467, nNT = 478). Autistic participants showed significantly reduced heartbeat counting performance [g = - 0.333, CrI95% (- 0.535, - 0.138)] and higher confidence in their heartbeat counting abilities [g = 0.430, CrI95% (0.123, 0.750)], but groups were equivalent on other meta-analyzed outcomes. Implications for future interoception research in autism are discussed.
Collapse
Affiliation(s)
- Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Evan Suzman
- UT Southwestern Medical School, Dallas, TX, USA
| | | | - Jennifer E Markfeld
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA
| | - Sophia M Kaiser
- Undergraduate Programs in Cognitive Studies and Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Kacie A Dunham
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Alisa R Zoltowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | | | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Schaeffer J, Abd El-Raziq M, Castroviejo E, Durrleman S, Ferré S, Grama I, Hendriks P, Kissine M, Manenti M, Marinis T, Meir N, Novogrodsky R, Perovic A, Panzeri F, Silleresi S, Sukenik N, Vicente A, Zebib R, Prévost P, Tuller L. Language in autism: domains, profiles and co-occurring conditions. J Neural Transm (Vienna) 2023; 130:433-457. [PMID: 36922431 PMCID: PMC10033486 DOI: 10.1007/s00702-023-02592-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/14/2023] [Indexed: 03/18/2023]
Abstract
This article reviews the current knowledge state on pragmatic and structural language abilities in autism and their potential relation to extralinguistic abilities and autistic traits. The focus is on questions regarding autism language profiles with varying degrees of (selective) impairment and with respect to potential comorbidity of autism and language impairment: Is language impairment in autism the co-occurrence of two distinct conditions (comorbidity), a consequence of autism itself (no comorbidity), or one possible combination from a series of neurodevelopmental properties (dimensional approach)? As for language profiles in autism, three main groups are identified, namely, (i) verbal autistic individuals without structural language impairment, (ii) verbal autistic individuals with structural language impairment, and (iii) minimally verbal autistic individuals. However, this tripartite distinction hides enormous linguistic heterogeneity. Regarding the nature of language impairment in autism, there is currently no model of how language difficulties may interact with autism characteristics and with various extralinguistic cognitive abilities. Building such a model requires carefully designed explorations that address specific aspects of language and extralinguistic cognition. This should lead to a fundamental increase in our understanding of language impairment in autism, thereby paving the way for a substantial contribution to the question of how to best characterize neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jeannette Schaeffer
- Department of Literary and Cultural Analysis & Linguistics, Faculty of Humanities, University of Amsterdam, PO Box 1642, 1000 BP, Amsterdam, The Netherlands.
| | | | | | | | - Sandrine Ferré
- UMR 1253 iBrain, Université de Tours, INSERM, Tours, France
| | - Ileana Grama
- Department of Literary and Cultural Analysis & Linguistics, Faculty of Humanities, University of Amsterdam, PO Box 1642, 1000 BP, Amsterdam, The Netherlands
| | | | | | - Marta Manenti
- UMR 1253 iBrain, Université de Tours, INSERM, Tours, France
| | | | | | | | | | | | | | | | - Agustín Vicente
- University of the Basque Country, Vitoria-Gasteiz, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao, Spain
| | - Racha Zebib
- UMR 1253 iBrain, Université de Tours, INSERM, Tours, France
| | | | - Laurice Tuller
- UMR 1253 iBrain, Université de Tours, INSERM, Tours, France
| |
Collapse
|
21
|
Demopoulos C, Kopald BE, Bangera N, Paulson K, David Lewine J. Rapid auditory processing of puretones is associated with basic components of language in individuals with autism spectrum disorders. BRAIN AND LANGUAGE 2023; 238:105229. [PMID: 36753824 PMCID: PMC10029928 DOI: 10.1016/j.bandl.2023.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The goal of this study was to identify the specific domains of language that may be affected by deficits in rapid auditory processing in individuals with ASD. Auditory evoked fields were collected from 63 children diagnosed with ASD in order to evaluate processing of puretone sounds presented in rapid succession. Measures of language and its components were assessed via standardized clinical tools to quantify expressive and receptive language, vocabulary, articulation, and phonological processing abilities. Rapid processing was significantly and bilaterally associated with phonological awareness, vocabulary, and articulation. Phonological processing was found to mediate the relationship between rapid processing and language. M100 response latency was not significantly associated with any language measures. Results suggest that rapid processing deficits may impact the basic components of language such as phonological processing, and the downstream effect of this impact may in turn impact overall language development.
Collapse
Affiliation(s)
- Carly Demopoulos
- University of California-San Francisco, Department of Psychiatry & Behavioral Sciences, 675 18th Street, San Francisco, CA 94107, United States; University of California-San Francisco, Department of Radiology & Biomedical Imaging, 513 Parnassus Avenue, S362, San Francisco, CA 94143, United States.
| | - Brandon E Kopald
- University of California-San Francisco, Department of Neurology, 675 Nelson Rising, Lane, San Francisco, CA 94143, United States
| | - Nitin Bangera
- Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Center for Advanced Diagnostics, Evaluation and Therapeutics, CADET-NM, 1501 Indian School, NE, Albuquerque, NM 87102, United States
| | - Kim Paulson
- Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Jeffrey David Lewine
- Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States; Center for Advanced Diagnostics, Evaluation and Therapeutics, CADET-NM, 1501 Indian School, NE, Albuquerque, NM 87102, United States; University of New Mexico, Departments of Psychology and Neurology, 1 University Blvd. NE, Albuquerque, NM 87031, United States.
| |
Collapse
|
22
|
Pierce K, Wen TH, Zahiri J, Andreason C, Courchesne E, Barnes CC, Lopez L, Arias SJ, Esquivel A, Cheng A. Level of Attention to Motherese Speech as an Early Marker of Autism Spectrum Disorder. JAMA Netw Open 2023; 6:e2255125. [PMID: 36753277 PMCID: PMC9909502 DOI: 10.1001/jamanetworkopen.2022.55125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/19/2022] [Indexed: 02/09/2023] Open
Abstract
Importance Caregivers have long captured the attention of their infants by speaking in motherese, a playful speech style characterized by heightened affect. Reduced attention to motherese in toddlers with autism spectrum disorder (ASD) may be a contributor to downstream language and social challenges and could be diagnostically revealing. Objective To investigate whether attention toward motherese speech can be used as a diagnostic classifier of ASD and is associated with language and social ability. Design, Setting, and Participants This diagnostic study included toddlers aged 12 to 48 months, spanning ASD and non-ASD diagnostic groups, at a research center. Data were collected from February 2018 to April 2021 and analyzed from April 2021 to March 2022. Exposures Gaze-contingent eye-tracking test. Main Outcomes and Measures Using gaze-contingent eye tracking wherein the location of a toddler's fixation triggered a specific movie file, toddlers participated in 1 or more 1-minute eye-tracking tests designed to quantify attention to motherese speech, including motherese vs traffic (ie, noisy vehicles on a highway) and motherese vs techno (ie, abstract shapes with music). Toddlers were also diagnostically and psychometrically evaluated by psychologists. Levels of fixation within motherese and nonmotherese movies and mean number of saccades per second were calculated. Receiver operating characteristic (ROC) curves were used to evaluate optimal fixation cutoff values and associated sensitivity, specificity, positive predictive value (PPV), and negative predictive value. Within the ASD group, toddlers were stratified based on low, middle, or high levels of interest in motherese speech, and associations with social and language abilities were examined. Results A total of 653 toddlers were included (mean [SD] age, 26.45 [8.37] months; 480 males [73.51%]). Unlike toddlers without ASD, who almost uniformly attended to motherese speech with a median level of 82.25% and 80.75% across the 2 tests, among toddlers with ASD, there was a wide range, spanning 0% to 100%. Both the traffic and techno paradigms were effective diagnostic classifiers, with large between-group effect sizes (eg, ASD vs typical development: Cohen d, 1.0 in the techno paradigm). Across both paradigms, a cutoff value of 30% or less fixation on motherese resulted in an area under the ROC curve (AUC) of 0.733 (95% CI, 0.693-0.773) and 0.761 (95% CI, 0.717-0.804), respectively; specificity of 98% (95% CI, 95%-99%) and 96% (95% CI, 92%-98%), respectively; and PPV of 94% (95% CI, 86%-98%). Reflective of heterogeneity and expected subtypes in ASD, sensitivity was lower at 18% (95% CI, 14%-22%) and 29% (95% CI, 24%-34%), respectively. Combining metrics increased the AUC to 0.841 (95% CI, 0.805-0.877). Toddlers with ASD who showed the lowest levels of attention to motherese speech had weaker social and language abilities. Conclusions and Relevance In this diagnostic study, a subset of toddlers showed low levels of attention toward motherese speech. When a cutoff level of 30% or less fixation on motherese speech was used, toddlers in this range were diagnostically classified as having ASD with high accuracy. Insight into which toddlers show unusually low levels of attention to motherese may be beneficial not only for early ASD diagnosis and prognosis but also as a possible therapeutic target.
Collapse
Affiliation(s)
- Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Teresa H. Wen
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Charlene Andreason
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Cynthia C. Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Steven J. Arias
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Ahtziry Esquivel
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| | - Amanda Cheng
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla
| |
Collapse
|
23
|
Wang X, Carroll X, Zhang P, du Prel JB, Wang H, Xu H, Leeper-Woodford S. Exploring brainstem auditory evoked potentials and mental development index as early indicators of autism spectrum disorders in high-risk infants. Autism Res 2022; 15:2012-2025. [PMID: 36135806 DOI: 10.1002/aur.2821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
This study of infants from Hubei Province, China examined brainstem auditory evoked potentials (BAEP) and mental development index (MDI) as possible early indicators associated with autism spectrum disorders (ASD). The 34 ASD cases and 102 controls who had recovered from perinatal conditions were matched for age, sex, gestational age, birth weight and maternal age. BAEP absolute latencies (AL) I, III, V and interpeak latencies (IPL) I-III, III-V, I-V were compared in ASD cases and controls at ages 1, 3 and 6 months. MDI scores were compared in these infants from 1 month to 2 years old. Multiple logistic regression analysis was performed to test associations among ASD, BAEP and MDI. Results showed BAEP AL I, V and IPL III-V prolonged in the ASD group (p < 0.001), and MDI scores in ASD cases sharply declining from 12 to 24 months (p < 0.001). Regression analysis revealed odds ratios (OR) indicating that ASD was likely associated with abnormal values of BAEP AL I at 1 and 3 months (ORAL I : 4.27; ORAL I : 4.13), and AL V at 6 months (ORAL V : 7.85). Lower MDI scores (MDI < 80) in infants at 1, 3, and 6 months were likely associated with ASD (ORMDI : 2.58; ORMDI : 3.83; ORMDI : 4.87). These data show that abnormal BAEP values and low MDI scores are independent factors associated with ASD, and that monitoring of BAEP and MDI during infancy might facilitate screening for ASD development.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Child Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xianming Carroll
- Department of Public Health, Mercer University College of Health Professions, Atlanta, Georgia, USA
| | - Ping Zhang
- Department of Child Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Jean-Baptist du Prel
- Department of Occupational Health Science, University of Wuppertal, Wuppertal, Germany
| | - Hong Wang
- Department of Child Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Haiqing Xu
- Department of Child Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Sandra Leeper-Woodford
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| |
Collapse
|
24
|
Detection of the 40 Hz auditory steady-state response with optically pumped magnetometers. Sci Rep 2022; 12:17993. [PMID: 36289267 PMCID: PMC9606299 DOI: 10.1038/s41598-022-21870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Magnetoencephalography (MEG) is a functional neuroimaging technique that noninvasively detects the brain magnetic field from neuronal activations. Conventional MEG measures brain signals using superconducting quantum interference devices (SQUIDs). SQUID-MEG requires a cryogenic environment involving a bulky non-magnetic Dewar flask and the consumption of liquid helium, which restricts the variability of the sensor array and the gap between the cortical sources and sensors. Recently, miniature optically pumped magnetometers (OPMs) have been developed and commercialized. OPMs do not require cryogenic cooling and can be placed within millimeters from the scalp. In the present study, we arranged six OPM sensors on the temporal area to detect auditory-related brain responses in a two-layer magnetically shielded room. We presented the auditory stimuli of 1 kHz pure-tone bursts with 200 ms duration and obtained the M50 and M100 components of auditory-evoked fields. We delivered the periodic stimuli with a 40 Hz repetition rate and observed the gamma-band power changes and inter-trial phase coherence of auditory steady-state responses at 40 Hz. We found that the OPM sensors have a performance comparable to that of conventional SQUID-MEG sensors, and our results suggest the feasibility of using OPM sensors for functional neuroimaging and brain-computer interface applications.
Collapse
|
25
|
Jensen AR, Lane AL, Werner BA, McLees SE, Fletcher TS, Frye RE. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther 2022; 26:483-495. [PMID: 35759118 PMCID: PMC9411091 DOI: 10.1007/s40291-022-00600-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Autism spectrum disorder is an increasingly prevalent neurodevelopmental disorder in the world today, with an estimated 2% of the population being affected in the USA. A major complicating factor in diagnosing, treating, and understanding autism spectrum disorder is that defining the disorder is solely based on the observation of behavior. Thus, recent research has focused on identifying specific biological abnormalities in autism spectrum disorder that can provide clues to diagnosis and treatment. Biomarkers are an objective way to identify and measure biological abnormalities for diagnostic purposes as well as to measure changes resulting from treatment. This current opinion paper discusses the state of research of various biomarkers currently in development for autism spectrum disorder. The types of biomarkers identified include prenatal history, genetics, neurological including neuroimaging, neurophysiologic, and visual attention, metabolic including abnormalities in mitochondrial, folate, trans-methylation, and trans-sulfuration pathways, immune including autoantibodies and cytokine dysregulation, autonomic nervous system, and nutritional. Many of these biomarkers have promising preliminary evidence for prenatal and post-natal pre-symptomatic risk assessment, confirmation of diagnosis, subtyping, and treatment response. However, most biomarkers have not undergone validation studies and most studies do not investigate biomarkers with clinically relevant comparison groups. Although the field of biomarker research in autism spectrum disorder is promising, it appears that it is currently in the early stages of development.
Collapse
Affiliation(s)
- Amanda R Jensen
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Brianna A Werner
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Sallie E McLees
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Tessa S Fletcher
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.
| |
Collapse
|
26
|
Dwyer P, Takarae Y, Zadeh I, Rivera SM, Saron CD. A Multidimensional Investigation of Sensory Processing in Autism: Parent- and Self-Report Questionnaires, Psychophysical Thresholds, and Event-Related Potentials in the Auditory and Somatosensory Modalities. Front Hum Neurosci 2022; 16:811547. [PMID: 35620155 PMCID: PMC9127065 DOI: 10.3389/fnhum.2022.811547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Reconciling results obtained using different types of sensory measures is a challenge for autism sensory research. The present study used questionnaire, psychophysical, and neurophysiological measures to characterize autistic sensory processing in different measurement modalities. Methods Participants were 46 autistic and 21 typically developing 11- to 14-year-olds. Participants and their caregivers completed questionnaires regarding sensory experiences and behaviors. Auditory and somatosensory event-related potentials (ERPs) were recorded as part of a multisensory ERP task. Auditory detection, tactile static detection, and tactile spatial resolution psychophysical thresholds were measured. Results Sensory questionnaires strongly differentiated between autistic and typically developing individuals, while little evidence of group differences was observed in psychophysical thresholds. Crucially, the different types of measures (neurophysiological, psychophysical, questionnaire) appeared to be largely independent of one another. However, we unexpectedly found autistic participants with larger auditory Tb ERP amplitudes had reduced hearing acuity, even though all participants had hearing acuity in the non-clinical range. Limitations The autistic and typically developing groups were not matched on cognitive ability, although this limitation does not affect our main analyses regarding convergence of measures within autism. Conclusion Overall, based on these results, measures in different sensory modalities appear to capture distinct aspects of sensory processing in autism, with relatively limited convergence between questionnaires and laboratory-based tasks. Generally, this might reflect the reality that laboratory tasks are often carried out in controlled environments without background stimuli to compete for attention, a context which may not closely resemble the busier and more complex environments in which autistic people's atypical sensory experiences commonly occur. Sensory questionnaires and more naturalistic laboratory tasks may be better suited to explore autistic people's real-world sensory challenges. Further research is needed to replicate and investigate the drivers of the unexpected association we observed between auditory Tb ERP amplitudes and hearing acuity, which could represent an important confound for ERP researchers to consider in their studies.
Collapse
Affiliation(s)
- Patrick Dwyer
- Neurocognitive Development Lab, Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California, Davis, Davis, CA, United States
| | - Yukari Takarae
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Iman Zadeh
- Oracle Cloud Infrastructure, Oracle Corporation, Los Angeles, CA, United States
| | - Susan M. Rivera
- Neurocognitive Development Lab, Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California, Davis, Davis, CA, United States
| | - Clifford D. Saron
- MIND Institute, University of California, Davis, Davis, CA, United States
- Saron Lab, Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| |
Collapse
|
27
|
Neklyudova A, Smirnov K, Rebreikina A, Martynova O, Sysoeva O. Electrophysiological and Behavioral Evidence for Hyper- and Hyposensitivity in Rare Genetic Syndromes Associated with Autism. Genes (Basel) 2022; 13:671. [PMID: 35456477 PMCID: PMC9027402 DOI: 10.3390/genes13040671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Our study reviewed abnormalities in spontaneous, as well as event-related, brain activity in syndromes with a known genetic underpinning that are associated with autistic symptomatology. Based on behavioral and neurophysiological evidence, we tentatively subdivided the syndromes on primarily hyper-sensitive (Fragile X, Angelman) and hypo-sensitive (Phelan-McDermid, Rett, Tuberous Sclerosis, Neurofibromatosis 1), pointing to the way of segregation of heterogeneous idiopathic ASD, that includes both hyper-sensitive and hypo-sensitive individuals. This segmentation links abnormalities in different genes, such as FMR1, UBE3A, GABRB3, GABRA5, GABRG3, SHANK3, MECP2, TSC1, TSC2, and NF1, that are causative to the above-mentioned syndromes and associated with synaptic transmission and cell growth, as well as with translational and transcriptional regulation and with sensory sensitivity. Excitation/inhibition imbalance related to GABAergic signaling, and the interplay of tonic and phasic inhibition in different brain regions might underlie this relationship. However, more research is needed. As most genetic syndromes are very rare, future investigations in this field will benefit from multi-site collaboration with a common protocol for electrophysiological and event-related potential (EEG/ERP) research that should include an investigation into all modalities and stages of sensory processing, as well as potential biomarkers of GABAergic signaling (such as 40-Hz ASSR).
Collapse
Affiliation(s)
- Anastasia Neklyudova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Kirill Smirnov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Anna Rebreikina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Olga Sysoeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
28
|
Nordahl CW, Andrews DS, Dwyer P, Waizbard-Bartov E, Restrepo B, Lee JK, Heath B, Saron C, Rivera SM, Solomon M, Ashwood P, Amaral DG. The Autism Phenome Project: Toward Identifying Clinically Meaningful Subgroups of Autism. Front Neurosci 2022; 15:786220. [PMID: 35110990 PMCID: PMC8801875 DOI: 10.3389/fnins.2021.786220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
One of the most universally accepted facts about autism is that it is heterogenous. Individuals diagnosed with autism spectrum disorder have a wide range of behavioral presentations and a variety of co-occurring medical and mental health conditions. The identification of more homogenous subgroups is likely to lead to a better understanding of etiologies as well as more targeted interventions and treatments. In 2006, we initiated the UC Davis MIND Institute Autism Phenome Project (APP) with the overarching goal of identifying clinically meaningful subtypes of autism. This ongoing longitudinal multidisciplinary study now includes over 400 children and involves comprehensive medical, behavioral, and neuroimaging assessments from early childhood through adolescence (2-19 years of age). We have employed several strategies to identify sub-populations within autistic individuals: subgrouping by neural, biological, behavioral or clinical characteristics as well as by developmental trajectories. In this Mini Review, we summarize findings to date from the APP cohort and describe progress made toward identifying meaningful subgroups of autism.
Collapse
Affiliation(s)
- Christine Wu Nordahl
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Derek Sayre Andrews
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick Dwyer
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Einat Waizbard-Bartov
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Bibiana Restrepo
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Joshua K. Lee
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brianna Heath
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Clifford Saron
- MIND Institute, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Susan M. Rivera
- MIND Institute, University of California, Davis, Davis, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Marjorie Solomon
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Paul Ashwood
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - David G. Amaral
- MIND Institute, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Habata K, Cheong Y, Kamiya T, Shiotsu D, Omori IM, Okazawa H, Jung M, Kosaka H. Relationship between sensory characteristics and cortical thickness/volume in autism spectrum disorders. Transl Psychiatry 2021; 11:616. [PMID: 34873147 PMCID: PMC8648722 DOI: 10.1038/s41398-021-01743-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Individuals with autism spectrum disorders (ASDs) exhibit atypical sensory characteristics, impaired social skills, deficits in verbal and nonverbal communication, and restricted and repetitive behaviors. The relationship between sensory characteristics and brain morphological changes in ASD remains unclear. In this study, we investigated the association between brain morphological changes and sensory characteristics in individuals with ASD using brain image analysis and a sensory profile test. Forty-three adults with ASD and 84 adults with typical development underwent brain image analysis using FreeSurfer. The brain cortex was divided into 64 regions, and the cortical thickness and volume of the limbic system were calculated. The sensory characteristics of the participants were evaluated using the Adolescent/Adult Sensory Profile (AASP). Correlation analysis was performed for cortical thickness, limbic area volume, and AASP scores. In the ASD group, there was a significant positive correlation between visual sensory sensitivity scores and the right lingual cortical thickness (r = 0.500). There were also significant negative correlations between visual sensation avoiding scores and the right lateral orbitofrontal cortical thickness (r = -0.513), taste/smell sensation avoiding scores and the right hippocampal volume (r = -0.510), and taste/smell sensation avoiding scores and the left hippocampal volume (r = -0.540). The study identified associations among the lingual cortical thickness, lateral orbitofrontal cortical thickness, and hippocampal volume and sensory characteristics. These findings suggest that brain morphological changes may trigger sensory symptoms in adults with ASD.
Collapse
Affiliation(s)
- Kaie Habata
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Yongjeon Cheong
- grid.452628.f0000 0004 5905 0571Cognitive Science Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Taku Kamiya
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Daichi Shiotsu
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Ichiro M. Omori
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Hidehiko Okazawa
- grid.163577.10000 0001 0692 8246Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan ,grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan ,grid.163577.10000 0001 0692 8246Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, University of Fukui, Japan, Eiheiji, Fukui, Japan
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, South Korea.
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan. .,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan. .,Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, University of Fukui, Japan, Eiheiji, Fukui, Japan.
| |
Collapse
|
30
|
Burstein O, Geva R. The Brainstem-Informed Autism Framework: Early Life Neurobehavioral Markers. Front Integr Neurosci 2021; 15:759614. [PMID: 34858145 PMCID: PMC8631363 DOI: 10.3389/fnint.2021.759614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASD) have long-term implications on functioning at multiple levels. In this perspective, we offer a brainstem-informed autism framework (BIAF) that traces the protracted neurobehavioral manifestations of ASD to early life brainstem dysfunctions. Early life brainstem-mediated markers involving functions of autonomic/arousal regulation, sleep-wake homeostasis, and sensorimotor integration are delineated. Their possible contributions to the early identification of susceptible infants are discussed. We suggest that the BIAF expands our multidimensional understanding of ASD by focusing on the early involvement of brainstem systems. Importantly, we propose an integrated BIAF screener that brings about the prospect of a sensitive and reliable early life diagnostic scheme for weighing the risk for ASD. The BIAF screener could provide clinicians substantial gains in the future and may carve customized interventions long before the current DSM ASD phenotype is manifested using dyadic co-regulation of brainstem-informed autism markers.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
31
|
Key AP, D'Ambrose Slaboch K. Speech Processing in Autism Spectrum Disorder: An Integrative Review of Auditory Neurophysiology Findings. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4192-4212. [PMID: 34570613 PMCID: PMC9132155 DOI: 10.1044/2021_jslhr-20-00738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Purpose Investigations into the nature of communication disorders in autistic individuals increasingly evaluate neural responses to speech stimuli. This integrative review aimed to consolidate the available data related to speech and language processing across levels of stimulus complexity (from single speech sounds to sentences) and to relate it to the current theories of autism. Method An electronic database search identified peer-reviewed articles using event-related potentials or magnetoencephalography to investigate auditory processing from single speech sounds to sentences in autistic children and adults varying in language and cognitive abilities. Results Atypical neural responses in autistic persons became more prominent with increasing stimulus and task complexity. Compared with their typically developing peers, autistic individuals demonstrated mostly intact sensory responses to single speech sounds, diminished spontaneous attentional orienting to spoken stimuli, specific difficulties with categorical speech sound discrimination, and reduced processing of semantic content. Atypical neural responses were more often observed in younger autistic participants and in those with concomitant language disorders. Conclusions The observed differences in neural responses to speech stimuli suggest that communication difficulties in autistic individuals are more consistent with the reduced social interest than the auditory dysfunction explanation. Current limitations and future directions for research are also discussed.
Collapse
Affiliation(s)
- Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
32
|
Williams ZJ, Suzman E, Woynaroski TG. Prevalence of Decreased Sound Tolerance (Hyperacusis) in Individuals With Autism Spectrum Disorder: A Meta-Analysis. Ear Hear 2021; 42:1137-1150. [PMID: 33577214 PMCID: PMC8349927 DOI: 10.1097/aud.0000000000001005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Hyperacusis, defined as decreased tolerance to sound at levels that would not trouble most individuals, is frequently observed in individuals with autism spectrum disorder (ASD). Despite the functional impairment attributable to hyperacusis, little is known about its prevalence or natural history in the ASD population. The objective of this study was to conduct a systematic review and meta-analysis estimating the current and lifetime prevalence of hyperacusis in children, adolescents, and adults with ASD. By precisely estimating the burden of hyperacusis in the ASD population, the present study aims to enhance recognition of this particular symptom of ASD and highlight the need for additional research into the causes, prevention, and treatment of hyperacusis in persons on the spectrum. DESIGN We searched PubMed and ProQuest to identify peer-reviewed articles published in English after January 1993. We additionally performed targeted searches of Google Scholar and the gray literature, including studies published through May 2020. Eligible studies included at least 20 individuals with diagnosed ASD of any age and reported data from which the proportion of ASD individuals with current and/or lifetime hyperacusis could be derived. To account for multiple prevalence estimates derived from the same samples, we utilized three-level Bayesian random-effects meta-analyses to estimate the current and lifetime prevalence of hyperacusis. Bayesian meta-regression was used to assess potential moderators of current hyperacusis prevalence. To reduce heterogeneity due to varying definitions of hyperacusis, we performed a sensitivity analysis on the subset of studies that ascertained hyperacusis status using the Autism Diagnostic Interview-Revised (ADI-R), a structured parent interview. RESULTS A total of 7783 nonduplicate articles were screened, of which 67 were included in the review and synthesis. Hyperacusis status was ascertained in multiple ways across studies, with 60 articles employing interviews or questionnaires and seven using behavioral observations or objective measures. The mean (range) age of samples in the included studies was 7.88 years (1.00 to 34.89 years). The meta-analysis of interview/questionnaire measures (k(3) = 103, nASD = 13,093) estimated the current and lifetime prevalence of hyperacusis in ASD to be 41.42% (95% CrI, 37.23 to 45.84%) and 60.58% (50.37 to 69.76%), respectively. A sensitivity analysis restricted to prevalence estimates derived from the ADI-R (k(3) = 25, nASD = 5028) produced similar values. The estimate of current hyperacusis prevalence using objective/observational measures (k(3) = 8, nASD = 488) was 27.30% (14.92 to 46.31%). Heterogeneity in the full sample of interview/questionnaire measures was substantial but not significantly explained by any tested moderator. However, prevalence increased sharply with increasing age in studies using the ADI-R (BF10 = 93.10, R2Het = 0.692). CONCLUSIONS In this meta-analysis, we found a high prevalence of current and lifetime hyperacusis in individuals with ASD, with a majority of individuals on the autism spectrum experiencing hyperacusis at some point in their lives. The high prevalence of hyperacusis in individuals with ASD across the lifespan highlights the need for further research on sound tolerance in this population and the development of services and/or interventions to reduce the burden of this common symptom.
Collapse
Affiliation(s)
- Zachary J. Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
| | - Evan Suzman
- Graduate Program in Biomedical Sciences, Vanderbilt University, Nashville, TN
| | - Tiffany G. Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
33
|
Beker S, Foxe JJ, Venticinque J, Bates J, Ridgeway EM, Schaaf RC, Molholm S. Looking for consistency in an uncertain world: test-retest reliability of neurophysiological and behavioral readouts in autism. J Neurodev Disord 2021; 13:43. [PMID: 34592931 PMCID: PMC8483424 DOI: 10.1186/s11689-021-09383-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are associated with altered sensory processing and perception. Scalp recordings of electrical brain activity time-locked to sensory events (event-related potentials; ERPs) provide precise information on the time-course of related altered neural activity, and can be used to model the cortical loci of the underlying neural networks. Establishing the test-retest reliability of these sensory brain responses in ASD is critical to their use as biomarkers of neural dysfunction in this population. METHODS EEG and behavioral data were acquired from 33 children diagnosed with ASD aged 6-9.4 years old, while they performed a child-friendly task at two different time-points, separated by an average of 5.2 months. In two blocked conditions, participants responded to the occurrence of an auditory target that was either preceded or not by repeating visual stimuli. Intraclass correlation coefficients (ICCs) were used to assess test-retest reliability of measures of sensory (auditory and visual) ERPs and performance, for the two experimental conditions. To assess the degree of reliability of the variability of responses within individuals, this analysis was performed on the variance of the measurements, in addition to their means. This yielded a total of 24 measures for which ICCs were calculated. RESULTS The data yielded significant good ICC values for 10 of the 24 measurements. These spanned across behavioral and ERPs data, experimental conditions, and mean as well as variance measures. Measures of the visual evoked responses accounted for a disproportionately large number of the significant ICCs; follow-up analyses suggested that the contribution of a greater number of trials to the visual compared to the auditory ERP partially accounted for this. CONCLUSIONS This analysis reveals that sensory ERPs and related behavior can be highly reliable across multiple measurement time-points in ASD. The data further suggest that the inter-trial and inter-participant variability reported in the ASD literature likely represents replicable individual participant neural processing differences. The stability of these neuronal readouts supports their use as biomarkers in clinical and translational studies on ASD. Given the minimum interval between test/retest sessions across our cohort, we also conclude that for the tested age-range of ~ 6 to 9.4 years, these reliability measures are valid for at least a 3-month interval. Limitations related to EEG task demands and study length in the context of a clinical trial are considered.
Collapse
Affiliation(s)
- Shlomit Beker
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John Venticinque
- School of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juliana Bates
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth M Ridgeway
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roseann C Schaaf
- Department of Occupational Therapy, Jefferson College of Health Professions Faculty, Farber Institute for Neurosciences Thomas Jefferson University Philadelphia, Philadelphia, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
34
|
Roberts TPL, Kuschner ES, Edgar JC. Biomarkers for autism spectrum disorder: opportunities for magnetoencephalography (MEG). J Neurodev Disord 2021; 13:34. [PMID: 34525943 PMCID: PMC8442415 DOI: 10.1186/s11689-021-09385-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
This paper reviews a candidate biomarker for ASD, the M50 auditory evoked response component, detected by magnetoencephalography (MEG) and presents a position on the roles and opportunities for such a biomarker, as well as converging evidence from allied imaging techniques (magnetic resonance imaging, MRI and spectroscopy, MRS). Data is presented on prolonged M50 latencies in ASD as well as extension to include children with ASD with significant language and cognitive impairments in whom M50 latency delays are exacerbated. Modeling of the M50 latency by consideration of the properties of auditory pathway white matter is shown to be successful in typical development but challenged by heterogeneity in ASD; this, however, is capitalized upon to identify a distinct subpopulation of children with ASD whose M50 latencies lie well outside the range of values predictable from the typically developing model. Interestingly, this subpopulation is characterized by low levels of the inhibitory neurotransmitter GABA. Following from this, we discuss a potential use of the M50 latency in indicating “target engagement” acutely with administration of a GABA-B agonist, potentially distinguishing “responders” from “non-responders” with the implication of optimizing inclusion for clinical trials of such agents. Implications for future application, including potential evaluation of infants with genetic risk factors, are discussed. As such, the broad scope of potential of a representative candidate biological marker, the M50 latency, is introduced along with potential future applications. This paper outlines a strategy for understanding brain dysfunction in individuals with intellectual and developmental disabilities (IDD). It is proposed that a multimodal approach (collection of brain structure, chemistry, and neuronal functional data) will identify IDD subpopulations who share a common disease pathway, and thus identify individuals with IDD who might ultimately benefit from specific treatments. After briefly demonstrating the need and potential for scope, examples from studies examining brain function and structure in children with autism spectrum disorder (ASD) illustrate how measures of brain neuronal function (from magnetoencephalography, MEG), brain structure (from magnetic resonance imaging, MRI, especially diffusion MRI), and brain chemistry (MR spectroscopy) can help us better understand the heterogeneity in ASD and form the basis of multivariate biological markers (biomarkers) useable to define clinical subpopulations. Similar approaches can be applied to understand brain dysfunction in neurodevelopmental disorders (NDD) in general. In large part, this paper represents our endeavors as part of the CHOP/Penn NICHD-funded intellectual and developmental disabilities research center (IDDRC) over the past decade.
Collapse
Affiliation(s)
- Timothy P L Roberts
- Dept. of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Emily S Kuschner
- Dept. of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Dept. of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
35
|
Using Clustering to Examine Inter-individual Variability in Topography of Auditory Event-Related Potentials in Autism and Typical Development. Brain Topogr 2021; 34:681-697. [PMID: 34292447 PMCID: PMC8436953 DOI: 10.1007/s10548-021-00863-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/12/2021] [Indexed: 11/02/2022]
Abstract
Although prior studies have compared sensory event-related potential (ERP) responses between groups of autistic and typically-developing participants, it is unclear how heterogeneity contributes to the results of these studies. The present study used examined individual differences in these responses. 130 autistic children and 81 typically-developing children, aged between 2 and 5 years, listened to tones at four identity levels while 61-channel electroencephalography was recorded. Hierarchical clustering was used to group participants based on rescaled ERP topographies between 51 and 350 ms. The hierarchical clustering analysis revealed substantial heterogeneity. Some of the seven clusters defined in this analysis were characterized by prolonged fronto-central positivities and/or weak or absent N2 negativities. However, many other participants fell into clusters in which N2 responses were present at varying latencies. Atypical response morphologies such as absent N2 responses and/or prolonged positive-going responses found in some autistic participants may account for prior research findings of attenuated N2 amplitudes in autism. However, there was also considerable overlap between groups, with participants of both groups appearing in all clusters. These results emphasize the utility of using clustering to explore individual differences in brain responses, which can expand on and clarify the results of analyses of group mean differences.
Collapse
|
36
|
Yu L, Huang D, Wang S, Wu X, Chen Y, Zhang Y. Evidence of Altered Cortical Processing of Dynamic Lexical Tone Pitch Contour in Chinese Children with Autism. Neurosci Bull 2021; 37:1605-1608. [PMID: 34279794 DOI: 10.1007/s12264-021-00752-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Luodi Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China. .,South China Normal University Autism Research Center, Guangzhou, 510631, China.
| | - Dan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Suiping Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China. .,South China Normal University Autism Research Center, Guangzhou, 510631, China.
| | - Xueyuan Wu
- Guangzhou Rehabilitation and Research Center for Children with Autism, Guangzhou Cana School, Guangzhou, 510540, China
| | - Yang Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,South China Normal University Autism Research Center, Guangzhou, 510631, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, 55455, USA
| |
Collapse
|
37
|
Dwyer P, De Meo-Monteil R, Saron CD, Rivera SM. Effects of age on loudness-dependent auditory ERPs in young autistic and typically-developing children. Neuropsychologia 2021; 156:107837. [PMID: 33781752 DOI: 10.1016/j.neuropsychologia.2021.107837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Limited research has investigated the development of auditory ERPs in young children, and particularly how stimulus intensity may affect these auditory ERPs. Previous research has also yielded inconsistent findings regarding differences in the development of auditory ERPs in autism and typical development. Furthermore, stimulus intensity may be of particular interest in autism insofar as autistic people may have atypical experiences of sound intensity (e.g., hyperacusis). Therefore, the present study examined associations between age and ERPs evoked by tones of differing intensities (50, 60, 70, and 80 dB SPL) in a large sample of young children (2-5 years) with and without an autism diagnosis. Correlations between age and P1 latencies were examined, while cluster-based permutation testing was used to examine associations between age and neural response amplitudes, as well as group differences in amplitude, over all electrode sites in the longer time window of 1-350 ms. Older autistic participants had faster P1 latencies, but these effects only attained significance over the right hemisphere in response to soft 50 dB sounds. Autistic participants had slower P1 responses to 80 dB sounds over the right hemisphere. Over the scalp regions associated with the later N2 response, more negative response amplitudes (that is, larger N2 responses) were observed in typically-developing than autistic participants. Furthermore, continuous associations between response amplitudes and age suggested that older typically-developing participants exhibited stronger N2 responses to all intensities, though this effect may have at least in part reflected the absence of small positive voltage deflections in the N2 latency window. Age was associated with amplitudes of responses to 50 dB through 70 dB sounds in autism, but in contrast to Typical Development (TD), little evidence of relationships between age and amplitudes in the N2 latency window was found in autism in the 80 dB condition. Although caution should be exercised in interpretation due to the cross-sectional nature of this study, these findings suggest that developmental changes in auditory responses may differ across diagnostic groups in a manner that depends on perceived loudness and/or stimulus intensity.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, United States; Center for Mind and Brain, UC Davis, United States.
| | | | - Clifford D Saron
- Center for Mind and Brain, UC Davis, United States; MIND Institute, UC Davis, United States
| | - Susan M Rivera
- Department of Psychology, UC Davis, United States; Center for Mind and Brain, UC Davis, United States; MIND Institute, UC Davis, United States
| |
Collapse
|
38
|
Shorter P1m Response in Children with Autism Spectrum Disorder without Intellectual Disabilities. Int J Mol Sci 2021; 22:ijms22052611. [PMID: 33807635 PMCID: PMC7961676 DOI: 10.3390/ijms22052611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: Atypical auditory perception has been reported in individuals with autism spectrum disorder (ASD). Altered auditory evoked brain responses are also associated with childhood ASD. They are likely to be associated with atypical brain maturation. (2) Methods: This study examined children aged 5–8 years old: 29 with ASD but no intellectual disability and 46 age-matched typically developed (TD) control participants. Using magnetoencephalography (MEG) data obtained while participants listened passively to sinusoidal pure tones, bilateral auditory cortical response (P1m) was examined. (3) Results: Significantly shorter P1m latency in the left hemisphere was found for children with ASD without intellectual disabilities than for children with TD. Significant correlation between P1m latency and language conceptual ability was found in children with ASD, but not in children with TD. (4) Conclusions: These findings demonstrated atypical brain maturation in the auditory processing area in children with ASD without intellectual disability. Findings also suggest that ASD has a common neural basis for pure-tone sound processing and language development. Development of brain networks involved in language concepts in early childhood ASD might differ from that in children with TD.
Collapse
|
39
|
Williams ZJ, He JL, Cascio CJ, Woynaroski TG. A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neurosci Biobehav Rev 2021; 121:1-17. [PMID: 33285160 PMCID: PMC7855558 DOI: 10.1016/j.neubiorev.2020.11.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
Atypical behavioral responses to environmental sounds are common in autistic children and adults, with 50-70 % of this population exhibiting decreased sound tolerance (DST) at some point in their lives. This symptom is a source of significant distress and impairment across the lifespan, contributing to anxiety, challenging behaviors, reduced community participation, and school/workplace difficulties. However, relatively little is known about its phenomenology or neurocognitive underpinnings. The present article synthesizes a large body of literature on the phenomenology and pathophysiology of DST-related conditions to generate a comprehensive theoretical account of DST in autism. Notably, we argue against conceptualizing DST as a unified construct, suggesting that it be separated into three phenomenologically distinct conditions: hyperacusis (the perception of everyday sounds as excessively loud or painful), misophonia (an acquired aversive reaction to specific sounds), and phonophobia (a specific phobia of sound), each responsible for a portion of observed DST behaviors. We further elaborate our framework by proposing preliminary neurocognitive models of hyperacusis, misophonia, and phonophobia that incorporate neurophysiologic findings from studies of autism.
Collapse
Affiliation(s)
- Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 221 Eskind Biomedical Library and Learning Center, 2209 Garland Ave., Nashville, TN, 37240, United States; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States.
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Strand Building, Strand Campus, Strand, London, WC2R 2LS, London, United Kingdom.
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 2254 Village at Vanderbilt, 1500 21st Ave South, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| |
Collapse
|