1
|
Ye J, Garrison KA, Lacadie C, Potenza MN, Sinha R, Goldfarb EV, Scheinost D. Network state dynamics underpin basal craving in a transdiagnostic population. Mol Psychiatry 2024:10.1038/s41380-024-02708-0. [PMID: 39183336 DOI: 10.1038/s41380-024-02708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Emerging fMRI methods quantifying brain dynamics present an opportunity to capture how fluctuations in brain responses give rise to individual variations in affective and motivation states. Although the experience and regulation of affective states affect psychopathology, their underlying time-varying brain responses remain unclear. Here, we present a novel framework to identify network states matched to an affective experience and examine how the dynamic engagement of these network states contributes to this experience. We apply this framework to investigate network state dynamics underlying basal craving, an affective experience with important clinical implications. In a transdiagnostic sample of healthy controls and individuals diagnosed with or at risk for craving-related disorders (total N = 252), we utilized connectome-based predictive modeling (CPM) to identify brain networks predictive of basal craving. An edge-centric timeseries approach was leveraged to quantify the moment-to-moment engagement of the craving-positive and craving-negative subnetworks during independent scan runs. We found that dynamic markers of network engagement, namely more persistence in a craving-positive network state and less dwelling in a craving-negative network state, characterized individuals with higher craving. We replicated the latter results in a separate dataset, incorporating distinct participants (N = 173) and experimental stimuli. The associations between basal craving and network state dynamics were consistently observed even when craving-predictive networks were defined in the replication dataset. These robust findings suggest that network state dynamics underpin individual differences in basal craving. Our framework additionally presents a new avenue to explore how the moment-to-moment engagement of behaviorally meaningful network states supports our affective experiences.
Collapse
Affiliation(s)
- Jean Ye
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | | | - Cheryl Lacadie
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Hartford, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Elizabeth V Goldfarb
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for PTSD, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Pleil KE, Grant KA, Cuzon Carlson VC, Kash TL. Chronic alcohol consumption alters sex-dependent BNST neuron function in rhesus macaques. Neurobiol Stress 2024; 31:100638. [PMID: 38737421 PMCID: PMC11088190 DOI: 10.1016/j.ynstr.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 h/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.
Collapse
Affiliation(s)
- Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Verginia C. Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Thomas L. Kash
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| |
Collapse
|
3
|
Moreno-Fernández RD, Bernabéu-Brotons E, Carbonell-Colomer M, Buades-Sitjar F, Sampedro-Piquero P. Sex-related differences in young binge drinkers on the neurophysiological response to stress in virtual reality. Front Public Health 2024; 12:1348960. [PMID: 38947350 PMCID: PMC11211283 DOI: 10.3389/fpubh.2024.1348960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Background Stress is one of the main environmental factors involved in the onset of different psychopathologies. In youth, stressful life events can trigger inappropriate and health-damaging behaviors, such as binge drinking. This behavior, in turn, can lead to long-lasting changes in the neurophysiological response to stress and the development of psychological disorders late in life, e.g., alcohol use disorder. Our aim was to analyze the pattern of neurophysiological responses triggered with the exposition to a stressful virtual environment in young binge drinkers. Methods AUDIT-3 (third question from the full AUDIT) was used to detect binge drinking (BD) in our young sample (age 18-25 years). According to the score, participants were divided into control (CO) and BD group. Next, a standardized virtual reality (VR) scenario (Richie's Plank) was used for triggering the stress response while measuring the following neurophysiological variables: brain electrical activity by electroencephalogram (EEG) and cortisol levels through saliva samples both measurements registered before and after the stressful situation. Besides, heart rate (HR) with a pulsometer and electrodermal response (EDA) through electrodes placed on fingers were analyzed before, during and after the VR task. Results Regarding the behavior assessed during the VR task, BD group spent significantly less amount of time walking forward the table and a tendency toward more time walking backwards. There was no statistically significant difference between the BD and the CO group regarding time looking down, but when we controlled the variable sex, the BD women group displayed higher amount of time looking down than the rest of the groups. Neurophysiological measurements revealed that there was not any statistically significant difference between groups in any of the EEG registered measures, EDA response and cortisol levels. Sex-related differences were found in HR response to VR scenario, in which BD women displayed the highest peak of response to the stressor. Also, the change in heartbeat was higher in BD women than men. Conclusion Unveiling the neurophysiological alterations associated with BD can help us to prevent and detect early onset of alcohol use disorder. Also, from our data we conclude that participants' sex can modulate some stress responses, especially when unhealthy behaviors such as BD are present. Nevertheless, the moment of registration of the neurophysiological variables respect to the stressor seems to be a crucial variable.
Collapse
Affiliation(s)
| | | | | | - Francisco Buades-Sitjar
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Sampedro-Piquero
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Yip SW, Lichenstein SD, Liang Q, Chaarani B, Dager A, Pearlson G, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Garavan H. Brain Networks and Adolescent Alcohol Use. JAMA Psychiatry 2023; 80:1131-1141. [PMID: 37647053 PMCID: PMC10469292 DOI: 10.1001/jamapsychiatry.2023.2949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/15/2023] [Indexed: 09/01/2023]
Abstract
Importance Alcohol misuse in adolescence is a leading cause of disability and mortality in youth and is associated with higher risk for alcohol use disorder. Brain mechanisms underlying risk of alcohol misuse may inform prevention and intervention efforts. Objective To identify neuromarkers of alcohol misuse using a data-driven approach, with specific consideration of neurodevelopmental sex differences. Design, Setting, and Participants Longitudinal multisite functional magnetic resonance imaging (fMRI) data collected at ages 14 and 19 years were used to assess whole-brain patterns of functional organization associated with current and future alcohol use risk as measured by the Alcohol Use Disorder Identification Test (AUDIT). Primary data were collected by the IMAGEN consortium, a European multisite study of adolescent neurodevelopment. Model generalizability was further tested using data acquired in a single-site study of college alcohol consumption conducted in the US. The primary sample was a developmental cohort of 1359 adolescents with neuroimaging, phenotyping, and alcohol use data. Model generalizability was further assessed in a separate cohort of 114 individuals. Main Outcomes and Measures Brain-behavior model accuracy, as defined by the correspondence between model-predicted and actual AUDIT scores in held-out testing data, Bonferroni corrected across the number of models run at each time point, 2-tailed α < .008, as determined via permutation testing. Results Among 1359 individuals in the study, the mean (SD) age was 14.42 (0.40) years, and 729 individuals (54%) were female. The data-driven, whole-brain connectivity approach identified networks associated with vulnerability for future and current AUDIT-defined alcohol use risk (primary outcome, as specified above, future: ρ, 0.22; P < .001 and present: ρ, 0.27; P < .001). Results further indicated sex divergence in the accuracies of brain-behavior models, such that female-only models consistently outperformed male-only models. Specifically, female-only models identified networks conferring vulnerability for future and current severity using data acquired during both reward and inhibitory fMRI tasks. In contrast, male-only models were successful in accurately identifying networks using data acquired during the inhibitory control-but not reward-task, indicating domain specificity of alcohol use risk networks in male adolescents only. Conclusions and Relevance These data suggest that interventions focusing on inhibitory control processes may be effective in combating alcohol use risk in male adolescents but that both inhibitory and reward-related processes are likely of relevance to alcohol use behaviors in female adolescents. They further identify novel networks of alcohol use risk in youth, which may be used to identify adolescents who are at risk and inform intervention efforts.
Collapse
Affiliation(s)
- Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Sarah D. Lichenstein
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont, Burlington
| | - Alecia Dager
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Godfrey Pearlson
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 Trajectoires développementales & psychiatrie, University Paris-Saclay, University Paris Cité, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 Trajectoires développementales & psychiatrie, University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, and AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 Trajectoires développementales & psychiatrie, University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington
- Department of Psychology, University of Vermont, Burlington
| |
Collapse
|
5
|
Fan S, Goldfarb EV, Lacadie C, Fogelman N, Seo D, Sinha R. Binge drinking is associated with higher cortisol and lower hippocampal and prefrontal gray matter volume: Prospective association with future alcohol intake. Neurobiol Stress 2023; 25:100540. [PMID: 37323647 PMCID: PMC10265520 DOI: 10.1016/j.ynstr.2023.100540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 06/17/2023] Open
Abstract
Background Cortisol is a significant driver of the biological stress response that is potently activated by acute alcohol intake and increased with binge drinking. Binge drinking is associated with negative social and health consequences and risk of developing alcohol use disorder (AUD). Both cortisol levels and AUD are also associated with changes in hippocampal and prefrontal regions. However, no previous research has assessed structural gray matter volume (GMV) and cortisol concurrently to examine BD effects on hippocampal and prefrontal GMV and cortisol, and their prospective relationship to future alcohol intake. Methods Individuals who reported binge drinking (BD: N = 55) and demographically matched non-binge moderate drinkers (MD: N = 58) were enrolled and scanned using high-resolution structural MRI. Whole brain voxel-based morphometry was used to quantify regional GMV. In a second phase, 65% of the sample volunteered to participate in prospective daily assessment of alcohol intake for 30 days post-scanning. Results Relative to MD, BD showed significantly higher cortisol and smaller GMV in regions including hippocampus, dorsal lateral prefrontal cortex (dlPFC), prefrontal and supplementary motor, primary sensory and posterior parietal cortex (FWE, p < 0.05). GMV in bilateral dlPFC and motor cortices were negatively associated with cortisol levels, and smaller GMV in multiple PFC regions was associated with more subsequent drinking days in BD. Conclusion These findings indicate neuroendocrine and structural dysregulation associated with BD relative to MD. Notably, BD-associated lower GMV regions were those involved in stress, memory and cognitive control, with lower GMV in cognitive control and motor regions also predicting higher levels of future alcohol intake in BD.
Collapse
Affiliation(s)
- Siyan Fan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nia Fogelman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Alcohol’s Negative Emotional Side: The Role of Stress Neurobiology in Alcohol Use Disorder. Alcohol Res 2022; 42:12. [PMID: 36338609 PMCID: PMC9621746 DOI: 10.35946/arcr.v42.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This article is part of a Festschrift commemorating the 50th anniversary of the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Established in 1970, first as part of the National Institute of Mental Health and later as an independent institute of the National Institutes of Health, NIAAA today is the world’s largest funding agency for alcohol research. In addition to its own intramural research program, NIAAA supports the entire spectrum of innovative basic, translational, and clinical research to advance the diagnosis, prevention, and treatment of alcohol use disorder and alcohol-related problems. To celebrate the anniversary, NIAAA hosted a 2-day symposium, “Alcohol Across the Lifespan: 50 Years of Evidence-Based Diagnosis, Prevention, and Treatment Research,” devoted to key topics within the field of alcohol research. This article is based on Dr. Sinha’s presentation at the event. NIAAA Director George F. Koob, Ph.D., serves as editor of the Festschrift.
Collapse
|