1
|
Türkdoğan D, Smolina N, Tekgül Ş, Gül T, Yeşilyurt A, Houlden H, Zuchner S, Brais B, Pellerin D, Başak AN. The First Case of Autosomal Recessive Cerebellar Ataxia with Prominent Paroxysmal Non-kinesigenic Dyskinesia Caused by a Truncating FGF14 Variant in a Turkish Patient. Mov Disord 2025; 40:370-375. [PMID: 39704271 PMCID: PMC11835525 DOI: 10.1002/mds.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND ATX-FGF/SCA27A has been exclusively associated with heterozygous variants in the FGF14 gene, presenting with postural tremor, slowly progressive cerebellar ataxia, and psychiatric and behavioral disturbances. OBJECTIVES This study describes the first case of ATX-FGF/SCA27A linked to a biallelic frameshift variant in the FGF14 gene. METHODS Whole-exome sequencing (WES) was conducted using the Illumina NovaSeq 6000 platform, and the identified variant was confirmed using Sanger sequencing. RESULTS We report the first case of autosomal recessive FGF14-related cerebellar ataxia caused by a c.75del variant resulting in p.Leu26Serfs*51 truncation of the FGF14 protein. This variant was found in a patient born to consanguineous parents and presented with a complex congenital nonprogressive cerebellar disorder accompanied by neurodevelopmental delay, intellectual disability, and prominent drug-responsive paroxysmal non-kinesigenic dyskinesia. Segregation analysis confirmed that the homozygous variant was inherited from heterozygous parents who developed mild gait ataxia and tremor in their 40s. CONCLUSIONS Biallelic loss-of-function variants in FGF14 are a rare cause of inherited cerebellar ataxia and expand the current genetic spectrum of ATX-FGF14. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dilşad Türkdoğan
- Department of Pediatric Neurology, School of Medicine, Marmara University, and Private Office, Istanbul, Turkey
| | - Natalia Smolina
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, İstanbul, Turkey
| | - Şeyma Tekgül
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, İstanbul, Turkey
| | - Tuğçe Gül
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, İstanbul, Turkey
| | - Ahmet Yeşilyurt
- Acıbadem Maslak Hospital, Medical Genetics, İstanbul, Turkey
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - A. Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, İstanbul, Turkey
| |
Collapse
|
2
|
Ransdell JL, Brown SP, Xiao M, Ornitz DM, Nerbonne JM. In Vivo Expression of an SCA27A-linked FGF14 Mutation Results in Haploinsufficiency and Impaired Firing of Cerebellar Purkinje Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620253. [PMID: 39484407 PMCID: PMC11527103 DOI: 10.1101/2024.10.25.620253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autosomal dominant mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), underlie spinocerebellar ataxia type 27A (SCA27A), a devastating multisystem disorder resulting in progressive deficits in motor coordination and cognitive function. Mice lacking iFGF14 ( Fgf14 -/- ) exhibit similar phenotypes, which have been linked to iFGF14-mediated modulation of the voltage-gated sodium (Nav) channels that control the high frequency repetitive firing of Purkinje neurons, the main output neurons of the cerebellar cortex. To investigate the pathophysiological mechanisms underlying SCA27A, we developed a targeted knock-in strategy to introduce the first point mutation identified in FGF14 into the mouse Fgf14 locus ( Fgf14 F145S ), we determined the impact of in vivo expression of the mutant Fgf14 F145S allele on the motor performance of adult animals and on the firing properties of mature Purkinje neurons in acute cerebellar slices. Electrophysiological experiments revealed that repetitive firing rates are attenuated in adult Fgf14 F145S/+ cerebellar Purkinje neurons, attributed to a hyperpolarizing shift in the voltage-dependence of steady-state inactivation of Nav channels. More severe effects on firing properties and Nav channel inactivation were observed in homozygous Fgf14 F145S/F145S Purkinje neurons. Interestingly, the electrophysiological phenotypes identified in adult Fgf14 F145S/+ and Fgf14 F145S/F145S cerebellar Purkinje neurons mirror those observed in heterozygous Fgf14 +/- and homozygous Fgf14 -/- Purkinje neurons, respectively, suggesting that the mutation results in the loss of the iFGF14 protein. Western blot analysis of lysates from adult heterozygous Fgf14 F145S/+ and homozygous Fgf14 F145S/F145S animals revealed reduced or undetectable, respectively, iFGF14 expression, supporting the hypothesis that the mutant allele results in loss of the iFGF14 protein and that haploinsufficiency underlies SCA27A neurological phenotypes.
Collapse
|
3
|
Garg D, Mohammad S, Shukla A, Sharma S. Genetic Links to Episodic Movement Disorders: Current Insights. Appl Clin Genet 2023; 16:11-30. [PMID: 36883047 PMCID: PMC9985884 DOI: 10.2147/tacg.s363485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Episodic or paroxysmal movement disorders (PxMD) are conditions, which occur episodically, are transient, usually have normal interictal periods, and are characterized by hyperkinetic disorders, including ataxia, chorea, dystonia, and ballism. Broadly, these comprise paroxysmal dyskinesias (paroxysmal kinesigenic and non-kinesigenic dyskinesia [PKD/PNKD], paroxysmal exercise-induced dyskinesias [PED]) and episodic ataxias (EA) types 1-9. Classification of paroxysmal dyskinesias has traditionally been clinical. However, with advancement in genetics and the discovery of the molecular basis of several of these disorders, it is becoming clear that phenotypic pleiotropy exists, that is, the same variant may give rise to a variety of phenotypes, and the classical understanding of these disorders requires a new paradigm. Based on molecular pathogenesis, paroxysmal disorders are now categorized as synaptopathies, transportopathies, channelopathies, second-messenger related disorders, mitochondrial or others. A genetic paradigm also has an advantage of identifying potentially treatable disorders, such as glucose transporter 1 deficiency syndromes, which necessitates a ketogenic diet, and ADCY5-related disorders, which may respond to caffeine. Clues for a primary etiology include age at onset below 18 years, presence of family history and fixed triggers and attack duration. Paroxysmal movement disorder is a network disorder, with both the basal ganglia and the cerebellum implicated in pathogenesis. Abnormalities in the striatal cAMP turnover pathway may also be contributory. Although next-generation sequencing has restructured the approach to paroxysmal movement disorders, the genetic underpinnings of several entities remain undiscovered. As more genes and variants continue to be reported, these will lead to enhanced understanding of pathophysiological mechanisms and precise treatment.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Hospital, New Delhi, India
| |
Collapse
|
4
|
Harvey S, King MD, Gorman KM. Paroxysmal Movement Disorders. Front Neurol 2021; 12:659064. [PMID: 34177764 PMCID: PMC8232056 DOI: 10.3389/fneur.2021.659064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal movement disorders (PxMDs) are a clinical and genetically heterogeneous group of movement disorders characterized by episodic involuntary movements (dystonia, dyskinesia, chorea and/or ataxia). Historically, PxMDs were classified clinically (triggers and characteristics of the movements) and this directed single-gene testing. With the advent of next-generation sequencing (NGS), how we classify and investigate PxMDs has been transformed. Next-generation sequencing has enabled new gene discovery (RHOBTB2, TBC1D24), expansion of phenotypes in known PxMDs genes and a better understanding of disease mechanisms. However, PxMDs exhibit phenotypic pleiotropy and genetic heterogeneity, making it challenging to predict genotype based on the clinical phenotype. For example, paroxysmal kinesigenic dyskinesia is most commonly associated with variants in PRRT2 but also variants identified in PNKD, SCN8A, and SCL2A1. There are no radiological or biochemical biomarkers to differentiate genetic causes. Even with NGS, diagnosis rates are variable, ranging from 11 to 51% depending on the cohort studied and technology employed. Thus, a large proportion of patients remain undiagnosed compared to other neurological disorders such as epilepsy, highlighting the need for further genomic research in PxMDs. Whole-genome sequencing, deep-sequencing, copy number variant analysis, detection of deep-intronic variants, mosaicism and repeat expansions, will improve diagnostic rates. Identifying the underlying genetic cause has a significant impact on patient care, modification of treatment, long-term prognostication and genetic counseling. This paper provides an update on the genetics of PxMDs, description of PxMDs classified according to causative gene rather than clinical phenotype, highlighting key clinical features and providing an algorithm for genetic testing of PxMDs.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Shaikh AG, Manto M. Genome-Wide Association Study Points New Direction for Downbeat Nystagmus Research. THE CEREBELLUM 2020; 19:345-347. [PMID: 32253642 DOI: 10.1007/s12311-020-01128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aasef G Shaikh
- Neurological Institute, University Hospitals Cleveland, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, Cleveland, OH, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Neurology Service and Daroff-Dell'Osso Ocular Motility Laboratory, Louis Stokes Cleveland Medical Center, Cleveland, OH, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium.,University of Mons, Mons, Belgium
| |
Collapse
|
6
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
7
|
Paucar M, Lundin J, Alshammari T, Bergendal Å, Lindefeldt M, Alshammari M, Solders G, Di Re J, Savitcheva I, Granberg T, Laezza F, Iwarsson E, Svenningsson P. Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J Intern Med 2020; 288:103-115. [PMID: 32112487 PMCID: PMC10123866 DOI: 10.1111/joim.13052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The goal of this study was to characterize a Swedish family with members affected by spinocerebellar ataxia 27 (SCA27), a rare autosomal dominant disease caused by mutations in fibroblast growth factor 14 (FGF14). Despite normal structural neuroimaging, psychiatric manifestations and intellectual disability are part of the SCA27 phenotype raising the need for functional neuroimaging. Here, we used clinical assessments, structural and functional neuroimaging to characterize these new SCA27 patients. Since one patient presents with a psychotic disorder, an exploratory study of markers of schizophrenia associated with GABAergic neurotransmission was performed in fgf14-/- mice, a preclinical model that replicates motor and learning deficits of SCA27. METHODS A comprehensive characterization that included clinical assessments, cognitive tests, structural neuroimaging studies, brain metabolism with 18 F-fluorodeoxyglucose PET ([18F] FDG PET) and genetic analyses was performed. Brains of fgf14-/- mice were studied with immunohistochemistry. RESULTS Nine patients had ataxia, and all affected patients harboured an interstitial deletion of chromosome 13q33.1 encompassing the entire FGF14 and integrin subunit beta like 1 (ITGBL1) genes. New features for SCA27 were identified: congenital onset, psychosis, attention deficit hyperactivity disorder and widespread hypometabolism that affected the medial prefrontal cortex (mPFC) in all patients. Hypometabolism in the PFC was far more pronounced in a SCA27 patient with psychosis. Reduced expression of VGAT was found in the mPFC of fgf14-/- mice. CONCLUSIONS This is the second largest SCA27 family identified to date. We provide new clinical and preclinical evidence for a significant psychiatric component in SCA27, strengthening the hypothesis of FGF14 as an important modulator of psychiatric disease.
Collapse
Affiliation(s)
- M Paucar
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - J Lundin
- Department of, Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of, Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Å Bergendal
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Lindefeldt
- Department of, Pediatric Neurology, Astrid Lindgren's Hospital, Stockholm, Sweden
| | - M Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of, Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - G Solders
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - J Di Re
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
| | - I Savitcheva
- Departments of, Department of, Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - T Granberg
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - F Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - E Iwarsson
- Department of, Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P Svenningsson
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Piarroux J, Riant F, Humbertclaude V, Remerand G, Hadjadj J, Rejou F, Coubes C, Pinson L, Meyer P, Roubertie A. FGF14-related episodic ataxia: delineating the phenotype of Episodic Ataxia type 9. Ann Clin Transl Neurol 2020; 7:565-572. [PMID: 32162847 PMCID: PMC7187715 DOI: 10.1002/acn3.51005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
We report four patients from two families who presented attacks of childhood-onset episodic ataxia associated with pathogenic mutations in the FGF14 gene. Attacks were triggered by fever, lasted several days, and had variable frequencies. Nystagmus and/or postural tremor and/or learning disabilities were noticed in individuals harboring FGF14 mutation with or without episodic ataxia. These cases and literature data delineate the FGF14-mutation-related episodic ataxia phenotype: wide range of age at onset (from childhood to adulthood), variable durations and frequencies, triggering factors including fever, and association to chronic symptoms. We propose to add FGF14-related episodic ataxia to the list of primary episodic ataxia as Episodic Ataxia type 9.
Collapse
Affiliation(s)
- Julie Piarroux
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Florence Riant
- Service de Génétique Moléculaire Neurovasculaire, Groupe hospitalier Saint-Louis - Lariboisière - Fernand Widal AP-HP, Paris, France
| | - Véronique Humbertclaude
- Service de Médecine Psychologique Enfants et Adolescents, CHU Saint Eloi, Montpellier, France
| | | | - Jessica Hadjadj
- Service de Génétique Moléculaire Neurovasculaire, Groupe hospitalier Saint-Louis - Lariboisière - Fernand Widal AP-HP, Paris, France
| | - Franck Rejou
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Christine Coubes
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Lucile Pinson
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Pierre Meyer
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,PhyMedExp, U1046 INSERM, UMR9214 CNRS, Montpellier, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,INSERM U 1051, Institut des Neurosciences de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Schesny M, Joncourt F, Tarnutzer AA. Acetazolamide-Responsive Episodic Ataxia Linked to Novel Splice Site Variant in FGF14 Gene. THE CEREBELLUM 2019; 18:649-653. [PMID: 30607796 DOI: 10.1007/s12311-018-0997-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we describe the case of a patient with episodic dizziness and gait imbalance for 7 years and a negative family history. On clinical examination, interictally, the patient presented with gaze-evoked nystagmus and rebound nystagmus and slight dysarthria. MRI of the brain was normal and peripheral-vestibular function was bilaterally intact. Based on genetic testing (episodic ataxia panel), a heterozygote splice site variant in intron 1 of the FGF14 gene was identified. This report adds important new evidence to previous observations that pathogenic variants in the FGF14 gene may result in variable phenotypes, either in progressive spinocerebellar ataxia (type 27) or in episodic ataxia as in our case. Our patient responded well to acetazolamide (reduction in the frequency of attacks by about two thirds), supporting the hypothesis of a sodium channelopathy.
Collapse
Affiliation(s)
- M Schesny
- Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, 8091, Zurich, Switzerland
| | - F Joncourt
- Division of Human Genetics, Department of Pediatrics, University Hospital Berne, Berne, Switzerland
| | - Alexander A Tarnutzer
- Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, 8091, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Wadsworth PA, Folorunso O, Nguyen N, Singh AK, D'Amico D, Powell RT, Brunell D, Allen J, Stephan C, Laezza F. High-throughput screening against protein:protein interaction interfaces reveals anti-cancer therapeutics as potent modulators of the voltage-gated Na + channel complex. Sci Rep 2019; 9:16890. [PMID: 31729429 PMCID: PMC6858373 DOI: 10.1038/s41598-019-53110-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple voltage-gated Na+ (Nav) channelopathies can be ascribed to subtle changes in the Nav macromolecular complex. Fibroblast growth factor 14 (FGF14) is a functionally relevant component of the Nav1.6 channel complex, a causative link to spinocerebellar ataxia 27 (SCA27) and an emerging risk factor for neuropsychiatric disorders. Yet, how this protein:channel complex is regulated in the cell is still poorly understood. To search for key cellular pathways upstream of the FGF14:Nav1.6 complex, we have developed, miniaturized and optimized an in-cell assay in 384-well plates by stably reconstituting the FGF14:Nav1.6 complex using the split-luciferase complementation assay. We then conducted a high-throughput screening (HTS) of 267 FDA-approved compounds targeting known mediators of cellular signaling. Of the 65 hits initially detected, 24 were excluded based on counter-screening and cellular toxicity. Based on target analysis, potency and dose-response relationships, 5 compounds were subsequently repurchased for validation and confirmed as hits. Among those, the tyrosine kinase inhibitor lestaurtinib was highest ranked, exhibiting submicromolar inhibition of FGF14:Nav1.6 assembly. While providing evidence for a robust in-cell HTS platform that can be adapted to search for any channelopathy-associated regulatory proteins, these results lay the potential groundwork for repurposing cancer drugs for neuropsychopharmacology.
Collapse
Affiliation(s)
- Paul A Wadsworth
- MD/PhD Combined Degree Program and Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.,Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Daniela D'Amico
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Reid T Powell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - David Brunell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - John Allen
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.
| |
Collapse
|
11
|
Miura S, Kosaka K, Fujioka R, Uchiyama Y, Shimojo T, Morikawa T, Irie A, Taniwaki T, Shibata H. Spinocerebellar ataxia 27 with a novel nonsense variant (Lys177X) in FGF14. Eur J Med Genet 2019; 62:172-176. [DOI: 10.1016/j.ejmg.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
|
12
|
Groth CL, Berman BD. Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype. Tremor Other Hyperkinet Mov (N Y) 2018; 8:534. [PMID: 29416937 PMCID: PMC5801325 DOI: 10.7916/d80s0zjq] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism.
Collapse
Affiliation(s)
- Christopher L. Groth
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D. Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neurology Section, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
13
|
Familial episodic ataxia in lambs is potentially associated with a mutation in the fibroblast growth factor 14 (FGF14) gene. PLoS One 2017; 12:e0190030. [PMID: 29253853 PMCID: PMC5734737 DOI: 10.1371/journal.pone.0190030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Familial episodic ataxia of lambs is a congenital transient autosomal dominant disorder of newborn lambs, with varying expressivity. Affected lambs show episodes of an asymmetric ataxic gait, base-wide extensor hypertonia of the thoracic limbs and flexor hypertonia of the pelvic limbs. The aim of the study was to determine the genetic variant causing familial episodic ataxia in lambs. Using whole genome sequencing of two half-sib affected lambs, their sire, and their two normal dams, a heterozygous C>T transition at OAR10:77593415 (Oar_v3.1) in exon 1 of the fibroblast growth factor 14 (FGF14) gene (c.46C>T) was identified. The c.46C>T transition resulted in a premature stop codon at position 16 of the 247 amino acid FGF14 protein (p.Q16*). PCR and Sanger sequencing was used to genotype an additional 20 clinically affected animals, demonstrating all lambs carried the c.46C>T variant but 1 clinically more severely affected inbred lamb was homozygous (TT). A further 11 unrelated normal ewes were positionally sequenced, none of which had the variant, while in 18 lambs of unknown status born over 2 years of breeding trials six lambs were found to have the c.46C>T variant, likely clinically unidentified heterozygotes due to the variable expressivity, while 12 did not. In conclusion, familial episodic ataxia of lambs is potentially associated with a c.46C>T variant in the FGF14 gene. Further research is required into the mechanism behind the apparent recovery of lambs.
Collapse
|
14
|
Wang J, Zhao W, Liu H, He H, Shao R. Myofibrillogenesis regulator 1 (MR-1): a potential therapeutic target for cancer and PNKD. J Drug Target 2017; 26:643-648. [PMID: 29103325 DOI: 10.1080/1061186x.2017.1401077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human myofibrillogenesis regulator 1 (MR-1) is a functional gene also known as paroxysmal nonkinesigenic dyskinesia (PNKD). It is localised on human chromosome 2q35 and three different isomers, MR-1L, MR-1M and MR-1S, are formed by alternative splicing. MR-1S promotes cardiac hypertrophy and is closely related to cancer. MR-1S is overexpressed in haematologic and solid malignancies, such as hepatoma, breast cancer and chronic myelogenous leukaemia. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1S directly phosphorylates and activates the MEK-ERK-RSK pathway to accelerate cancer growth and facilitates metastasis by activating the MLC2-FAK-AKT pathway. Silencing MR-1 inhibits cancer cell proliferation and metastasis. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1 interacts with eukaryotic translation initiation factors and MRIP-1, which contains Ras GTPase, PH and zinc-containing ArfGap domains, as well as three ankyrin repeats. Mutations in the N-terminal region of MR-1L and MR-1S are the main causes of PNKD (a hereditary disease characterised by paroxysmal dystonic choreoathetosis) and targeting the mutated protein could provide symptomatic relief. These findings provide compelling evidence that MR-1 might be a diagnostic marker and therapeutic target for solid tumours, myelogenous leukaemia and PNKD.
Collapse
Affiliation(s)
- Junxia Wang
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Wuli Zhao
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Hong Liu
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Hongwei He
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Rongguang Shao
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| |
Collapse
|
15
|
Chaikind B, Bessen JL, Thompson DB, Hu JH, Liu DR. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res 2016; 44:9758-9770. [PMID: 27515511 PMCID: PMC5175349 DOI: 10.1093/nar/gkw707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.
Collapse
Affiliation(s)
- Brian Chaikind
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - Jeffrey L Bessen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - David B Thompson
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Johnny H Hu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
16
|
Tempia F, Hoxha E, Negro G, Alshammari MA, Alshammari TK, Panova-Elektronova N, Laezza F. Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. Front Cell Neurosci 2015; 9:205. [PMID: 26089778 PMCID: PMC4455242 DOI: 10.3389/fncel.2015.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Genetically inherited mutations in the fibroblast growth factor 14 (FGF14) gene lead to spinocerebellar ataxia type 27 (SCA27), an autosomal dominant disorder characterized by heterogeneous motor and cognitive impairments. Consistently, genetic deletion of Fgf14 in Fgf14 (-/-) mice recapitulates salient features of the SCA27 human disease. In vitro molecular studies in cultured neurons indicate that the FGF14 (F145S) SCA27 allele acts as a dominant negative mutant suppressing the FGF14 wild type function and resulting in inhibition of voltage-gated Na(+) and Ca(2+) channels. To gain insights in the cerebellar deficits in the animal model of the human disease, we applied whole-cell voltage-clamp in the acute cerebellar slice preparation to examine the properties of parallel fibers (PF) to Purkinje neuron synapses in Fgf14 (-/-) mice and wild type littermates. We found that the AMPA receptor-mediated excitatory postsynaptic currents evoked by PF stimulation (PF-EPSCs) were significantly reduced in Fgf14 (-/-) animals, while short-term plasticity, measured as paired-pulse facilitation (PPF), was enhanced. Measuring Sr(2+)-induced release of quanta from stimulated synapses, we found that the size of the PF-EPSCs was unchanged, ruling out a postsynaptic deficit. This phenotype was corroborated by decreased expression of VGLUT1, a specific presynaptic marker at PF-Purkinje neuron synapses. We next examined the mGluR1 receptor-induced response (mGluR1-EPSC) that under normal conditions requires a gradual build-up of glutamate concentration in the synaptic cleft, and found no changes in these responses in Fgf14 (-/-) mice. These results provide evidence of a critical role of FGF14 in maintaining presynaptic function at PF-Purkinje neuron synapses highlighting critical target mechanisms to recapitulate the complexity of the SCA27 disease.
Collapse
Affiliation(s)
- Filippo Tempia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Department of Neuroscience, University of Torino Torino, Italy ; Neuroscience Institute Cavalieri Ottolenghi Torino, Italy ; National Institute of Neuroscience-Torino Italy
| | - Eriola Hoxha
- Department of Neuroscience, University of Torino Torino, Italy ; Neuroscience Institute Cavalieri Ottolenghi Torino, Italy
| | - Giulia Negro
- Neuroscience Institute Cavalieri Ottolenghi Torino, Italy
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch Galveston, Texas, USA ; King Saud University Graduate Studies Abroad Program Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch Galveston, Texas, USA ; King Saud University Graduate Studies Abroad Program Riyadh, Saudi Arabia
| | - Neli Panova-Elektronova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, University of Texas Medical Branch Galveston, TX, USA ; Center for Biomedical Engineering, University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
17
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1435] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
18
|
Planes M, Rooryck C, Vuillaume ML, Besnard L, Bouron J, Lacombe D, Arveiler B, Goizet C. SCA27 is a cause of early-onset ataxia and developmental delay. Eur J Paediatr Neurol 2015; 19:271-3. [PMID: 25530029 DOI: 10.1016/j.ejpn.2014.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Marc Planes
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France.
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France; Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576 Bordeaux, France
| | - Marie-Laure Vuillaume
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France; Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576 Bordeaux, France
| | - Lucie Besnard
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Julie Bouron
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Didier Lacombe
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France; Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576 Bordeaux, France
| | - Benoit Arveiler
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France; Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576 Bordeaux, France
| | - Cyril Goizet
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France; Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576 Bordeaux, France
| |
Collapse
|
19
|
Choquet K, La Piana R, Brais B. A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia. Neurogenetics 2015; 16:233-6. [PMID: 25566820 DOI: 10.1007/s10048-014-0436-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022]
Abstract
Episodic ataxias (EAs) are a heterogeneous group of neurological disorders characterized by recurrent attacks of ataxia. Mutations in KCNA1 and CACNA1A account for the majority of EA cases worldwide. We recruited a two-generation family affected with EA of unknown subtype and performed whole-exome sequencing on two affected members. This revealed a novel heterozygous mutation c.211_212insA (p.I71NfsX27) leading to a premature stop codon in FGF14. Mutations in FGF14 are known to cause spinocerebellar ataxia type 27 (SCA27). Sanger sequencing confirmed segregation within the family. Our findings expand the phenotypic spectrum of SCA27 by underlining the possible episodic nature of this ataxia.
Collapse
Affiliation(s)
- Karine Choquet
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
20
|
Liang S, Yu X, Zhang S, Tai J. A case of familial paroxysmal nonkinesigenic dyskinesia due to mutation of the PNKD gene in Chinese Mainland. Brain Res 2014; 1595:120-6. [PMID: 25107857 DOI: 10.1016/j.brainres.2014.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Paroxysmal dyskinesia is a rare neurological disorder characterized by paroxysmal movement disorders. Paroxysmal movement disorders include kinesigenic choreoathetosis, nonkinesigenic choreoathetosis or dyskinesia (PNKD), exercise-induced choreoathetosis, and hypnogenic paroxysmal dystonia. There have been some sporadic reports of PNKD occurrences in Chinese Mainland, but none has been reported on familial PNKD. Proband and methods A 32 years old male admitted to the First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China in 2009 with recurrent limb involuntary movements spanning over 30 years was diagnosed with PNKD. Family history was collected to identify if it was a case of familial or sporadic PNKD. Mutation and linkage analysis were performed to identify the pathogenic gene and the localization of the same. RESULTS There were five generations of 26 patients, out of which 3 of these patients died. Follow-up was conducted on 17 out of the 23 patients alive and 9 normal family members. The pedigree showed autosomal dominant inheritance, whom could be divided into light, moderate, and severe group according to clinical signs, spontaneous attack and response to drugs. All patients harbored c.20C>T (p.A7V) mutation in exon 1 of the PNKD/MR-1 gene. Preliminary linkage analyses using phenocopy rates of 0.0001 and 0.1 suggested that linkage signal localizes between D2S126 and D2S377. The functional consequence of the mutation in the disease pathogenesis is pending investigation. Conclusions We report the first case of familial paroxysmal non-kinesigenic dyskinesia (PNKD) in Chinese Mainland, which coincidentally is also the largest case of familial PNKD ever reported. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Shuli Liang
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - Xiaoman Yu
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shaohui Zhang
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Junli Tai
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
21
|
Rossi M, Perez-Lloret S, Cerquetti D, Merello M. Movement Disorders in Autosomal Dominant Cerebellar Ataxias: A Systematic Review. Mov Disord Clin Pract 2014; 1:154-160. [PMID: 30363920 DOI: 10.1002/mdc3.12042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are clinically heterogeneous disorders classified according to genetic subtype and collectively known as SCAs. In a few SCAs, movement disorders can be the most frequent extracerebellar sign. The aim of this article is to perform a systematic review of movement disorders frequency and characteristics in ADCAs. This work consisted of a structured search of electronic databases up to January 2013. Publications containing descriptions of ADCA clinical features written in several languages were selected initially based on title and abstract screening, followed by full-text reading of potentially relevant publications. Clinical findings and demographic data on genetically confirmed patients were extracted. Analysis of individual patient data from subjects with movement disorders was performed using the chi-square test and logistic regression. One thousand and sixty-six publications reviewing 12,151 patients from 30 different SCAs were analyzed. Individual data were available from 755 patients with at least one type of movement disorder during overall disease course. Of 422 patients in whom onset symptom data were available, one third referred a movement disorder as the initial symptom. During overall disease course, parkinsonism was common in many SCA subtypes, frequently described in the absence of ataxia and characterized as responding to dopaminergic medications. Motor complications developed occasionally in some patients as did nigrostriatal imaging alterations. Other frequent features were dystonia, chorea, and myoclonus. Rare conditions, such as akathisia, paroxysmal nonkinesigenic dyskinesia, or stiff person-like syndrome, were also reported. ADCA descriptions included a full range of movement disorders. Aside from postural or intention tremor, dopamine-responsive parkinsonism and dystonia were the most common.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina
| | - Santiago Perez-Lloret
- Clinical Pharmacology and Epidemiology Laboratory Pontifical Catholic University of Argentina Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Daniel Cerquetti
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| |
Collapse
|