1
|
Bialer M, Johannessen SI, Koepp MJ, Perucca E, Perucca P, Tomson T, White HS. Progress report on new medications for seizures and epilepsy: A summary of the 17th Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVII). II. Drugs in more advanced clinical development. Epilepsia 2024; 65:2858-2882. [PMID: 39171993 DOI: 10.1111/epi.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
The 17th Eilat Conference on New Antiepileptic Drugs and Devices took place in Madrid, Spain on May 5-8, 2024. As usual, the core part of the conference consisted of presentations on investigational drugs at various stages of development for epilepsy-related indications. Summaries of information on compounds in preclinical or early clinical development are included in an accompanying publication (Part I). In this article, we provide summaries for five compounds in more advanced clinical development, i.e. compounds for which some information on antiseizure activity in individuals with epilepsy is available. These investigational treatments include azetukalner (XEN1101), a potent, KV7.2/7.3-specific potassium channel opener in development for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder; bexicaserin (LP352), a selective 5-HT2C receptor superagonist in development for the treatment of seizures associated with developmental and epileptic encephalopathies; radiprodil, a selective negative allosteric modulator of NR2B subunit-containing N-methyl-D-aspartate glutamate receptors, in development for the treatment of seizures and behavior manifestations associated with disorders caused by gain-of-function mutations in the GRIN1, -2A, -2B, or -2D genes; soticlestat (TAK-935), a selective inhibitor of cholesterol 24-hydroxylase in development for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome; and STK-001, an antisense oligonucleotide designed to upregulate Nav1.1 protein expression and improve outcomes in individuals with Dravet syndrome. The diversity in mechanisms of action of these agents illustrates different approaches being pursued in the discovery of novel treatments for seizures and epilepsy. For two of the compounds discussed in this report (azetukalner and soticlestat), clinical evidence of efficacy has already been obtained in a randomized placebo-controlled adjunctive-therapy trial. For the other compounds, adequately powered placebo-controlled efficacy trials have not been completed to date.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, Faculty of Medicine and David R. Bloom Center for Pharmacy, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway
- Oslo University Hospital, member of the European Reference Network EpiCare, Oslo, Norway
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, Center for Epilepsy Drug Discovery, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Putra M, Rao NS, Gardner C, Liu G, Trommater J, Bunney M, Gage M, Bassuk AG, Hefti M, Lee G, Thippeswamy T. Enhanced Fyn-tau and NR2B-PSD95 interactions in epileptic foci in experimental models and human epilepsy. Brain Commun 2024; 6:fcae327. [PMID: 39355003 PMCID: PMC11444080 DOI: 10.1093/braincomms/fcae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Epilepsy and Alzheimer's disease share some common pathologies such as neurodegeneration, seizures and impaired cognition. However, the molecular mechanisms of these changes are still largely unknown. Fyn, a Src-family non-receptor tyrosine kinase (SFK), and its interaction with tau in mediating brain pathology in epilepsy and Alzheimer's disease can be a potential therapeutic target for disease modification. Although Fyn and tau pathology occurs in both Alzheimer's disease and epilepsy, the dynamics of Fyn-tau and PSD95-NR2B interactions affected by seizures and their impact on brain pathology in epilepsy have not been investigated. In this study, we demonstrate a significant increase of Fyn-tau interactions following seizure induction by kainate in both acute and chronic rodent models and in human epilepsy. In the early phase of epileptogenesis, we show increased Fyn/tau/NR2B/PSD95/neuronal nitric oxide synthase complexes after status epilepticus and a postsynaptic increase of phosphorylated tau (pY18 and AT8), Fyn (pSFK-Y416), NMDAR (pNR2B-Y1472) and neuronal nitric oxide synthase. Hippocampal proximity ligation assay and co-immunoprecipitation revealed a sustained increase of Fyn-tau and NR2B-PSD95 complexes/binding in rat chronic epilepsy at 3 months post-status epilepticus. Enhanced Fyn-tau complexes strongly correlated with the frequency of spontaneously recurring convulsive seizures and epileptiform spikes in the chronic epilepsy model. In human epileptic brains, we also identified increased Fyn-tau and NR2B-PSD95 complexes, tau phosphorylation (pY18 and AT8) and Fyn activation (pSFK-Y416), implying the translational and therapeutic potential of these molecular interactions. In tau knockout mice and in rats treated with a Fyn/SFK inhibitor saracatinib, we found a significant reduction of phosphorylated Fyn, tau (AT8 in saracatinib-treated), NR2B and neuronal nitric oxide synthase and their interactions (Fyn-tau and NR2B-PSD95 in saracatinib-treated group; NR2B-PSD95 in tau knockout group). The reduction of Fyn-tau and NR2B-PSD95 interactions in the saracatinib-treated group, in contrast to the vehicle-treated group, correlated with the modification in seizure progression in the rat chronic epilepsy model. These findings from animal models and human epilepsy provide evidence for the role of Fyn-tau and NR2B-PSD95 interactions in seizure-induced brain pathology and suggest that blocking such interactions could modify the progression of epilepsy.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Cara Gardner
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Guanghao Liu
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Jordan Trommater
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Michael Bunney
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Alexander G Bassuk
- Department of Pediatrics, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Department of Neurology, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute (INI), College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA
| | - Marco Hefti
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Gloria Lee
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
3
|
Hu L, Liu Y, Yuan Z, Guo H, Duan R, Ke P, Meng Y, Tian X, Xiao F. Glucose-6-phosphate dehydrogenase alleviates epileptic seizures by repressing reactive oxygen species production to promote signal transducer and activator of transcription 1-mediated N-methyl-d-aspartic acid receptors inhibition. Redox Biol 2024; 74:103236. [PMID: 38875958 PMCID: PMC11225908 DOI: 10.1016/j.redox.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
The pathogenesis of epilepsy remains unclear; however, a prevailing hypothesis suggests that the primary underlying cause is an imbalance between neuronal excitability and inhibition. Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway, which is primarily involved in deoxynucleic acid synthesis and antioxidant defense mechanisms and exhibits increased expression during the chronic phase of epilepsy, predominantly colocalizing with neurons. G6PD overexpression significantly reduces the frequency and duration of spontaneous recurrent seizures. Furthermore, G6PD overexpression enhances signal transducer and activator of transcription 1 (STAT1) expression, thus influencing N-methyl-d-aspartic acid receptors expression, and subsequently affecting seizure activity. Importantly, the regulation of STAT1 by G6PD appears to be mediated primarily through reactive oxygen species signaling pathways. Collectively, our findings highlight the pivotal role of G6PD in modulating epileptogenesis, and suggest its potential as a therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Liqin Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Ziwei Yuan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Ran Duan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Yuan Meng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Medical University, 1 Youyi Road, Chongqing, 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Jia R, Zhu G, Zhao R, Li T, Jiang W, Cui X. Hydrogen treatment reduces electroencephalographic activity and neuronal death in rats with refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress. J Int Med Res 2024; 52:3000605241235589. [PMID: 38546233 PMCID: PMC10981235 DOI: 10.1177/03000605241235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 04/01/2024] Open
Abstract
OBJECTIVE To investigate the effects of hydrogen therapy on epileptic seizures in rats with refractory status epilepticus and the underlying mechanisms. METHODS Status epilepticus was induced using pilocarpine. The effects of hydrogen treatment on epilepsy severity in model rats were then monitored using Racine scores and electroencephalography (EEG), followed by western blot of plasma membrane N-methyl-D-aspartate receptor subtype 2B (NR2B) and phosphorylated NR2B expression. We also generated a cellular epilepsy model using Mg2+-free medium and used polymerase chain reaction to investigate the neuroprotective effects of hydrogen. RESULTS There were no significant differences in Racine scores between the hydrogen and control groups. EEG amplitudes were lower in the hydrogen treatment group than in the control group. In epilepsy model rats, hippocampal cell membrane NR2B expression and phosphorylation increased gradually over time. Although hippocampal cell membrane NR2B expression was not significantly different between the two groups, NR2B phosphorylation levels were significantly lower in the hydrogen group. Hydrogen treatment also increased superoxide dismutase, mitochondrial (SOD2) expression. CONCLUSIONS Hydrogen treatment reduced EEG amplitudes and NR2B phosphorylation; it also decreased neuronal death by reducing oxidative stress. Hydrogen may thus be a potential treatment for refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress.
Collapse
Affiliation(s)
- Ruihua Jia
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Gemin Zhu
- Department of Neurology, Xi’an Central Hospital, Xi’an, China
| | - Rui Zhao
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoli Cui
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
5
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
6
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
7
|
Nasarudeen R, Singh A, Rana ZS, Punnakkal P. Epileptiform activity induced metaplasticity impairs bidirectional plasticity in the hippocampal CA1 synapses via GluN2B NMDA receptors. Exp Brain Res 2022; 240:3339-3349. [DOI: 10.1007/s00221-022-06486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
|
8
|
Liu Y, Tian X, Ke P, Gu J, Ma Y, Guo Y, Xu X, Chen Y, Yang M, Wang X, Xiao F. KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B. Neurosci Bull 2022; 38:841-856. [PMID: 35678994 PMCID: PMC9352834 DOI: 10.1007/s12264-022-00888-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| |
Collapse
|
9
|
Kumar K, Banerjee Dixit A, Tripathi M, Dubey V, Siraj F, Sharma MC, Lalwani S, Chandra PS, Banerjee J. Transcriptomic profiling of nonneoplastic cortical tissues reveals epileptogenic mechanisms in dysembryoplastic neuroepithelial tumors. Funct Integr Genomics 2022; 22:905-917. [PMID: 35633443 DOI: 10.1007/s10142-022-00869-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Low-grade dysembryoplastic neuroepithelial tumors (DNTs) are a frequent cause of drug-refractory epilepsy. Molecular mechanisms underlying seizure generation in these tumors are poorly understood. This study was conducted to identify altered genes in nonneoplastic epileptogenic cortical tissues (ECTs) resected from DNT patients during electrocorticography (ECoG)-guided surgery. RNA sequencing (RNAseq) was used to determine the differentially expressed genes (DEGs) in these high-spiking ECTs compared to non-epileptic controls. A total of 477 DEGs (180 upregulated; 297 downregulated) were observed in the ECTs compared to non-epileptic controls. Gene ontology analysis revealed enrichment of genes belonging to the following Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: (i) glutamatergic synapse; (ii) nitrogen metabolism; (iii) transcriptional misregulation in cancer; and (iv) protein digestion and absorption. The glutamatergic synapse pathway was enriched by DEGs such as GRM4, SLC1A6, GRIN2C, GRM2, GRM5, GRIN3A, and GRIN2B. Enhanced glutamatergic activity was observed in the pyramidal neurons of ECTs, which could be attributed to altered synaptic transmission in these tissues compared to non-epileptic controls. Besides glutamatergic synapse, altered expression of other genes such as GABRB1 (synapse formation), SLIT2 (axonal growth), and PROKR2 (neuron migration) could be linked to epileptogenesis in ECTs. Also, upregulation of GABRA6 gene in ECTs could underlie benzodiazepine resistance in these patients. Neural cell-type-specific gene set enrichment analysis (GSEA) revealed transcriptome of ECTs to be predominantly contributed by microglia and neurons. This study provides first comprehensive gene expression profiling of nonneoplastic ECTs of DNT patients and identifies genes/pathways potentially linked to epileptogenesis.
Collapse
Affiliation(s)
- Krishan Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | | | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
10
|
Gorlewicz A, Pijet B, Orlova K, Kaczmarek L, Knapska E. Epileptiform GluN2B–driven excitation in hippocampus as a therapeutic target against temporal lobe epilepsy. Exp Neurol 2022; 354:114087. [DOI: 10.1016/j.expneurol.2022.114087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 11/04/2022]
|
11
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Lazzarotto G, Klippel Zanona Q, Cagliari Zenki K, Calcagnotto ME. Effect of Memantine on Pentylenetetrazol-induced Seizures and EEG Profile in Animal Model of Cortical Malformation. Neuroscience 2021; 457:114-124. [PMID: 33465407 DOI: 10.1016/j.neuroscience.2020.12.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022]
Abstract
Developmental cortical malformations (DCM) are one of the main causes of refractory epilepsy. Many are the mechanisms underlying the hyperexcitability in DCM, including the important contribution of N-methyl-D-aspartate receptors (NMDAR). NMDAR blockers are shown to abolish seizures and epileptiform activity. Memantine, a NMDAR antagonist used to treat Alzheimeŕs disease, has been recently investigated as a possible treatment for other neurological disorders. However, the effects on preventing or diminishing seizures are controversial. Here we aimed to evaluate the effects of memantine on pentylenetetrazole (PTZ)-induced seizures in the freeze-lesion (FL) model. Bilateral cortical microgyria were induced (FL) or not (Sham) in male Wistar neonate rats. At P30, subdural electrodes were implanted and 7 days later, video-EEG was recorded in animals receiving either memantine (FL-M or Sham-M) or saline (FL-S or Sham-S), followed by PTZ. Seizures were evaluated by video-EEG during one hour and scored according to Racine scale. The video-EEG analyses revealed that the number of seizures and the total duration of stage IV-V seizures developed during the 1 h-period increased after memantine application in all groups. The EEG power spectral density (PSD) analysis showed an increased PSD of pre-ictal delta in Sham-M animals and increased PSD of slow, middle and fast gamma oscillations after memantine injection that persists during the pre-ictal period in all groups. Our findings suggested that memantine was unable to control the PTZ-induced seizures and that the associated enhancement of PSD of gamma oscillations may contribute to the increased probability of seizure development in these animals.
Collapse
Affiliation(s)
- Gabriela Lazzarotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Querusche Klippel Zanona
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Zhang H, Tian X, Lu X, Xu D, Guo Y, Dong Z, Li Y, Ma Y, Chen C, Yang Y, Yang M, Yang Y, Liu F, Zhou R, He M, Xiao F, Wang X. TMEM25 modulates neuronal excitability and NMDA receptor subunit NR2B degradation. J Clin Invest 2020; 129:3864-3876. [PMID: 31424425 DOI: 10.1172/jci122599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
The expression of the transmembrane protein 25 gene (Tmem25) is strongly influenced by glutamate ionotropic receptor kainate type subunit 4, and its function remains unknown. Here, we showed that TMEM25 was primarily localized to late endosomes in neurons. Electrophysiological experiments suggested that the effects of TMEM25 on neuronal excitability were likely mediated by N-methyl-d-aspartate receptors. TMEM25 affected the expression of the N-methyl-d-aspartate receptor NR2B subunit and interacted with NR2B, and both were colocalized to late endosome compartments. TMEM25 induced acidification changes in lysosome compartments and accelerated the degradation of NR2B. Furthermore, TMEM25 expression was decreased in brain tissues from patients with epilepsy and epileptic mice. TMEM25 overexpression attenuated the behavioral phenotypes of epileptic seizures, whereas TMEM25 downregulation exerted the opposite effect. These results provide some insights into TMEM25 biology in the brain and the functional relationship between TMEM25 and epilepsy.
Collapse
Affiliation(s)
- Haiqing Zhang
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xi Lu
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Demei Xu
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yi Guo
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Li
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuanlin Ma
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chengzhi Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Yong Yang
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Min Yang
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yi Yang
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Liu
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Ruijiao Zhou
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Miaoqing He
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fei Xiao
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
14
|
Liu X, Geng J, Guo H, Zhao H, Ai Y. Propofol inhibited apoptosis of hippocampal neurons in status epilepticus through miR-15a-5p/NR2B/ERK1/2 pathway. Cell Cycle 2020; 19:1000-1011. [PMID: 32212891 DOI: 10.1080/15384101.2020.1743909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although a previous study reported that propofol had a therapeutic effect in status epilepticus (SE), the mechanisms underlying the effect of propofol in SE remain unclear. The aim of this study was to explore the regulatory mechanisms underlying propofol-induced inhibition of SE.A rat SE model was established using the lithium-pilocarpine injection method. A qRT-PCR and Western blot were utilized to detect the expression of relative molecules. Cell apoptosis was evaluated by a flow cytometry assay. The interaction between miR-15a-5p and NR2B was assessed using a luciferase reporter assay.Propofol inhibited cell apoptosis and increased miR-15a-5p expression both in hippocampal tissues of SE rats and low Mg2+-induced hippocampal neurons. Propofol-induced attenuation of apoptosis of low Mg2+-induced hippocampal neurons was mediated by miR-15a-5p. miR-15a-5p targeted NR2B and negatively regulated its expression. Propofol downregulated NR2B expression, mediated by miR-15a-5p. In terms of the mechanism of action, propofol suppressed the apoptosis of Mg2+-induced hippocampal neurons through the miR-15a-5p/NR2B/ERK1/2 pathway. In vivo experiment suggested that propofol inhibited the apoptosis of hippocampal neurons in SE rats by upregulating miR-15a-5p.In terms of the molecular mechanism of propofol, it appears to inhibit apoptosis of hippocampal neurons in SE through the miR-15a-5p/NR2B/ERK1/2 pathway. The findings provide theoretical support for propofol treatment of SE.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiefeng Geng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiming Guo
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaping Zhao
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiu Ai
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Wang Y, Li Z. Association of UGT2B7 and CaMK4 with response of valproic acid in Chinese children with epilepsy. Therapie 2019; 75:261-270. [PMID: 31474408 DOI: 10.1016/j.therap.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
AIM OF THE STUDY Valproic acid (VPA) is a widely used antiepileptic drug for epilepsy. However, approximately 30% of patients with epilepsy do not respond to this therapy even when it was appropriately used. In order to explore the potential genetic factors related to the VPA response, this pharmacogenetics study was conducted. METHODS A total of one hundred and fifty-seven Chinese children with epilepsy who were administered with by VPA for at least one year were enrolled. Thirteen single-nucleotide polymorphisms (SNPs) located in eight genes involving targets and metabolic enzymes of VPA were genotyped. The frequencies of these polymorphisms and the effect of genotypes on the efficacy of VPA were analyzed. RESULTS The frequencies of two SNPs, rs7668258 (uridine diphosphate glucuronosyltransferase-2B7, UGT2B7) and rs306104 (calmodulin-kinase 4, CaMK4) were associated with VPA responses. However, no association was found for the other SNPs. Furthermore, the polymorphism of UGT2B7 influenced the adjusted concentration (AC) in the responders rather than in the non-responders. CONCLUSION Two SNPs (UGT2B7 and CaMK4) were associated with VPA response, which may explain the pharmacological mechanism of VPA resistance to some extent.
Collapse
Affiliation(s)
- Yan Wang
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China; College of pharmacy, Hainan medical university, Haikou 571199, China
| | - Zhiping Li
- Department of pharmacy, children's hospital of Fudan university, Shanghai 201102, China.
| |
Collapse
|
16
|
Colciaghi F, Nobili P, Cipelletti B, Cagnoli C, Zambon S, Locatelli D, de Curtis M, Battaglia GS. Targeting PSD95-nNOS interaction by Tat-N-dimer peptide during status epilepticus is neuroprotective in MAM-pilocarpine rat model. Neuropharmacology 2019; 153:82-97. [DOI: 10.1016/j.neuropharm.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
17
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
18
|
Wang YJ, Hsieh CP, Chan MH, Chan TY, Chen L, Chen HH. Distinct effects of resveratrol on seizures and hyperexcitability induced by NMDA and 4-aminopyridine. Nutr Neurosci 2018; 22:867-876. [DOI: 10.1080/1028415x.2018.1461458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ya-Jean Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Nursing, Hsin Sheng College of Medical Care and Management, Longtan Township, Taoyuan County, Taiwan
| | - Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei City, Taiwan
- Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei City, Taiwan
| | - Tzu-Yi Chan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Institute of Neuroscience, National Chengchi University, Taipei City, Taiwan
| |
Collapse
|
19
|
Amakhin DV, Malkin SL, Ergina JL, Kryukov KA, Veniaminova EA, Zubareva OE, Zaitsev AV. Alterations in Properties of Glutamatergic Transmission in the Temporal Cortex and Hippocampus Following Pilocarpine-Induced Acute Seizures in Wistar Rats. Front Cell Neurosci 2017; 11:264. [PMID: 28912687 PMCID: PMC5584016 DOI: 10.3389/fncel.2017.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in humans, and is often developed after an initial precipitating brain injury. This form of epilepsy is frequently resistant to pharmacological treatment; therefore, the prevention of TLE is the prospective approach to TLE therapy. The lithium-pilocarpine model in rats replicates some of the main features of TLE in human, including the pathogenic mechanisms of cell damage and epileptogenesis after a primary brain injury. In the present study, we investigated changes in the properties of glutamatergic transmission during the first 3 days after pilocarpine-induced acute seizures in Wistar rats (PILO-rats). Using RT-PCR and electrophysiological techniques, we compared the changes in the temporal cortex (TC) and hippocampus, brain areas differentially affected by seizures. On the first day, we found a transient increase in a ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl d-aspartate (NMDA) receptors in the excitatory synaptic response in pyramidal neurons of the CA1 area of the dorsal hippocampus, but not in the TC. This was accompanied by an increase in the slope of input-output (I/O) curves for fEPSPs recorded in CA1, suggesting an enhanced excitability in AMPARs in this brain area. There was no difference in the AMPA/NMDA ratio in control rats on the third day. We also revealed the alterations in NMDA receptor subunit composition in PILO-rats. The GluN2B/GluN2A mRNA expression ratio increased in the dorsal hippocampus but did not change in the ventral hippocampus or the TC. The kinetics of NMDA-mediated evoked EPSCs in hippocampal neurons was slower in PILO-rats compared with control animals. Ifenprodil, a selective antagonist of GluN2B-containing NMDARs, diminished the area and amplitude of evoked EPSCs in CA1 pyramidal cells more efficiently in PILO-rats compared with control animals. These results demonstrate that PILO-induced seizures lead to more severe alterations in excitatory synaptic transmission in the dorsal hippocampus than in the TC. Seizures affect the relative contribution of AMPA and NMDA receptor conductances in the synaptic response and increase the proportion of GluN2B-containing NMDARs in CA1 pyramidal neurons. These alterations disturb normal circuitry functions in the hippocampus, may cause neuron damage, and may be one of the important pathogenic mechanisms of TLE.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Sergey L Malkin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Kirill A Kryukov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Ekaterina A Veniaminova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSaint Petersburg, Russia.,Federal Almazov North-West Medical Research Centre, Institute of Experimental MedicineSaint Petersburg, Russia
| |
Collapse
|
20
|
Okuda K, Kobayashi S, Fukaya M, Watanabe A, Murakami T, Hagiwara M, Sato T, Ueno H, Ogonuki N, Komano-Inoue S, Manabe H, Yamaguchi M, Ogura A, Asahara H, Sakagami H, Mizuguchi M, Manabe T, Tanaka T. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol Dis 2017; 106:158-170. [PMID: 28688852 DOI: 10.1016/j.nbd.2017.07.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/10/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022] Open
Abstract
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders accompanied by intractable epilepsies, i.e. West syndrome or atypical Rett syndrome. Here we report generation of the Cdkl5 knockout mouse and show that CDKL5 controls postsynaptic localization of GluN2B-containing N-methyl-d-aspartate (NMDA) receptors in the hippocampus and regulates seizure susceptibility. Cdkl5 -/Y mice showed normal sensitivity to kainic acid; however, they displayed significant hyperexcitability to NMDA. In concordance with this result, electrophysiological analysis in the hippocampal CA1 region disclosed an increased ratio of NMDA/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs) and a significantly larger decay time constant of NMDA receptor-mediated EPSCs (NMDA-EPSCs) as well as a stronger inhibition of the NMDA-EPSCs by the GluN2B-selective antagonist ifenprodil in Cdkl5 -/Y mice. Subcellular fractionation of the hippocampus from Cdkl5 -/Y mice revealed a significant increase of GluN2B and SAP102 in the PSD (postsynaptic density)-1T fraction, without changes in the S1 (post-nuclear) fraction or mRNA transcripts, indicating an intracellular distribution shift of these proteins to the PSD. Immunoelectron microscopic analysis of the hippocampal CA1 region further confirmed postsynaptic overaccumulation of GluN2B and SAP102 in Cdkl5 -/Y mice. Furthermore, ifenprodil abrogated the NMDA-induced hyperexcitability in Cdkl5 -/Y mice, suggesting that upregulation of GluN2B accounts for the enhanced seizure susceptibility. These data indicate that CDKL5 plays an important role in controlling postsynaptic localization of the GluN2B-SAP102 complex in the hippocampus and thereby regulates seizure susceptibility, and that aberrant NMDA receptor-mediated synaptic transmission underlies the pathological mechanisms of the CDKL5 loss-of-function.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Aya Watanabe
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuto Murakami
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mai Hagiwara
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tempei Sato
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hiroe Ueno
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Sayaka Komano-Inoue
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Manabe
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla 92037, USA
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
NMDA receptor antagonism with novel indolyl, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, reduces seizures duration in a rat model of epilepsy. Sci Rep 2017; 7:45540. [PMID: 28358047 PMCID: PMC5371989 DOI: 10.1038/srep45540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
Collapse
|
22
|
Li X, Han X, Yang J, Bao J, Di X, Zhang G, Liu H. Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema. Mol Neurobiol 2016; 54:7938-7948. [PMID: 27878553 DOI: 10.1007/s12035-016-0278-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 02/07/2023]
Abstract
Eclampsia is a hypertensive disorder of pregnancy that is defined by the new onset of grand mal seizures on the basis of preeclampsia and a leading cause of maternal and fetal mortality worldwide. Presently, magnesium sulfate (MgSO4) is the most effective treatment, but the mechanism by which MgSO4 prevents eclampsia has yet to be fully elucidated. We previously showed that systemic inflammation decreases the seizure threshold in a rat eclampsia-like model, and MgSO4 treatment can decrease systemic inflammation. Here, we hypothesized that MgSO4 plays a neuroprotective role in eclampsia by reducing neuroinflammation and brain edema. Pregnant Sprague-Dawley rats were given an intraperitoneal injection of pentylenetetrazol following a tail vein injection of lipopolysaccharide to establish the eclampsia-like seizure model. Seizure activity was assessed by behavioral testing. Neuronal loss in the hippocampal CA1 region (CA1) was detected by Nissl staining. Cerebrospinal fluid levels of S100-B and ferritin, indicators of neuroinflammation, were detected by enzyme-linked immunosorbent assay, and ionized calcium binder adapter molecule 1 (Iba-1, a marker for microglia) and glial fibrillary acid protein (GFAP, a marker for astrocytes) expression in the CA1 area was determined by immunofluorescence staining. Brain edema was measured. Our results revealed that MgSO4 effectively attenuated seizure severity and CA1 neuronal loss. In addition, MgSO4 significantly reduced cerebrospinal fluid levels of S100-B and ferritin, Iba-1 and GFAP activation in the CA1 area, and brain edema. Our results indicate that MgSO4 plays a neuroprotective role against eclampsia-like seizure by reducing neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Jinying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Junjie Bao
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaodan Di
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Guozheng Zhang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
23
|
Decker JM, Krüger L, Sydow A, Dennissen FJ, Siskova Z, Mandelkow E, Mandelkow EM. The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep 2016; 17:552-69. [PMID: 26931569 DOI: 10.15252/embr.201541439] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/28/2016] [Indexed: 12/14/2022] Open
Abstract
We report on a novel transgenic mouse model expressing human full-length Tau with the Tau mutation A152T (hTau(AT)), a risk factor for FTD-spectrum disorders including PSP and CBD Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis-sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short- or long-term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage-gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTau(AT) causes excitotoxicity mediated by NR2B-containing NMDA receptors due to enhanced extracellular glutamate.
Collapse
Affiliation(s)
| | - Lars Krüger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Astrid Sydow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, Hamburg, Germany
| | | | - Zuzana Siskova
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, Hamburg, Germany Caesar Research Center, Bonn, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, Hamburg, Germany Caesar Research Center, Bonn, Germany
| |
Collapse
|
24
|
Zhu WY, Jiang P, He X, Cao LJ, Zhang LH, Dang RL, Tang MM, Xue Y, Li HD. Contribution of NRG1 Gene Polymorphisms in Temporal Lobe Epilepsy. J Child Neurol 2016; 31:271-6. [PMID: 26071373 DOI: 10.1177/0883073815589757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/11/2015] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to investigate the possible association between temporal lobe epilepsy and NRG1 gene polymorphisms. A total of 73 patients and 69 controls were involved in this study. Genomic DNAs from the patients and controls were genotyped by polymerase chain reaction-ligase detection reaction method. There was an association of rs35753505 (T>C) with temporal lobe epilepsy (χ(2) = 6.730, P = .035). The frequency of risk allele C of rs35753505 was significantly higher (69.9%) in patients compared to controls (55.8%) (χ(2) = 6.023, P = .014). Interestingly, the significant difference of NRG1 genotype and allele frequency only existed among males, but not females. In addition, no statistically significant association was found between rs6994992, rs62510682 polymorphisms, and temporal lobe epilepsy. These data indicate that rs35753505 of NRG1 plays an important role in conferring susceptibility to the temporal lobe epilepsy in a Chinese Han population.
Collapse
Affiliation(s)
- Wen-Ye Zhu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Ling-Juan Cao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Li-Hong Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Rui-Li Dang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Mi-Mi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Huan-De Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
25
|
Lei M, Xu H, Li Z, Wang Z, O'Malley TT, Zhang D, Walsh DM, Xu P, Selkoe DJ, Li S. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol Dis 2015; 85:111-121. [PMID: 26525100 DOI: 10.1016/j.nbd.2015.10.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/01/2015] [Accepted: 10/21/2015] [Indexed: 02/06/2023] Open
Abstract
Epileptic activity may be more prevalent in early stage Alzheimer's disease (AD) than previously believed. Several studies report spontaneous seizures and interictal discharges in mouse models of AD undergoing age-related Aβ accumulation. The mechanism by which Aβ-induced neuronal excitability can trigger epileptiform activity remains unknown. Here, we systematically examined field excitatory postsynaptic potentials (fEPSP) in stratum radiatum and population spikes (PSs) in the adjacent stratum pyramidale of CA1 in wild-type mouse hippocampal slices. Soluble Aβ oligomers (oAβ) blocked hippocampal LTP and EPSP-spike (E-S) potentiation, and these effects were occluded by prior treatment with the glutamate uptake inhibitor TBOA. In accord, oAβ elevated glutamate levels in the hippocampal slice medium. Recording the PS revealed that oAβ increased PS frequency and reduced LTP, and this LTP deficit was occluded by pretreatment with the GABAA antagonist picrotoxin. Whole-cell recordings showed that oAβ significantly increased spontaneous EPSC frequency. Decreasing neuronal activity by increasing GABA tone or partially blocking NMDAR activity prevented oAβ impairment of hippocampal LTP. Finally, treating slices with two antiepileptic drugs rescued the LTP inhibition induced by oAβ. We conclude that soluble Aβ oligomers at the low nanomolar levels present in AD brain increase neuronal excitability by disrupting glutamatergic/GABAergic balance, thereby impairing synaptic plasticity.
Collapse
Affiliation(s)
- Ming Lei
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Huixin Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhangyuan Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zemin Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tiernan T O'Malley
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dainan Zhang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, Melani F, Polster T, Andre VM, Cepeda C, Krueger DA, Cross JH, Spreafico R, Cosottini M, Gotman J, Chassoux F, Ryvlin P, Bartolomei F, Bernasconi A, Stefan H, Miller I, Devaux B, Najm I, Giordano F, Vonck K, Barba C, Blumcke I. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015; 56:1669-86. [DOI: 10.1111/epi.13200] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
- IRCCS Stella Maris Foundation; Pisa Italy
| | - Michael Duchowny
- Neuroscience Program and the Comprehensive Epilepsy Center; Miami Children's Hospital; Miami Florida U.S.A
| | - Prasanna Jayakar
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| | - Pavel Krsek
- Department of Pediatric Neurology; 2nd Faculty of Medicine; Motol University Hospital; Charles University; Prague Czech Republic
| | - Philippe Kahane
- INSERM U836; University of Grenoble Alpes, GIN; Grenoble; France
- Epilepsy Unit; Michallon Hospital; Grenoble France
| | - Laura Tassi
- Epilepsy Surgery Center; Niguarda Hospital; Milan Italy
| | - Federico Melani
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Tilman Polster
- Department of Child Neurology; Bethel Epilepsy Center; Bielefeld Germany
| | | | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center; David Geffen School of Medicine; University of California at Los Angeles; Los Angeles California U.S.A
| | - Darcy A. Krueger
- Division of Neurology; Department of Pediatrics; Cincinnati Children's Hospital Medical Center; University of Cincinnati College of Medicine; Cincinnati Ohio U.S.A
| | - J. Helen Cross
- UCL-Institute of Child Health; Great Ormond Street Hospital for Children NHS Foundation Trust; London United Kingdom
- Young Epilepsy; Lingfield United Kingdom
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit; Neurological InstituteC. Besta”; Milan Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Jean Gotman
- Montreal Neurological Institute and Hospital; McGill University; Montreal Quebec Canada
| | | | - Philippe Ryvlin
- Department of Clinical Neurosciences; CHUV; Lausanne Switzerland
- Translational and Integrative Group in Epilepsy Research (TIGER) and Institute for Epilepsies (IDEE); Lyon's Neuroscience Center; INSERM U1028; CNRS 5292; UCBL; Le Vinatier Hospital; Bron; Lyon France
| | - Fabrice Bartolomei
- Faculty of Medicine; INSERM, U1106; Institute of Neurosciences of Systems; Marseille France
- Faculty of Medicine; Aix Marseille University; Marseille France
- Clinical Neurophysiology Unit; Department of Clinical Neurosciences; CHU Timone; Marseille France
- Henri-Gastaut Hospital; Saint-Paul Center; Marseille France
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Center; Montreal Neurological Institute and Hospital; McGill University; Montreal Quebec Canada
| | - Hermann Stefan
- Epilepsy Center Erlangen (ZEE); University Erlangen-Nürnberg; Erlangen Germany
| | - Ian Miller
- Department of Neurology and Comprehensive Epilepsy Program; Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
| | | | - Imad Najm
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland OH U.S.A
| | - Flavio Giordano
- Pediatric Neurosurgery Unit; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent Belgium
| | - Carmen Barba
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Ingmar Blumcke
- Department of Neuropathology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
27
|
Peng WF, Ding J, Li X, Fan F, Zhang QQ, Wang X. N-methyl-D-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model. Epilepsy Res 2015; 119:77-85. [PMID: 26688426 DOI: 10.1016/j.eplepsyres.2015.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
Depression is a common comorbidity in patients with epilepsy with unclear mechanisms. This study is to explore the role of glutamate N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunits in epilepsy-associated depression. Lithium chloride (Licl)-pilocarpine chronic rat epilepsy model was established and rats were divided into epilepsy with depression (EWD) and epilepsy without depression (EWND) subgroups based on forced swim test. Expression of NMDA receptor NR1, NR2A and NR2B subunits was measured by western blot and immunofluorescence methods. The immobility time (IMT) was significantly greater in Licl-pilocarpine model group than in Control group, which was also greater in EWD group than in EWND group. No differences of spontaneous recurrent seizure (SRS) counts over two weeks and latency were found between EWD and EWND groups. The number of NeuN positive cells was significantly less in Licl-pilocarpine model group than in Control group, but had no difference between EWD and EWND groups. The ratios of phosphorylated NR1 (p-NR1)/NR1 and p-NR2B/NR2B were significantly greater in the hippocampus in EWD group than in EWND group. Moreover, the expression of p-NR1 and p-NR2B in the CA1 subfield of hippocampus were both greater in Licl-pilocarpine model group than Control group. Selective blockage of NR2B subunit with ifenprodil could alleviate depression-like behaviours of Licl-pilocarpine rat epilepsy model. In conclusion, glutamate NMDA receptor NR2B subunit was involved in promoting depression-like behaviours in the Licl-pilocarpine chronic rat epilepsy model and might be a target for treating epilepsy-associated depression.
Collapse
Affiliation(s)
- Wei-Feng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fan Fan
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qian-Qian Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Abstract
Focal cortical dysplasias are common malformations of cerebral cortical development and are highly associated with medically intractable epilepsy. They have been classified into neuropathological subtypes (type Ia, Ib, IIa, IIb, and III) based on the severity of cytoarchitectural disruption--tangential or radial dispersion, or loss of laminar structure--and the presence of unique cells types such as cytomegalic neurons or balloon cells. Most focal cortical dysplasias can be identified on neuroimaging and many require resective epilepsy surgery to cure refractory seizures. The pathogenesis of focal cortical dysplasias remains to be defined, although there is recent evidence to suggest that focal cortical dysplasias arise from de novo somatic mutations occurring during brain development. Some focal cortical dysplasia subtypes show a link to the mammalian target of rapamycin signaling cascade; this has now extended to other cortical malformations, including hemimegalencephaly.
Collapse
Affiliation(s)
- Peter B Crino
- Department of Neurology, Shriners Hospital Pediatric Research Center and Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Kunda S, Yuan Y, Balsara RD, Zajicek J, Castellino FJ. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors. J Biol Chem 2015; 290:18156-18172. [PMID: 26048991 DOI: 10.1074/jbc.m115.650341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/10/2023] Open
Abstract
Conantokins are ~20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp(10) disrupts only a small region of the α-helix of the Mn(2+)·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp(10) with N(8)Q results in a Mg(2+)-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp(10) with Pro(10) allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses.
Collapse
Affiliation(s)
- Shailaja Kunda
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yue Yuan
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D Balsara
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jaroslav Zajicek
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
30
|
Oluigbo CO, Wang J, Whitehead MT, Magge S, Myseros JS, Yaun A, Depositario-Cabacar D, Gaillard WD, Keating R. The influence of lesion volume, perilesion resection volume, and completeness of resection on seizure outcome after resective epilepsy surgery for cortical dysplasia in children. J Neurosurg Pediatr 2015; 15:644-50. [PMID: 26030332 DOI: 10.3171/2014.10.peds14282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Focal cortical dysplasia (FCD) is one of the most common causes of intractable epilepsy leading to surgery in children. The predictors of seizure freedom after surgical management for FCD are still unclear. The objective of this study was to perform a volumetric analysis of factors shown on the preresection and postresection brain MRI scans of patients who had undergone resective epilepsy surgery for cortical dysplasia and to determine the influence of these factors on seizure outcome. METHODS The authors reviewed the medical records and brain images of 43 consecutive patients with focal MRI-documented abnormalities and a pathological diagnosis of FCD who had undergone surgical treatment for refractory epilepsy. Preoperative lesion volume and postoperative resection volume were calculated by manual segmentation using OsiriX PRO software. RESULTS Forty-three patients underwent first-time surgery for resection of an FCD. The age range of these patients at the time of surgery ranged from 2 months to 21.8 years (mean age 7.3 years). The median duration of follow-up was 20 months. The mean age at onset was 31.6 months (range 1 day to 168 months). Complete resection of the area of an FCD, as adjudged from the postoperative brain MR images, was significantly associated with seizure control (p = 0.0005). The odds of having good seizure control among those who underwent complete resection were about 6 times higher than those among the patients who did not undergo complete resection. Seizure control was not significantly associated with lesion volume (p = 0.46) or perilesion resection volume (p = 0.86). CONCLUSIONS The completeness of FCD resection in children is a significant predictor of seizure freedom. Neither lesion volume nor the further resection of perilesional tissue is predictive of seizure freedom.
Collapse
|
31
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
32
|
Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, Raymond AA, Dargahi L, Ahmadiani A. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts. Mol Neurobiol 2014; 52:492-513. [PMID: 25195699 DOI: 10.1007/s12035-014-8876-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/25/2014] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great promise. In addition, we will also highlight the role of gene reprogramming and mitochondrial biogenesis in the preconditioning-mediated neuroprotective events.
Collapse
Affiliation(s)
- Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E, Minlebaev M, Goriounova NA, Buhler E, Watrin F, Shityakov S, Becker AJ, Bordey A, Milh M, Scavarda D, Bulteau C, Dorfmuller G, Delalande O, Represa A, Cardoso C, Dulac O, Ben-Ari Y, Burnashev N. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat Commun 2014; 5:4563. [PMID: 25081057 PMCID: PMC4143949 DOI: 10.1038/ncomms5563] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC), caused by dominant mutations in either
TSC1 or
TSC2 tumour
suppressor genes is characterized by the presence of brain malformations, the
cortical tubers that are thought to contribute to the generation of
pharmacoresistant epilepsy. Here we report that tuberless heterozygote
Tsc1+/− mice show
functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an
mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early
postnatal life (<P19). Seizures are generated intracortically in the granular
layer of the neocortex. Slow kinetics of aberrant GluN2C-mediated currents in spiny stellate cells promotes
excessive temporal integration of persistent NMDAR-mediated recurrent excitation and
seizure generation. Accordingly, specific GluN2C/D antagonists block seizures in Tsc1+/− mice in vivo
and in vitro. Likewise, GluN2C expression is upregulated in TSC human surgical
resections, and a GluN2C/D
antagonist reduces paroxysmal hyperexcitability. Thus, GluN2C receptor constitutes a promising
molecular target to treat epilepsy in TSC patients. Tuberous sclerosis complex (TSC) is a rare genetic condition
characterized by epileptic seizures that start in infancy. Here, the authors show that
these seizures are modulated by GluN2C-containing NMDA receptors in the cortex of a
mouse model of TSC, and that suppressing their activity attenuates seizures.
Collapse
Affiliation(s)
- N Lozovaya
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - S Gataullina
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - T Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3]
| | - V Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Pallesi-Pocachard
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - M Minlebaev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] Laboratory of Neurobiology, Kazan Federal University, Kremlevskaya street 18, 420000 Kazan, Russia
| | - N A Goriounova
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Buhler
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - F Watrin
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - S Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, 97080 Würzburg, Germany
| | - A J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund Freud Street 25, D-53105 Bonn, Germany
| | - A Bordey
- Neurosurgery, and Cellular and Molecular Physiology Departments, Yale University School of Medicine, PO Box 208082, New Haven, Connecticut 06520-8082, USA
| | - M Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - D Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - C Bulteau
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - G Dorfmuller
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - O Delalande
- Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - A Represa
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - C Cardoso
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - O Dulac
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France [3] APHP, Necker Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Y Ben-Ari
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - N Burnashev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| |
Collapse
|
34
|
Najm IM, Tassi L, Sarnat HB, Holthausen H, Russo GL. Epilepsies associated with focal cortical dysplasias (FCDs). Acta Neuropathol 2014; 128:5-19. [PMID: 24916270 DOI: 10.1007/s00401-014-1304-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 11/24/2022]
Abstract
Focal cortical dysplasias (FCDs) are increasingly recognized as one of the most common causes of pharmaco-resistant epilepsies. FCDs were recently divided into various clinico-pathological subtypes due to distinct imaging, electrophysiological, and outcome characteristics. In this review, we will overview the international consensus classification of FCDs in light of more recently reported clinical, electrical, imaging and functional observations, and will also address areas of ongoing debate. In addition, we will summarize our current knowledge on pathobiology and epileptogenicity of FCDs as well as its underlying molecular and cellular mechanisms. The clinical (electroencephalographic, imaging, and functional) characteristics of major FCD subtypes and their implications on the presurgical evaluation and surgical management will be discussed in light of studies describing these characteristics and postoperative seizure outcomes in patients with medically intractable focal epilepsy due to histopathologically confirmed FCDs.
Collapse
Affiliation(s)
- Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
35
|
Marin-Valencia I, Guerrini R, Gleeson JG. Pathogenetic mechanisms of focal cortical dysplasia. Epilepsia 2014; 55:970-8. [PMID: 24861491 PMCID: PMC4107035 DOI: 10.1111/epi.12650] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 02/01/2023]
Abstract
Focal cortical dysplasias (FCDs) constitute a prevalent cause of intractable epilepsy in children, and is one of the leading conditions requiring epilepsy surgery. Despite recent advances in the cellular and molecular biology of these conditions, the pathogenetic mechanisms of FCDs remain largely unknown. The purpose if this work is to review the molecular underpinnings of FCDs and to highlight potential therapeutic targets. A systematic review of the literature regarding the histologic, molecular, and electrophysiologic aspects of FCDs was conducted. Disruption of the mammalian target of rapamycin (mTOR) signaling comprises a common pathway underlying the structural and electrical disturbances of some FCDs. Other mechanisms such as viral infections, prematurity, head trauma, and brain tumors are also posited. mTOR inhibitors (i.e., rapamycin) have shown positive results on seizure management in animal models and in a small cohort of patients with FCD. Encouraging progress has been achieved on the molecular and electrophysiologic basis of constitutive cells in the dysplastic tissue. Despite the promising results of mTOR inhibitors, large-scale randomized trials are in need to evaluate their efficacy and side effects, along with additional mechanistic studies for the development of novel, molecular-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Department of Neurology and Neurotherapeutics, and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | | | | |
Collapse
|
36
|
Loddenkemper T, Talos DM, Cleary RT, Joseph A, Sánchez Fernández I, Alexopoulos A, Kotagal P, Najm I, Jensen FE. Subunit composition of glutamate and gamma-aminobutyric acid receptors in status epilepticus. Epilepsy Res 2014; 108:605-15. [PMID: 24613745 PMCID: PMC6294571 DOI: 10.1016/j.eplepsyres.2014.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/23/2022]
Abstract
PURPOSE To describe the subunit composition of glutamate and gamma-aminobutyric acid (GABA) receptors in brain tissue from patients with different types of status epilepticus. PATIENTS AND METHODS The subunit composition of glutamate and GABA receptors was analyzed in: (1) surgical brain samples from three patients with refractory convulsive status epilepticus, three patients with electrical status epilepticus in sleep, and six patients with refractory epilepsy, and (2) brain autopsy samples from four controls who died without neurological disorders. Subunit expression was quantified with Western blotting and messenger ribonucleic acid (mRNA) expression was quantified with reverse polymerase chain reaction. RESULTS Western blot analysis demonstrated the following patterns (as compared to controls): (1) alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors: elevated GluA1/GluA2 ratio in electrical status epilepticus in sleep (465%±119) and refractory epilepsy (329%±125; p<0.01); (2) N-methyl-d-aspartate (NMDA) receptors: increased GluN2B/GluN2A ratio in electrical status epilepticus in sleep (3682%±1000) and refractory convulsive status epilepticus (3520%±751; p<0.05); (3) GABA receptors: elevated α2/α1 ratio in refractory epilepsy (321%±138; p<0.05) and refractory convulsive status epilepticus (346%±74; p<0.05); and (4) patients with underlying malformation of cortical development had increased ratios in GluA1/GluA2 (382%±149; p<0.01), GluN2B/GluN2A (3321%±1581; p<0.05) and α2/α1 (303%±86; p<0.01). Quantification of mRNA demonstrated an elevated GABRA2/GABRA1 ratio in refractory epilepsy (712; p<0.05) as compared to controls. CONCLUSIONS The subunit composition of glutamate and GABA receptors in patients with status epilepticus mirrors that found in animal models of refractory status epilepticus and may promote self-sustaining seizures. Receptor subunit changes may provide additional targets for improved treatment.
Collapse
Affiliation(s)
- Tobias Loddenkemper
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Delia M Talos
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, New York University Comprehensive Epilepsy Center, New York University Langone Medical Center, New York University School of Medicine, New York, NY, USA
| | - Ryan T Cleary
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Annelise Joseph
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Iván Sánchez Fernández
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Andreas Alexopoulos
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Prakash Kotagal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Frances E Jensen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11:251-68. [PMID: 24481729 PMCID: PMC3996119 DOI: 10.1007/s13311-013-0251-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Structural abnormalities of the brain are increasingly recognized in patients with neurodevelopmental delay and intractable focal epilepsies. The access to clinically well-characterized neurosurgical material has provided a unique opportunity to better define the neuropathological, neurochemical, and molecular features of epilepsy-associated focal developmental lesions. These studies help to further understand the epileptogenic mechanisms of these lesions. Neuropathological evaluation of surgical specimens from patients with epilepsy-associated developmental lesions reveals two major pathologies: focal cortical dysplasia and low-grade developmental tumors (glioneuronal tumors). In the last few years there have been major advances in the recognition of a wide spectrum of developmental lesions associated with a intractable epilepsy, including cortical tubers in patients with tuberous sclerosis complex and hemimegalencephaly. As an increasing number of entities are identified, the development of a unified and comprehensive classification represents a great challenge and requires continuous updates. The present article reviews current knowledge of molecular pathogenesis and the pathophysiological mechanisms of epileptogenesis in this group of developmental disorders. Both emerging neuropathological and basic science evidence will be analyzed, highlighting the involvement of different, but often converging, pathogenetic and epileptogenic mechanisms, which may create the basis for new therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
38
|
Colciaghi F, Finardi A, Nobili P, Locatelli D, Spigolon G, Battaglia GS. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia. PLoS One 2014; 9:e89898. [PMID: 24587109 PMCID: PMC3937400 DOI: 10.1371/journal.pone.0089898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/28/2014] [Indexed: 01/17/2023] Open
Abstract
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
39
|
Battaglia G, Colciaghi F, Finardi A, Nobili P. Intrinsic epileptogenicity of dysplastic cortex: converging data from experimental models and human patients. Epilepsia 2013; 54 Suppl 6:33-6. [PMID: 24001068 DOI: 10.1111/epi.12272] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal cortical dysplasia (FCD) is a brain malformation associated with particularly severe drug-resistant epilepsy that often requires surgery for seizure control. The molecular basis for such enhanced propensity to seizure generation in FCD is not as yet elucidated. To investigate cellular and molecular bases of epileptogenic mechanisms and possible effect of severe epilepsy on the malformed cortex we have here performed a parallel analysis of a rat model of acquired cortical dysplasia previously established in our laboratory, i.e., the methylazoxymethanol/pilocarpine (MAM-PILO) rats, and surgical samples from patients with type IIB FCD. Data from the MAM-PILO rat model and human FCD samples reveal in both conditions: (1) that status epilepticus (SE) and/or seizures can further modify the cellular and molecular settings of the malformed cortex; (2) excitation/inhibition imbalance, and dysregulation of the N-methyl-d-aspartate/ membrane-associated guanylate kinase (NMDA/MAGUK) expression; (3) activation of cell death in neurons and glia. The data therefore highlight the mechanistic relevance of glutamate/NMDA hyperactivation in FCD epileptogenesis and suggest that epilepsy is a pathologic process capable of affecting structure and function of both neurons and glia.
Collapse
Affiliation(s)
- Giorgio Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Foundation Neurological Institute Carlo Besta, Via Libero Temolo 4, Milan, Italy.
| | | | | | | |
Collapse
|
40
|
Kunda S, Cheriyan J, Hur M, Balsara RD, Castellino FJ. Antagonist properties of Conus parius peptides on N-methyl-D-aspartate receptors and their effects on CREB signaling. PLoS One 2013; 8:e81405. [PMID: 24260577 PMCID: PMC3832412 DOI: 10.1371/journal.pone.0081405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/22/2013] [Indexed: 02/05/2023] Open
Abstract
Three members of a family of small neurotoxic peptides from the venom of Conus parius, conantokins (Con) Pr1, Pr2, and Pr3, function as antagonists of N-methyl-D-aspartate receptors (NMDAR). We report structural characterizations of these synthetic peptides, and also demonstrate their antagonistic properties toward ion flow through NMDAR ion channels in primary neurons. ConPr1 and ConPr2 displayed moderate increases in α-helicity after addition of Mg2+. Native apo-ConPr3 possessed an α-helical conformation, and the helicity increased only slightly on addition of Mg2+. Additionally, these peptides diminished NMDA/Gly-mediated currents and intracellular Ca2+ (iCa2+) influx in mature rat primary hippocampal neurons. Electrophysiological data showed that these peptides displayed slower antagonistic properties toward the NMDAR than conantokins from other species of cone snails, e.g., ConT and ConG. Furthermore, to demonstrate selectivity of the C. parius-derived conantokins towards specific NMDAR subunits, cortical neurons from GluN2A-/- and GluN2B-/- mice were utilized. Robust inhibition of NMDAR-mediated stimulation in GluN2A-/--derived mouse neurons, as compared to those isolated from GluN2B-/--mouse brains, was observed, suggesting a greater selectivity of these antagonists towards the GluN2B subunit. These C. parius conantokins mildly inhibited NMDAR-induced phosphorylation of CREB at Ser133, suggesting that the peptides modulated iCa2+ entry and, thereby, activation of CREB, a transcription factor that is required for maintaining long-term synaptic activity. Our data mechanistically show that while these peptides effectively antagonize NMDAR-directed current and iCa2+ influx, receptor-coupled CREB signaling is maintained. The consequence of sustained CREB signaling is improved neuronal plasticity and survival during neuropathologies.
Collapse
Affiliation(s)
- Shailaja Kunda
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John Cheriyan
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael Hur
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rashna D. Balsara
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
The modulation of synaptic plasticity by NMDA receptor (NMDAR)-mediated processes is essential for many forms of learning and memory. Activation of NMDARs by glutamate requires the binding of a coagonist to a regulatory site of the receptor. In many forebrain regions, this coagonist is d-serine. Here, we show that experimental epilepsy in rats is associated with a reduction in the CNS levels of d-serine, which leads to a desaturation of the coagonist binding site of synaptic and extrasynaptic NMDARs. In addition, the subunit composition of synaptic NMDARs changes in chronic epilepsy. The desaturation of NMDARs causes a deficit in hippocampal long-term potentiation, which can be rescued with exogenously supplied d-serine. Importantly, exogenous d-serine improves spatial learning in epileptic animals. These results strongly suggest that d-serine deficiency is important in the amnestic symptoms of temporal lobe epilepsy. Our results point to a possible clinical utility of d-serine to alleviate these disease manifestations.
Collapse
|
42
|
Finardi A, Colciaghi F, Castana L, Locatelli D, Marras CE, Nobili P, Fratelli M, Bramerio MA, Lorusso G, Battaglia GS. Long-duration epilepsy affects cell morphology and glutamatergic synapses in type IIB focal cortical dysplasia. Acta Neuropathol 2013; 126:219-35. [PMID: 23793416 DOI: 10.1007/s00401-013-1143-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/11/2013] [Indexed: 11/24/2022]
Abstract
To investigate hypothesized effects of severe epilepsy on malformed cortex, we analyzed surgical samples from eight patients with type IIB focal cortical dysplasia (FCD) in comparison with samples from nine non-dysplastic controls. We investigated, using stereological quantification methods, where appropriate, dysplastic neurons, neuronal density, balloon cells, glia, glutamatergic synaptic input, and the expression of N-methyl-D-aspartate (NMDA) receptor subunits and associated membrane-associated guanylate kinase (MAGUK). In all FCD patients, the dysplastic areas giving rise to epileptic discharges were characterized by larger dysmorphic neurons, reduced neuronal density, and increased glutamatergic inputs, compared to adjacent areas with normal cytology. The duration of epilepsy was found to correlate directly (a) with dysmorphic neuron size, (b) reduced neuronal cell density, and (c) extent of reactive gliosis in epileptogenic/dysplastic areas. Consistent with increased glutamatergic input, western blot revealed that NMDA regulatory subunits and related MAGUK proteins were up-regulated in epileptogenic/dysplastic areas of all FCD patients examined. Taken together, these results support the hypothesis that epilepsy itself alters morphology-and probably also function-in the malformed epileptic brain. They also suggest that glutamate/NMDA/MAGUK dysregulation might be the intracellular trigger that modifies brain morphology and induces cell death.
Collapse
Affiliation(s)
- Adele Finardi
- Experimental Neurophysiology and Epileptology Department, Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ryley Parrish R, Albertson AJ, Buckingham SC, Hablitz JJ, Mascia KL, Davis Haselden W, Lubin FD. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience 2013; 248:602-19. [PMID: 23811393 DOI: 10.1016/j.neuroscience.2013.06.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Status epilepticus (SE) triggers abnormal expression of genes in the hippocampus, such as glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) and brain-derived neurotrophic factor (Bdnf), that is thought to occur in temporal lobe epilepsy (TLE). We examined the underlying DNA methylation mechanisms and investigated whether these mechanisms contribute to the expression of these gene targets in the epileptic hippocampus. Experimental TLE was provoked by kainic acid-induced SE. Bisulfite sequencing analysis revealed increased Grin2b/Nr2b and decreased Bdnf DNA methylation levels that corresponded to decreased Grin2b/Nr2b and increased Bdnf mRNA and protein expression in the epileptic hippocampus. Blockade of DNA methyltransferase (DNMT) activity with zebularine decreased global DNA methylation levels and reduced Grin2b/Nr2b, but not Bdnf, DNA methylation levels. Interestingly, we found that DNMT blockade further decreased Grin2b/Nr2b mRNA expression whereas GRIN2B protein expression increased in the epileptic hippocampus, suggesting that a posttranscriptional mechanism may be involved. Using chromatin immunoprecipitation analysis we found that DNMT inhibition restored the decreases in AP2alpha transcription factor levels at the Grin2b/Nr2b promoter in the epileptic hippocampus. DNMT inhibition increased field excitatory postsynaptic potential in hippocampal slices isolated from epileptic rats. Electroencephalography (EEG) monitoring confirmed that DNMT inhibition did not significantly alter the disease course, but promoted the latency to seizure onset or SE. Thus, DNA methylation may be an early event triggered by SE that persists late into the epileptic hippocampus to contribute to gene expression changes in TLE.
Collapse
Affiliation(s)
- R Ryley Parrish
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - A J Albertson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - S C Buckingham
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - J J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - K L Mascia
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - W Davis Haselden
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - F D Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
44
|
Najm I, Jehi L, Palmini A, Gonzalez-Martinez J, Paglioli E, Bingaman W. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 2013; 54:772-82. [DOI: 10.1111/epi.12152] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Imad Najm
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland; Ohio; U.S.A
| | - Lara Jehi
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland; Ohio; U.S.A
| | - Andre Palmini
- Porto Alegre Epilepsy Surgery Program; Neurology and Neurosurgery Services; Hospital São Lucas; Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS); Porto Alegre; Brazil
| | | | - Eliseu Paglioli
- Porto Alegre Epilepsy Surgery Program; Neurology and Neurosurgery Services; Hospital São Lucas; Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS); Porto Alegre; Brazil
| | - William Bingaman
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland; Ohio; U.S.A
| |
Collapse
|
45
|
Müller L, Tokay T, Porath K, Köhling R, Kirschstein T. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiol Dis 2013; 54:183-93. [PMID: 23313317 DOI: 10.1016/j.nbd.2012.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 11/27/2022] Open
Abstract
Impairment of synaptic plasticity such as long-term potentiation (LTP) is a common finding in various animal models of a number of neurodegenerative disorders. While cognitive deficits associated with these models are plausibly attributed to impaired plasticity, it is an intriguing question whether learning impairment correlates in general with compromised synaptic plasticity. In the present study, we have addressed this issue and discovered an enhancement of theta-burst stimulation-induced LTP at Schaffer collateral-CA1 synapses from chronically epileptic animals. The LTP enhancement was abolished by the NMDA receptor 2B (NR2B) blocker Ro 25-6981 (1μM) while it was preserved following application of the NR2A blocker NVP-AAM077 (50nM). Moreover, pharmacological characterization of intracellularly recorded excitatory postsynaptic potentials (EPSP) from CA1 pyramidal neurons indicated an increased NR2B/NR2A ratio in epileptic tissue, and NMDA receptor mediated excitatory postsynaptic currents showed significantly longer decay times. Quantitative reverse-transcriptase PCR confirmed the transcriptional up-regulation of NR2B-mRNA in chronically epileptic animals. To test the significance for epileptiform activity, recurrent epileptiform discharges (REDs) in the CA1 area induced by bath application of either high K(+) (8mM) plus gabazine (5μM) or 4-aminopyridine (50μM), were also characterized pharmacologically. While in control slices the presence of Ro 25-6981 had no effect on the RED frequency, NR2B inhibition significantly increased epileptic activity in tissue from epileptic animals. Our results demonstrate that CA1 synapses in chronically epileptic tissue can undergo an LTP enhancement due to an NR2B up-regulation in CA1 pyramidal neurons. On the network level, this up-regulation appears to be a compensatory process, since blockade of these receptors leaves the tissue more susceptible to hyperexcitability.
Collapse
Affiliation(s)
- Lorenz Müller
- Oscar Langendorff Institute of Physiology, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
Focal cortical dysplasia (FCD) is a developmental brain disorder characterized by localized abnormalities of cortical layering and neuronal morphology. It is associated with pharmacologically intractable forms of epilepsy in both children and adults. The mechanisms that underlie FCD-associated seizures and lead to the progression of the disease are unclear. Matrix metalloproteinases (MMPs) are enzymes that are able to influence neuronal function through extracellular proteolysis in various normal and pathological conditions. The results of experiments that have used rodent models showed that extracellular MMP-9 can play an important role in epileptogenesis. However, no studies have shown that MMP-9 is involved in the pathogenesis of human epilepsy. The aim of the present study was to determine whether MMP-9 plays a role in intractable epilepsy. Using an unbiased antibody microarray approach, we found that up regulation of MMP-9 is prominent and consistent in FCD tissue derived from epilepsy surgery, regardless of the patient's age. Additionally, an up regulation of MMP-1, -2, -8, -10, and -13 was found but was either less pronounced or limited only to adult cases. In the dysplastic cortex, immunohistochemistry revealed that the highest MMP-9 immuno reactivity occurred in the cytoplasm of abnormal neurons and balloon cells. The neuronal over expression of MMP-9 also occurred in sclerotic hippocampi that were excised together with the dysplastic cortex, but sclerotic hippocampi were free of dysplastic features. In both locations, MMP-9 was also found in reactive astrocytes, albeit to a lesser extent. At the subcellular level, increased MMP-9 immunoreactivity was prominently upregulated at synapses. Thus, although upregulation of the enzyme in FCD is not causally linked to the developmental malformation, it may be a result of ongoing abnormal synaptic plasticity. The present findings support the hypothesis of the pathogenic role of MMP-9 in human epilepsy and may stimulate discussions about whether MMPs could be novel therapeutic targets for intractable epilepsy.
Collapse
|
47
|
Abstract
Cortical dysplasia of various types, reflecting abnormalities of brain development, have been closely associated with epileptic activities. Yet, there remains considerable discussion about if/how these structural lesions give rise to seizure phenomenology. Animal models have been used to investigate the cause-effect relationships between aberrant cortical structure and epilepsy. In this article, we discuss three such models: (1) the Eker rat model of tuberous sclerosis, in which a gene mutation gives rise to cortical disorganization and cytologically abnormal cellular elements; (2) the p35 knockout mouse, in which the genetic dysfunction gives rise to compromised cortical organization and lamination, but in which the cellular elements appear normal; and (3) the methylazoxymethanol-exposed rat, in which time-specific chemical DNA disruption leads to abnormal patterns of cell formation and migration, resulting in heterotopic neuronal clusters. Integrating data from studies of these animal models with related clinical observations, we propose that the neuropathologic features of these cortical dysplastic lesions are insufficient to determine the seizure-initiating process. Rather, it is their interaction with a more subtly disrupted cortical "surround" that constitutes the circuitry underlying epileptiform activities as well as seizure propensity and ictogenesis.
Collapse
Affiliation(s)
- Philip A Schwartzkroin
- Department of Neurological Surgery, University of California-Davis, One Shields Ave., Davis, CA 95616, U.S.A.
| | | |
Collapse
|
48
|
Hansen SL, Sterjev Z, Werngreen M, Simonsen BJ, Knudsen KE, Nielsen AH, Pedersen ME, Badolo L, Kristiansen U, Vestergaard HT. Does brain slices from pentylenetetrazole-kindled mice provide a more predictive screening model for antiepileptic drugs? Eur J Pharmacol 2012; 682:43-9. [DOI: 10.1016/j.ejphar.2012.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/17/2012] [Accepted: 01/28/2012] [Indexed: 12/01/2022]
|
49
|
Balsara R, Li N, Weber-Adrian D, Huang L, Castellino FJ. Opposing action of conantokin-G on synaptically and extrasynaptically-activated NMDA receptors. Neuropharmacology 2012; 62:2227-38. [PMID: 22306487 DOI: 10.1016/j.neuropharm.2012.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 12/11/2022]
Abstract
Synaptic and extrasynaptic activation of the N-methyl-D-aspartate receptor (NMDAR) has distinct consequences on cell signaling and neuronal survival. Since conantokin (con)-G antagonism is NR2B-selective, which is the key subunit involved in extrasynaptic activation of the receptor, its ability to specifically elicit distinct signaling outcomes in neurons with synaptically or extrasynaptically-activated NMDARs was evaluated. Inhibition of Ca(2+) influx through extrasynaptic NMDAR ion channels was neuroprotective, as it effectively enhanced levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), activated cAMP response element binding protein (CREB), enhanced mitochondrial viability, and attenuated the actin disorganization observed by extrasynaptic activation of NMDARs. Conversely, the pro-signaling pathways stimulated by synaptically-induced Ca(2+) influx were abolished by con-G. Furthermore, subunit non-selective con-T was unable to successfully redress the impairments in neurons caused by extrasynaptically-activated NMDARs, thus indicating that NR2B-specific antagonists are beneficial for neuron survival. Neurons ablated for the NR2B subunit showed weak synaptic Ca(2+) influx, reduced sensitivity to MK-801 blockage, and diminished extrasynaptic current compared to WT and NR2A(-/-) neurons. This indicates that the NR2B subunit is an integral component of both synaptic and extrasynaptic NMDAR channels. Altogether, these data suggest that con-G specifically targets the NR2B subunit in the synaptic and extrasynaptic locations, resulting in the opposing action of con-G on differentially activated pools of NMDARs.
Collapse
Affiliation(s)
- Rashna Balsara
- W.M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
50
|
Colciaghi F, Finardi A, Frasca A, Balosso S, Nobili P, Carriero G, Locatelli D, Vezzani A, Battaglia G. Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. ACTA ACUST UNITED AC 2011; 134:2828-43. [PMID: 21482549 DOI: 10.1093/brain/awr045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have generated an experimental 'double-hit' model of chronic epilepsy to recapitulate the co-existence of abnormal cortical structure and frequently recurrent seizures as observed in human focal cortical dysplasia. We induced cortical malformations by exposing rats prenatally to methylazoxymethanol acetate and triggered status epilepticus and recurrent seizures in adult methylazoxymethanol acetate rats with pilocarpine. We studied the course of epilepsy and the long-term morphologic and molecular changes induced by the occurrence of status epilepticus and subsequent chronic epilepsy in the malformed methylazoxymethanol acetate exposed brain. Behavioural and electroencephalographic analyses showed that methylazoxymethanol acetate pilocarpine rats develop more severe epilepsy than naïve rats. Morphologic and molecular analyses demonstrated that status epilepticus and subsequent seizures, but not pilocarpine treatment per se, was capable of affecting both cortical architectural and N-methyl-D-aspartate receptor abnormalities induced by methylazoxymethanol acetate. In particular, cortical thickness was further decreased and N-methyl-D-aspartate regulatory subunits were recruited at the postsynaptic membrane. In addition, methylazoxymethanol acetate pilocarpine rats showed abnormally large cortical pyramidal neurons with neurofilament over-expression. These neurons bear similarities to the hypertrophic/dysmorphic pyramidal neurons observed in acquired human focal cortical dysplasia. These data show that status epilepticus sets in motion a pathological process capable of significantly changing the cellular and molecular features of pre-existing experimental cortical malformations. They suggest that seizure recurrence in human focal cortical dysplasia might be an additional factor in establishing a pathological circuitry that favours chronic neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, via Temolo 4, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|