1
|
Jones HM, Yoo K, Chun MM, Rosenberg MD. Edge-Based General Linear Models Capture Moment-to-Moment Fluctuations in Attention. J Neurosci 2024; 44:e1543232024. [PMID: 38316565 PMCID: PMC10993033 DOI: 10.1523/jneurosci.1543-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have "unfurled" traditional FC matrices in "edge cofluctuation time series" which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest-based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.
Collapse
Affiliation(s)
- Henry M Jones
- Department of Psychology, The University of Chicago, Chicago, Illinois 60637
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois 60637
| | - Kwangsun Yoo
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
- Data Science Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Marvin M Chun
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06520
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, Chicago, Illinois 60637
- Institute for Mind and Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
2
|
Jones HM, Yoo K, Chun MM, Rosenberg MD. Edge-based general linear models capture high-frequency fluctuations in attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547966. [PMID: 37503244 PMCID: PMC10369861 DOI: 10.1101/2023.07.06.547966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from one minute to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-by-moment network fluctuations. Recently, researchers have 'unfurled' traditional FC matrices in 'edge cofluctuation time series' which measure time point-by-time point cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture high-frequency fluctuations in networks related to attention. In two independent fMRI datasets in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.
Collapse
Affiliation(s)
| | | | - Marvin M Chun
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago
- Neuroscience Institute, The University of Chicago
| |
Collapse
|
3
|
Zhao H, Turel O, Bechara A, He Q. How distinct functional insular subdivisions mediate interacting neurocognitive systems. Cereb Cortex 2023; 33:1739-1751. [PMID: 35511695 PMCID: PMC9977390 DOI: 10.1093/cercor/bhac169] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/12/2022] Open
Abstract
Recent neurocognitive models propose that the insula serves as a hub of interoceptive awareness system, modulating 2 interplaying neurocognitive systems: The posterior insula (PI) receives and integrates various interoceptive signals; these signals are then transmitted to the anterior insula for processing higher-order representations into awareness, where the dorsal anterior insula (dAI) modulates the prefrontal self-control system and the ventral anterior insula (vAI) modulates the amygdala (AMG)-striatal reward-seeking circuit. We sought to test this view using a multimodal approach. We first used a resting-state functional magnetic resonance imaging (fMRI) approach with a sample of 120 undergraduate students. Then, we unpacked the neuro-cognitive association between insular connectivity and cognitive performance during an Iowa gambling fMRI task. Lastly, an independent Open Southwest University Longitudinal Imaging Multimodal dataset was used to validate the results. Findings suggested that the dAI was predominantly connected to the prefrontal regions; the vAI was primarily connected to the AMG-ventral-striatum system; and the PI was mainly connected to the visceral-sensorimotor system. Moreover, cognitive scores were positively correlated with FC between dAI and the self-control process of ventrolateral prefrontal cortex and were negatively correlated with FC between vAI and the reward-seeking process of orbitofrontal cortex and subgenual anterior cingulate cortex. The findings highlight the roles of our theorized subinsular functionality in the overall operation of the neural cognitive systems.
Collapse
Affiliation(s)
- Haichao Zhao
- Faculty of Psychology and MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ofir Turel
- Department of Psychology, and Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
- Computing Information Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Bechara
- Department of Psychology, and Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Qinghua He
- Corresponding author: Faculty of Psychology, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China.
| |
Collapse
|
4
|
Doekemeijer RA, Dewulf A, Verbruggen F, Boehler CN. Proactively Adjusting Stopping: Response Inhibition is Faster when Stopping Occurs Frequently. J Cogn 2023; 6:22. [PMID: 37152832 PMCID: PMC10162359 DOI: 10.5334/joc.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/01/2023] [Indexed: 05/09/2023] Open
Abstract
People are able to stop actions before they are executed, and proactively slow down the speed of going in line with their expectations of needing to stop. Such slowing generally increases the probability that stopping will be successful. Surprisingly though, no study has clearly demonstrated that the speed of stopping (measured as the stop-signal reaction time, SSRT) is reduced by such proactive adjustments. In addition to a number of studies showing non-significant effects, the only study that initially had observed a clear effect in this direction found that it was artifactually driven by a confounding variable (specifically, by context-independence violations, which jeopardize the validity of the SSRT estimation). Here, we tested in two well-powered and well-controlled experiments whether the SSRT is shorter when stopping is anticipated. In each experiment, we used a Stop-Signal Task, in which the stop-trial frequency was either high (50%) or low (20%). Our results robustly show that the SSRT was shorter when stop signals were more anticipated (i.e., in the high-frequent condition) while carefully controlling for context-independence violations. Hence, our study is first to demonstrate a clear proactive benefit on the speed of stopping, in line with an ability to emphasize going or stopping, by trading off the speed of both.
Collapse
|
5
|
Long J, Song X, Wang Y, Wang C, Huang R, Zhang R. Distinct neural activation patterns of age in subcomponents of inhibitory control: A fMRI meta-analysis. Front Aging Neurosci 2022; 14:938789. [PMID: 35992590 PMCID: PMC9389163 DOI: 10.3389/fnagi.2022.938789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Inhibitory control (IC) is a fundamental cognitive function showing age-related change across the healthy lifespan. Since different cognitive resources are needed in the two subcomponents of IC (cognitive inhibition and response inhibition), regions of the brain are differentially activated. In this study, we aimed to determine whether there is a distinct age-related activation pattern in these two subcomponents. A total of 278 fMRI articles were included in the current analysis. Multilevel kernel density analysis was used to provide data on brain activation under each subcomponent of IC. Contrast analyses were conducted to capture the distinct activated brain regions for the two subcomponents, whereas meta-regression analyses were performed to identify brain regions with distinct age-related activation patterns in the two subcomponents of IC. The results showed that the right inferior frontal gyrus and the bilateral insula were activated during the two IC subcomponents. Contrast analyses revealed stronger activation in the superior parietal lobule during cognitive inhibition, whereas stronger activation during response inhibition was observed primarily in the right inferior frontal gyrus, bilateral insula, and angular gyrus. Furthermore, regression analyses showed that activation of the left anterior cingulate cortex, left inferior frontal gyrus, bilateral insula, and left superior parietal lobule increased and decreased with age during cognitive inhibition and response inhibition, respectively. The results showed distinct activation patterns of aging for the two subcomponents of IC, which may be related to the differential cognitive resources recruited. These findings may help to enhance knowledge of age-related changes in the activation patterns of IC.
Collapse
Affiliation(s)
- Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - You Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Flannery JS, Riedel MC, Salo T, Poudel R, Laird AR, Gonzalez R, Sutherland MT. HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110398. [PMID: 34224796 PMCID: PMC8380727 DOI: 10.1016/j.pnpbp.2021.110398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Brain activity linked with error processing has rarely been examined among persons living with HIV (PLWH) despite importance for monitoring and modifying behaviors that could lead to adverse health outcomes (e.g., medication non-adherence, drug use, risky sexual practices). Given that cannabis (CB) use is prevalent among PLWH and impacts error processing, we assessed the influence of HIV serostatus and chronic CB use on error-related brain activity while also considering associated implications for everyday functioning and clinically-relevant disease management behaviors. METHODS A sample of 109 participants, stratified into four groups by HIV and CB (HIV+/CB+, n = 32; HIV+/CB-, n = 27; HIV-/CB+, n = 28; HIV-/CB-, n = 22), underwent fMRI scanning while completing a modified Go/NoGo paradigm called the Error Awareness Task (EAT). Participants also completed a battery of well-validated instruments including a subjective report of everyday cognitive failures and an objective measure of medication management abilities. RESULTS Across all participants, we observed expected error-related anterior insula (aI) activation which correlated with better task performance (i.e., less errors) and, among HIV- participants, fewer self-reported cognitive failures. Regarding awareness, greater insula activation as well as greater posterior cingulate cortex (PCC) deactivation were notably linked with aware (vs. unaware) errors. Regarding group effects, unlike HIV- participants, PLWH displayed a lack of error-related deactivation in two default mode network (DMN) regions (i.e., PCC, medial prefrontal cortex [mPFC]). No CB main or interaction effects were detected. Across all participants, reduced error-related PCC deactivation correlated with reduced medication management abilities and PCC deactivation mediated the effect of HIV on such abilities. More lifetime CB use was linked with reduced error-related mPFC deactivation among HIV- participants and poorer medication management across CB users. CONCLUSIONS These results demonstrate that insufficient error-related DMN suppression linked with HIV infection, as well as chronic CB use among HIV- participants, has real-world consequences for medication management behaviors. We speculate that insufficient DMN suppression may reflect an inability to disengage task irrelevant mental operations, ultimately hindering error monitoring and behavior modification.
Collapse
Affiliation(s)
| | | | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL
| | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL,Correspondence: Matthew T. Sutherland, Ph.D., Florida International University, Department of Psychology, AHC-4, RM 312, 11299 S.W. 8th St, Miami, FL 33199, , 305-348-7962
| |
Collapse
|
7
|
Gonzalez-Gomez R, Rodríguez-Villagra OA, Schulte M, Torralva T, Ibáñez A, Huepe D, Fittipaldi S. Neurocognitive factorial structure of executive functions: Evidence from neurotypicals and frontotemporal dementia. Cortex 2021; 145:79-96. [PMID: 34689034 PMCID: PMC11168581 DOI: 10.1016/j.cortex.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/01/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
The latent structure of executive functions (EFs) remains controversial. Confirmatory factorial analysis (CFA) has provided support for both multidimensional (assumes EFs to be functionally separable but related components) and bifactor (proposes all components are nested within a common factor) models. However, these CFA models have never been compared in patient samples, nor regarding their neuroanatomical correlates. Here, we systematically contrast both approaches in neurotypicals and in a neurodegenerative lesion model (patients with the behavioral variant frontotemporal dementia, bvFTD), characterized by executive deficits associated with frontal neurodegeneration. First, CFA was used to test the models' fit in a sample of 341 neurotypicals and 29 bvFTD patients based on performance in an executive frontal screening battery which assesses working memory, motor inhibition, verbal inhibition, and abstraction capacity. Second, we compared EFs factor and observed scores between patients and matched controls. Finally, we used voxel-based morphometry (VBM) to compare the grey matter correlates of factor and observed scores. CFA results showed that both models fit the data well. The multidimensional model, however, was more sensitive than the bifactor model and the observed scores to detect EFs impairments in bvFTD patients. VBM results for the multidimensional model revealed common and unique grey matter correlates for EFs components across prefrontal-insular, posterior, and temporal cortices. Regarding the bifactor model, only the common factor was associated with prefrontal-insular hubs. Observed scores presented scant, non-frontal grey matter associations. Converging behavioral and neuroanatomical evidence from healthy populations and a neurodegenerative model of EFs supports an underlying multidimensional structure.
Collapse
Affiliation(s)
- Raul Gonzalez-Gomez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Odir Antonio Rodríguez-Villagra
- Institute for Psychological Research, University of Costa Rica, Sabanilla, Costa Rica; Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica
| | - Michael Schulte
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Teresa Torralva
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco (UCSF), US and Trinity College Dublin (TCD), Ireland
| | - David Huepe
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile.
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
8
|
Dugré JR, Radua J, Carignan-Allard M, Dumais A, Rubia K, Potvin S. Neurofunctional abnormalities in antisocial spectrum: A meta-analysis of fMRI studies on Five distinct neurocognitive research domains. Neurosci Biobehav Rev 2020; 119:168-183. [PMID: 32956690 DOI: 10.1016/j.neubiorev.2020.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 02/05/2023]
Abstract
Past functional magnetic resonance imaging on antisocial subjects have shown important inconsistencies and methodological problems (e.g. heterogeneity in fMRI tasks domain, small sample sizes, analyses on regions-of-interest). We aimed to conduct a meta-analysis of whole-brain fMRI studies on antisocial individuals based on distinct neurocognitive domains. A voxel-based meta-analysis via permutation of subject images (SDM-PSI) was performed on studies using fMRI tasks in the domains of acute threat response, cognitive control, social cognition, punishment and reward processing. Overall, 83 studies were retrieved. Using a liberal statistical threshold, several key regions were identified in the meta-analysis, principally during acute threat response, social cognition and cognitive control tasks. Additionally, we observed that the right amygdala was negatively associated with both callous-unemotional traits and severity of antisocial behaviors, in meta-analyses on region-of-interest and on dimensional studies, respectively. The findings show that the most prominent functional brain deficits arise during acute threat response, social cognitions and cognitive control neurocognitive domains. These results provide substantial insights for our understanding of aberrant neural processing across specific contexts.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Barcelona, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Alexandre Dumais
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, Canada; Institut National De Psychiatrie Légal Philippe-Pinel, Montreal, Canada
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada; Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
9
|
Wu T, Chen C, Spagna A, Wu X, Mackie M, Russell‐Giller S, Xu P, Luo Y, Liu X, Hof PR, Fan J. The functional anatomy of cognitive control: A domain‐general brain network for uncertainty processing. J Comp Neurol 2020; 528:1265-1292. [DOI: 10.1002/cne.24804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Caiqi Chen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of PsychologySouth China Normal University Guangzhou China
| | - Alfredo Spagna
- Department of PsychologyColumbia University in the City of New York New York New York
| | - Xia Wu
- Faculty of PsychologyTianjin Normal University Tianjin China
| | - Melissa‐Ann Mackie
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shira Russell‐Giller
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Yue‐jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Jin Fan
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| |
Collapse
|
10
|
Age-related alterations in the modulation of intracortical inhibition during stopping of actions. Aging (Albany NY) 2020; 11:371-385. [PMID: 30670675 PMCID: PMC6366958 DOI: 10.18632/aging.101741] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023]
Abstract
We investigated the effect of age on the ability to modulate GABAA-ergic and GABAB-ergic inhibitory activity during stopping of action (reactive inhibition) and preparation to stop (proactive inhibition). Twenty-five young and twenty-nine older adults performed an anticipated response version of the stop-signal task with varying levels of stop-signal probability. Paired-pulse transcranial magnetic stimulation was applied to left primary motor cortex to assess the modulation of GABAA-mediated short-interval intracortical inhibition (SICI) during stopping and GABAB-mediated long-interval intracortical inhibition (LICI) during the anticipation of a stop-signal. At the behavioral level, reactive inhibition was affected by aging as indicated by longer stop-signal reaction times in older compared to young adults. In contrast, proactive inhibition was preserved at older age as both groups slowed down their go response to a similar degree with increasing stop-signal probability. At the neural level, the amount of SICI was higher in successful stop relative to go trials in young but not in older adults. LICI at the start of the trial was modulated as a function of stop-signal probability in both young and older adults. Our results suggest that specifically the recruitment of GABAA-mediated intracortical inhibition during stopping of action is affected by aging.
Collapse
|
11
|
Fede SJ, Abrahao KP, Cortes CR, Grodin EN, Schwandt ML, George DT, Diazgranados N, Ramchandani VA, Lovinger DM, Momenan R. Alcohol effects on globus pallidus connectivity: Role of impulsivity and binge drinking. PLoS One 2020; 15:e0224906. [PMID: 32214339 PMCID: PMC7098584 DOI: 10.1371/journal.pone.0224906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the harm caused by binge drinking, the neural mechanisms leading to risky and disinhibited intoxication-related behaviors are not well understood. Evidence suggests that the globus pallidus externus (GPe), a substructure within the basal ganglia, participates in inhibitory control processes, as examined in stop-signaling tasks. In fact, studies in rodents have revealed that alcohol can change GPe activity by decreasing neuronal firing rates, suggesting that the GPe may have a central role in explaining impulsive behaviors and failures of inhibition that occur during binge drinking. In this study, twenty-five healthy volunteers underwent intravenous alcohol infusion to achieve a blood alcohol level of 0.08 g/dl, which is equivalent to a binge drinking episode. A resting state functional magnetic resonance imaging scan was collected prior to the infusion and at binge-level exposure. Functional connectivity analysis was used to investigate the association between alcohol-induced changes in GPe connectivity, drinking behaviors, and impulsivity traits. We found that individuals with greater number of drinks or heavy drinking days in the recent past had greater alcohol-induced deficits in GPe connectivity, particularly to the striatum. Our data also indicated an association between impulsivity and alcohol-induced deficits in GPe-frontal/precentral connectivity. Moreover, alcohol induced changes in GPe-amygdala circuitry suggested greater vulnerabilities to stress-related drinking in some individuals. Taken together, these findings suggest that alcohol may interact with impulsive personality traits and drinking patterns to drive alterations in GPe circuitry associated with behavioral inhibition, possibly indicating a neural mechanism by which binge drinking could lead to impulsive behaviors.
Collapse
Affiliation(s)
- Samantha J. Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karina P. Abrahao
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erica N. Grodin
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David T. George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vijay A. Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Herman AM, Duka T. Facets of impulsivity and alcohol use: What role do emotions play? Neurosci Biobehav Rev 2018; 106:202-216. [PMID: 30343823 DOI: 10.1016/j.neubiorev.2018.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/31/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Alcohol misuse is a major public concern. Impulsivity has been recognised as a significant risk factor predisposing for the initiation of alcohol use, continuation and excessive alcohol use. Evidence suggests that impulsivity is also a result of both acute alcohol intoxication and long-term alcohol abuse. The multifaceted character of impulsivity and the various ways of assessing it in humans and animal models, hampers the full understanding of how impulsivity relates to alcohol use and misuse. Therefore, in this review we evaluate recent developments in the field, trying to disentangle the contribution of different impulsivity subtypes as causes and effects of alcohol use. Moreover, we review a growing body of evidence, including brain imaging, suggesting the importance of emotional states in engaging in alcohol consumption, particularly in highly impulsive individuals. We also present recent insights into how emotional processing is manifested in alcoholism and binge drinking and suggest novel approaches to treatment and prevention opportunities which target emotional-regulation as well as emotional perception and insight.
Collapse
Affiliation(s)
- Aleksandra M Herman
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, UK; Sussex Addiction and Intervention Centre, University of Sussex, Brighton, BN1 9QH, UK
| | - Theodora Duka
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, UK; Sussex Addiction and Intervention Centre, University of Sussex, Brighton, BN1 9QH, UK.
| |
Collapse
|
13
|
Fan S, Cath DC, van der Werf YD, de Wit S, Veltman DJ, van den Heuvel OA. Trans-diagnostic comparison of response inhibition in Tourette's disorder and obsessive-compulsive disorder. World J Biol Psychiatry 2018; 19:527-537. [PMID: 28741401 DOI: 10.1080/15622975.2017.1347711] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Impaired response inhibition is related to neurodevelopmental disorders, such as Tourette's disorder (TD) and obsessive-compulsive disorder (OCD). Unlike OCD, in which neural correlates of response inhibition have been extensively studied, TD literature is limited. By using a Stop-Signal task, we investigated the neural mechanisms underlying response inhibition deficits in TD compared to OCD and healthy controls (HCs). METHODS Twenty-three TD patients, 20 OCD patients and 22 HCs were scanned (3T MRI). Region-of-interest analyses were performed between TD, OCD and HCs. RESULTS Performance was similar across all subject groups. During inhibition TD compared with HCs showed higher right inferior parietal cortex (IPC) activation. During error processing TD compared with HCs showed hyperactivity in the left cerebellum, right mesencephalon, and right insula. Three-group comparison showed an effect of group for error-related activation in the supplementary motor area (SMA). Post-hoc analyses showed higher error-related SMA activity in TD compared with OCD and HCs. Error-related left cerebellar activity correlated positively with tic severity. CONCLUSIONS Hyperactivation of IPC during inhibition and a widespread hyperactivated network during error processing in TD suggest compensatory inhibition- and error-related circuit recruitment to boost task performance. The lack of overlap with activation pattern in OCD suggests such compensatory mechanism is TD-specific.
Collapse
Affiliation(s)
- Siyan Fan
- a Division of Social and Behavioural Science , Utrecht University , Utrecht , The Netherlands.,b Department of Anatomy and Neurosciences , VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,c Department of Psychiatry , VUmc , Amsterdam , The Netherlands
| | - Danielle C Cath
- a Division of Social and Behavioural Science , Utrecht University , Utrecht , The Netherlands.,d Department of Psychiatry and RGOC , Groningen , The Netherlands
| | - Ysbrand D van der Werf
- b Department of Anatomy and Neurosciences , VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,e Amsterdam Neuroscience , Amsterdam , The Netherlands
| | - Stella de Wit
- c Department of Psychiatry , VUmc , Amsterdam , The Netherlands
| | - Dick J Veltman
- c Department of Psychiatry , VUmc , Amsterdam , The Netherlands.,d Department of Psychiatry and RGOC , Groningen , The Netherlands
| | - Odile A van den Heuvel
- b Department of Anatomy and Neurosciences , VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,c Department of Psychiatry , VUmc , Amsterdam , The Netherlands.,e Amsterdam Neuroscience , Amsterdam , The Netherlands.,f The OCD team , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
14
|
Stevens AK, Blanchard BE, Littlefield AK. Impulsive dispositions and alcohol: what we know, how we know it, and where to go from here. Borderline Personal Disord Emot Dysregul 2018; 5:4. [PMID: 29556398 PMCID: PMC5845171 DOI: 10.1186/s40479-018-0081-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Relations between impulsigenic traits and alcohol-related outcomes have been the focus of much research, yet precise relations remain elusive. Historically, research used broadband conceptualizations of impulsivity, which yielded inconclusive findings. Attempts to ameliorate this problem led to more work on narrowband assessments of impulsivity. Despite that several narrowband self-report measures exist, few demonstrate adequate psychometric properties. Given the limits of self-report, researchers have also utilized laboratory-based measures of impulsive dispositions; however, this seems to have contributed more uncertainty to the literature. REVIEW We review commonly used self-report and laboratory-based measures of narrowband impulsivity, as well as assessments of alcohol-related constructs (e.g., consumption and consequences). We discuss remaining issues in impulsivity and alcohol assessment, which limit understanding of how impulsigenic traits influence alcohol-related behaviors. Cutting-edge conceptualizations and assessment of state-level impulsivity are also discussed. CONCLUSIONS More work is necessary to further this area of research, including establishing consistent nomenclature and a cohesive conceptualization of impulsigenic traits as they relate to alcohol use and alcohol use disorders.
Collapse
Affiliation(s)
- Angela K. Stevens
- Department of Psychological Sciences Texas Tech University, MS 2051 Psychological Sciences Building, Rm. 404, Lubbock, Texas 79409-2051 USA
| | - Brittany E. Blanchard
- Department of Psychological Sciences Texas Tech University, MS 2051 Psychological Sciences Building, Rm. 404, Lubbock, Texas 79409-2051 USA
| | - Andrew K. Littlefield
- Department of Psychological Sciences Texas Tech University, MS 2051 Psychological Sciences Building, Rm. 404, Lubbock, Texas 79409-2051 USA
| |
Collapse
|
15
|
Bastin J, Deman P, David O, Gueguen M, Benis D, Minotti L, Hoffman D, Combrisson E, Kujala J, Perrone-Bertolotti M, Kahane P, Lachaux JP, Jerbi K. Direct Recordings from Human Anterior Insula Reveal its Leading Role within the Error-Monitoring Network. Cereb Cortex 2018; 27:1545-1557. [PMID: 26796212 DOI: 10.1093/cercor/bhv352] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ability to monitor our own errors is mediated by a network that includes dorsomedial prefrontal cortex (dmPFC) and anterior insula (AI). However, the dynamics of the underlying neurophysiological processes remain unclear. In particular, whether AI is on the receiving or driving end of the error-monitoring network is unresolved. Here, we recorded intracerebral electroencephalography signals simultaneously from AI and dmPFC in epileptic patients while they performed a stop-signal task. We found that errors selectively modulated broadband neural activity in human AI. Granger causality estimates revealed that errors were immediately followed by a feedforward influence from AI onto anterior cingulate cortex and, subsequently, onto presupplementary motor area. The reverse pattern of information flow was observed on correct responses. Our findings provide the first direct electrophysiological evidence indicating that the anterior insula rapidly detects and conveys error signals to dmPFC, while the latter might use this input to adapt behavior following inappropriate actions.
Collapse
Affiliation(s)
- Julien Bastin
- University of Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Pierre Deman
- University of Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Olivier David
- University of Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Maëlle Gueguen
- University of Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Damien Benis
- University of Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Lorella Minotti
- Inserm, U1216, F-38000 Grenoble, France
- Neurology Department, CHU de Grenoble, Hôpital Michallon, F-38000 Grenoble, France
| | - Dominique Hoffman
- Neurology Department, CHU de Grenoble, Hôpital Michallon, F-38000 Grenoble, France
| | - Etienne Combrisson
- Center of Research and Innovation in Sport, Mental Processes and Motor Performance, University of Lyon I, Lyon, France
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon I, Lyon, France
| | - Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | | | - Philippe Kahane
- Inserm, U1216, F-38000 Grenoble, France
- Neurology Department, CHU de Grenoble, Hôpital Michallon, F-38000 Grenoble, France
| | - Jean-Philippe Lachaux
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon I, Lyon, France
| | - Karim Jerbi
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon I, Lyon, France
- Psychology Department, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
16
|
Marshall AC, Gentsch A, Schütz-Bosbach S. The Interaction between Interoceptive and Action States within a Framework of Predictive Coding. Front Psychol 2018; 9:180. [PMID: 29515495 PMCID: PMC5826270 DOI: 10.3389/fpsyg.2018.00180] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
The notion of predictive coding assumes that perception is an iterative process between prior knowledge and sensory feedback. To date, this perspective has been primarily applied to exteroceptive perception as well as action and its associated phenomenological experiences such as agency. More recently, this predictive, inferential framework has been theoretically extended to interoception. This idea postulates that subjective feeling states are generated by top-down inferences made about internal and external causes of interoceptive afferents. While the processing of motor signals for action control and the emergence of selfhood have been studied extensively, the contributions of interoceptive input and especially the potential interaction of motor and interoceptive signals remain largely unaddressed. Here, we argue for a specific functional relation between motor and interoceptive awareness. Specifically, we implicate interoceptive predictions in the generation of subjective motor-related feeling states. Furthermore, we propose a distinction between reflexive and pre-reflexive modes of agentic action control and suggest that interoceptive input may affect each differently. Finally, we advocate the necessity of continuous interoceptive input for conscious forms of agentic action control. We conclude by discussing further research contributions that would allow for a fuller understanding of the interaction between agency and interoceptive awareness.
Collapse
Affiliation(s)
- Amanda C. Marshall
- General and Experimental Psychology Unit, Department of Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | |
Collapse
|
17
|
Senderecka M. Emotional enhancement of error detection-The role of perceptual processing and inhibition monitoring in failed auditory stop trials. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:1-20. [PMID: 29076064 PMCID: PMC5823965 DOI: 10.3758/s13415-017-0546-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first aim of the present study was to test whether arousing, aversive sounds can influence inhibitory task performance and lead to increased error monitoring relative to a neutral task condition. The second aim was to examine whether the enhancement of error monitoring in an affective context (if present) could be predicted from stop-signal-related brain activity. Participants performed an emotional stop-signal task that required response inhibition to aversive and neutral auditory stimuli. The behavioral data revealed that unpleasant sounds facilitated inhibitory processing by decreasing the stop-signal reaction time and increasing the inhibitory rate relative to neutral tones. Aversive sounds evoked larger N1, P3, and Pe components, indicating improvements in perceptual processing, inhibition, and conscious error monitoring. A first regression analysis, conducted regardless of the category of the stop signal, revealed that both selected indexes of stop-signal-related brain activity-the N1 and P3 amplitudes recorded in the unsuccessfully inhibited trials-significantly accounted for the Pe component variance, explaining a large amount of the observed variation (66%). A second regression model, focused on difference measures (emotional minus neutral), revealed that the affective increase in the P3 amplitude on failed stop trials was the only factor that significantly accounted for the emotional enhancement effect in the Pe amplitude. This suggests that, in general (regardless of stop-signal condition), error processing is stronger if the erroneous response directly follows the stimulus, which was effectively processed on both the perceptual and action-monitoring levels. However, only inhibition-monitoring evidence accounts for the emotional increase in conscious error detection.
Collapse
Affiliation(s)
- Magdalena Senderecka
- Cognitive Science Unit, Institute of Philosophy, Jagiellonian University, Grodzka 52, 31-044, Kraków, Poland.
| |
Collapse
|
18
|
Bartoli E, Aron AR, Tandon N. Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement. Hum Brain Mapp 2018; 39:189-203. [PMID: 29024235 PMCID: PMC5909846 DOI: 10.1002/hbm.23835] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/27/2017] [Accepted: 09/23/2017] [Indexed: 01/06/2023] Open
Abstract
Stopping incipient action activates both the right inferior frontal cortex (rIFC) and the anterior insula (rAI). Controversy has arisen as to whether these comprise a unitary cortical cluster-the rIFC/rAI-or whether rIFC is the primary stopping locus. To address this, we recorded directly from these structures while taking advantage of the high spatiotemporal resolution of closely spaced stereo-electro-encephalographic (SEEG) electrodes. We studied 12 patients performing a stop-signal task. On each trial they initiated a motor response (Go) and tried to stop to an occasional stop signal. Both the rIFC and rAI exhibited an increase in broadband gamma activity (BGA) after the stop signal and within the time of stopping (stop signal reaction time, SSRT), regardless of the success of stopping. The proportion of electrodes with this response was significantly greater in the rIFC than the rAI. Also, the rIFC response preceded that in the rAI. Last, while the BGA increase in rIFC occurred mainly prior to SSRT, the rAI showed a sustained increase in the beta and low gamma bands after the SSRT. In summary, the rIFC was activated soon after the stop signal, prior to and more robustly than the rAI, which on the other hand, showed a more prolonged response after the onset of stopping. Our results are most compatible with the notion that the rIFC is involved in triggering outright stopping in concert with a wider network, while the rAI is likely engaged by other processes, such as arousal, saliency, or behavioral adjustments. Hum Brain Mapp 39:189-203, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Bartoli
- Vivian L Smith Department of NeurosurgeryUniversity of Texas Health Science Center at HoustonHoustonTexas
| | - Adam R. Aron
- Department of PsychologyUniversity of CaliforniaSan DiegoCalifornia
| | - Nitin Tandon
- Vivian L Smith Department of NeurosurgeryUniversity of Texas Health Science Center at HoustonHoustonTexas
- Mischer Neuroscience Institute, Memorial Hermann Hospital Texas Medical CenterHoustonTexas
| |
Collapse
|
19
|
|
20
|
Sachs M, Kaplan J, Der Sarkissian A, Habibi A. Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task. PLoS One 2017; 12:e0187254. [PMID: 29084283 PMCID: PMC5662181 DOI: 10.1371/journal.pone.0187254] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022] Open
Abstract
Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports ("sports" group, N = 13, mean age = 8.85) and another not involved in music or sports ("control" group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance.
Collapse
Affiliation(s)
- Matthew Sachs
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jonas Kaplan
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Alissa Der Sarkissian
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Assal Habibi
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Lee HH, Hsieh S. Resting-State fMRI Associated with Stop-Signal Task Performance in Healthy Middle-Aged and Elderly People. Front Psychol 2017; 8:766. [PMID: 28553253 PMCID: PMC5427072 DOI: 10.3389/fpsyg.2017.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Several brain regions and connectivity networks may be altered as aging occurs. We are interested in investigating if resting-state functional magnetic resonance imaging (RS-fMRI) can also be valid as an indicator of individual differences in association with inhibition performance among aged (including middle-aged) people. Seventy-two healthy adults (40–77 years of age) were recruited. Their RS-fMRI images were acquired and analyzed via two cluster-analysis methods: local synchronization of spontaneous brain activity measured by regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) of blood oxygenation level-dependent signals. After the RS-fMRI acquisition, participants were instructed to perform a stop-signal task, in which the stop signal reaction time (SSRT) was calculated based on the horse-race model. Among participants, the ReHo/fALFF and SSRT were correlated with and without partialling-out the effect of age. The results of this study showed that, although aging may alter brain networks, the spontaneous activity of the age-related brain networks can still serve as an effective indicator of individual differences in association with inhibitory performance in healthy middle-aged and elderly people. This is the first study to use both ReHo and fALFF on the same dataset for conjunction analyses showing the relationship between stopping performance and RS-fMRI in the elderly population. The relationship may have practical clinical applications. Based on the overall results, the current study demonstrated that the bilateral inferior frontal gyrus and parts of the default mode network activation were negatively correlated with SSRT, suggesting that they have crucial roles in inhibitory function. However, the pre-supplementary motor area (pre-SMA) and SMA played only a small role during the resting state in association with stopping performance.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, National Cheng Kung UniversityTainan, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung UniversityTainan, Taiwan.,Institue of Allied Health Sciences, National Cheng Kung UniversityTainan, Taiwan.,Department and Institute of Public Health, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
22
|
Hemispheric asymmetries in the transition from action preparation to execution. Neuroimage 2017; 148:390-402. [DOI: 10.1016/j.neuroimage.2017.01.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
|
23
|
Yasuno F, Kudo T, Matsuoka K, Yamamoto A, Takahashi M, Nakagawara J, Nagatsuka K, Iida H, Kishimoto T. Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II. BJPsych Open 2016; 2:335-340. [PMID: 27847590 PMCID: PMC5100603 DOI: 10.1192/bjpo.bp.116.002683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A significantly lower fractional anisotropy (FA) value has been shown in anterior parts of the corpus callosum in patients with bipolar disorder. AIMS We investigated the association between abnormal corpus callosum integrity and interhemispheric functional connectivity (IFC) in patients with bipolar disorder. METHODS We examined the association between FA values in the corpus callosum (CC-FA) and the IFC between homotopic regions in the anterior cortical structures of bipolar disorder (n=16) and major depressive disorder (n=22) patients with depressed or euthymic states. RESULTS We found a positive correlation between the CC-FA and IFC values between homotopic regions of the ventral prefrontal cortex and insula cortex, and significantly lower IFC between these regions in bipolar disorder patients. CONCLUSIONS The abnormal corpus callosum integrity in bipolar disorder patients is relevant to the IFC between homotopic regions, possibly disturbing the exchange of emotional information between the cerebral hemispheres resulting in emotional dysregulation. DECLARATION OF INTEREST None. COPYRIGHT AND USAGE © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- , MD, PhD, Department of Psychiatry, Nara Medical University, Kashihara, Japan; Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takashi Kudo
- , MD, PhD, Department of Psychiatry, Osaka University Health Care Center, Toyonaka, Japan
| | - Kiwamu Matsuoka
- , MD, Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Akihide Yamamoto
- , MS, Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masato Takahashi
- , MD, Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Jyoji Nakagawara
- , MD, PhD, Integrative Stroke Imaging Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Hidehiro Iida
- , PhD, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshifumi Kishimoto
- , MD, PhD, Department of Psychiatry, Nara Medical University, Kashihara, Japan
| |
Collapse
|
24
|
Hermans L, Beeckmans K, Michiels K, Lafosse C, Sunaert S, Coxon JP, Swinnen SP, Leunissen I. Proactive Response Inhibition and Subcortical Gray Matter Integrity in Traumatic Brain Injury. Neurorehabil Neural Repair 2016; 31:228-239. [DOI: 10.1177/1545968316675429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lize Hermans
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven, Belgium
| | - Kurt Beeckmans
- Center for Epilepsy and Acquired Brain Injury (CEPOS), Duffel, Belgium
| | - Karla Michiels
- Department of Physical Medicine and Rehabilitation, University Hospital Leuven - Campus Pellenberg, Belgium
| | | | - Stefan Sunaert
- Medical Imaging Center, Group Biomedical Sciences, KU Leuven, Belgium
| | - James P. Coxon
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven, Belgium
- Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | - Inge Leunissen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven, Belgium
| |
Collapse
|
25
|
Beuk J, Beninger RJ, Mechefske E, Paré M. Contextual response time adaptation in the countermanding performance of rats. Neuroscience 2016; 337:200-217. [PMID: 27646289 DOI: 10.1016/j.neuroscience.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022]
Abstract
Humans and non-human primates are known to lengthen their response time (RT) to a go signal when they occasionally must cancel their responses following a stop signal in a countermanding task as well as to adjust their RT adaptively on a trial-by-trial basis. Less is clear regarding the adaptive RT adjustments in the countermanding performance of rodents. To investigate this question, male Wistar rats (N=12) were trained with food reward to press a lever directly below an illuminated light (go signal), but to countermand the lever press subsequent to a tone (stop signal) presented infrequently (25% of trials) at variable delays. Rats were then tested in a standard responding task (0% stop trials) or a countermanding task with a 10-s or 1-s TO interval following errors. Rats exhibited significant RT lengthening in the countermanding task, compared with the standard responding task, and RT shortening following consecutive correct go trials. They also show RT lengthening following both error trials in the standard responding task and unrewarded, non-canceled stop trials in the countermanding task. RT lengthening following erroneous stop trials was observed in sessions with a 10-s TO interval, but not with a 1-s TO interval. Analyses of RT distributions suggest that RT lengthening results largely from reduced sensitivity to the go signal, but also from reduced readiness. These findings indicate that rats exert control in the countermanding task by lengthening RT in anticipation of stop trials to avoid long, unrewarded TO intervals.
Collapse
Affiliation(s)
- Jonathan Beuk
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Richard J Beninger
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elysia Mechefske
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Martin Paré
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
26
|
Leunissen I, Coxon JP, Swinnen SP. A proactive task set influences how response inhibition is implemented in the basal ganglia. Hum Brain Mapp 2016; 37:4706-4717. [PMID: 27489078 DOI: 10.1002/hbm.23338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/25/2016] [Accepted: 07/26/2016] [Indexed: 01/02/2023] Open
Abstract
Increasing a participant's ability to prepare for response inhibition is known to result in longer Go response times and is thought to engage a "top-down fronto-striatal inhibitory task set." This premise is supported by the observation of anterior striatum activation in functional magnetic resonance imaging (fMRI) analyses that focus on uncertain versus certain Go trials. It is assumed that setting up a proactive inhibitory task set also influences how participants subsequently implement stopping. To assess this assumption, we aimed to manipulate the degree of proactive inhibition in a modified stop-signal task to see how this manipulation influences activation when reacting to the Stop cue. Specifically, we tested whether there is differential activity of basal ganglia nuclei, namely the subthalamic nucleus (STN) and anterior striatum, on Stop trials when stop-signal probability was relatively low (20%) or high (40%). Successful stopping was associated with increased STN activity when Stop trials were infrequent and increased caudate head activation when Stop trials were more likely, suggesting a different implementation of reactive response inhibition by the basal ganglia for differing degrees of proactive response control. Hum Brain Mapp 37:4706-4717, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inge Leunissen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
| | - James P Coxon
- Movement Neuroscience Laboratory, University of Auckland, New Zealand.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium.,Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| |
Collapse
|
27
|
Abstract
Complex behavior requires a flexible system that maintains task performance in the context of specific goals, evaluating behavioral progress, adjusting behavior as needed, and adapting to changing contingencies. Generically referred to as performance monitoring, a key component concerns the identification and correction of differences between an intended and an executed response (i.e., an error). Brain mapping experiments have now identified the temporal and spatial components of a putative error-processing system in the large-scale networks of the human brain. Most of this work has focused on the medial frontal cortex and an associated electrophysiological component known as the error-related negativity (or error negativity). Although the precise role, or roles, of this region still remain unknown, investigations of error processing have identified a cluster of modules in the medial frontal cortex involved in monitoring/maintaining ongoing behavior and motivating task sets. Other regions include bilateral anterior insula/inferior operculum and lateral prefrontal cortex. Recent work has begun to uncover how individual differences might affect the modules recruited for a task, in addition to the identification of associations between pathological states and aberrant error signals, leading to insights about possible mechanisms of neuropsychiatric illness. NEUROSCIENTIST 13(2):160—172, 2007.
Collapse
Affiliation(s)
- Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
28
|
Fang X, Zhang Y, Zhou Y, Cheng L, Li J, Wang Y, Friston KJ, Jiang T. Resting-State Coupling between Core Regions within the Central-Executive and Salience Networks Contributes to Working Memory Performance. Front Behav Neurosci 2016; 10:27. [PMID: 26941629 PMCID: PMC4766291 DOI: 10.3389/fnbeh.2016.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/08/2016] [Indexed: 01/24/2023] Open
Abstract
Previous studies investigated the distinct roles played by different cognitive regions and suggested that the patterns of connectivity of these regions are associated with working memory (WM). However, the specific causal mechanism through which the neuronal circuits that involve these brain regions contribute to WM is still unclear. Here, in a large sample of healthy young adults, we first identified the core WM regions by linking WM accuracy to resting-state functional connectivity with the bilateral dorsolateral prefrontal cortex (dLPFC; a principal region in the central-executive network, CEN). Then a spectral dynamic causal modeling (spDCM) analysis was performed to quantify the effective connectivity between these regions. Finally, the effective connectivity was correlated with WM accuracy to characterize the relationship between these connections and WM performance. We found that the functional connections between the bilateral dLPFC and the dorsal anterior cingulate cortex (dACC) and between the right dLPFC and the left orbital fronto-insular cortex (FIC) were correlated with WM accuracy. Furthermore, the effective connectivity from the dACC to the bilateral dLPFC and from the right dLPFC to the left FIC could predict individual differences in WM. Because the dACC and FIC are core regions of the salience network (SN), we inferred that the inter- and causal-connectivity between core regions within the CEN and SN is functionally relevant for WM performance. In summary, the current study identified the dLPFC-related resting-state effective connectivity underlying WM and suggests that individual differences in cognitive ability could be characterized by resting-state effective connectivity.
Collapse
Affiliation(s)
- Xiaojing Fang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Luqi Cheng
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Jin Li
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Yulin Wang
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University Chongqing, China
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijing, China; Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China; CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of SciencesBeijing, China; Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
29
|
Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Neuroimage 2015; 121:115-25. [DOI: 10.1016/j.neuroimage.2015.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 01/13/2023] Open
|
30
|
Perri RL, Berchicci M, Lucci G, Spinelli D, Di Russo F. Why do we make mistakes? Neurocognitive processes during the preparation-perception-action cycle and error-detection. Neuroimage 2015; 113:320-8. [PMID: 25812715 DOI: 10.1016/j.neuroimage.2015.03.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 11/15/2022] Open
Abstract
The event-related potential (ERP) literature described two error-related brain activities: the error-related negativity (Ne/ERN) and the error positivity (Pe), peaking immediately after the erroneous response. ERP studies on error processing adopted a response-locked approach, thus, the question about the activities preceding the error is still open. In the present study, we tested the hypothesis that the activities preceding the false alarms (FA) are different from those occurring in the correct (responded or inhibited) trials. To this aim, we studied a sample of 36 Go/No-go performers, adopting a stimulus-locked segmentation also including the pre-motor brain activities. Present results showed that neither pre-stimulus nor perceptual activities explain why we commit FA. In contrast, we observed condition-related differences in two pre-response components: the fronto-central N2 and the prefrontal positivity (pP), respectively peaking at 250 ms and 310 ms after the stimulus onset. The N2 amplitude of FA was identical to that recorded in No-go trials, and larger than Hits. Because the new findings challenge the previous interpretations on the N2, a new perspective is discussed. On the other hand, the pP in the FA trials was larger than No-go and smaller than Go, suggesting an erroneous processing at the stimulus-response mapping level: because this stage triggers the response execution, we concluded that the neural processes underlying the pP were mainly responsible for the subsequent error commission. Finally, sLORETA source analyses of the post-error potentials extended previous findings indicating, for the first time in the ERP literature, the right anterior insula as Pe generator.
Collapse
Affiliation(s)
- Rinaldo Livio Perri
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 15 Piazza Lauro de Bosis, 00135, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", 78 Via dei Marsi, 00185, Rome, Italy.
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 15 Piazza Lauro de Bosis, 00135, Rome, Italy
| | - Giuliana Lucci
- Department of Psychology, University of Rome "La Sapienza", 78 Via dei Marsi, 00185, Rome, Italy; Unit of Neuropsychology, IRCCS Santa Lucia Foundation, 306 Via Ardeatina, 00179 Rome, Italy
| | - Donatella Spinelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 15 Piazza Lauro de Bosis, 00135, Rome, Italy; Unit of Neuropsychology, IRCCS Santa Lucia Foundation, 306 Via Ardeatina, 00179 Rome, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 15 Piazza Lauro de Bosis, 00135, Rome, Italy; Unit of Neuropsychology, IRCCS Santa Lucia Foundation, 306 Via Ardeatina, 00179 Rome, Italy
| |
Collapse
|
31
|
Pavuluri M, May A. I Feel, Therefore, I am: The Insula and Its Role in Human Emotion, Cognition and the Sensory-Motor System. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.1.18] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Event-Related Brain Potentials in the Study of Inhibition: Cognitive Control, Source Localization and Age-Related Modulations. Neuropsychol Rev 2014; 24:461-90. [DOI: 10.1007/s11065-014-9275-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
33
|
Vasic N, Plichta MM, Wolf RC, Fallgatter AJ, Sosic-Vasic Z, Grön G. Reduced neural error signaling in left inferior prefrontal cortex in young adults with ADHD. J Atten Disord 2014; 18:659-70. [PMID: 22660917 DOI: 10.1177/1087054712446172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The neural network involved in inhibition of inappropriate response tendencies shares commonalities with the error-processing network, signaling failure of inhibition. Most studies on error processing in ADHD have been conducted in children using electrophysiological methods. METHOD Using event-related functional magnetic resonance imaging, the authors studied 14 adults with ADHD and 12 group-matched healthy control participants while performing a modified version of a combined Eriksen Flanker-Go/NoGo-task. RESULTS Patients with ADHD demonstrated significantly reduced error signaling in the left inferior frontal gyrus bordering the anterior insular cortex (BA 47), computed from the contrast of unsuccessful minus successful inhibition trials. CONCLUSION Hypoactivation of the left inferior frontal cortex during error signaling might represent a neurofunctional marker of a crucial prerequisite for error processing in adults with ADHD. This possibly indicates a dysfunction of the neural system that operates task-set related representations and monitoring of erroneous performances in service of ensuing posterror processing.
Collapse
Affiliation(s)
- Nenad Vasic
- University of Ulm, Baden-Württemberg, Germany
| | - Michael M Plichta
- Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany University of Heidelberg, Baden-Württemberg, Germany
| | - Robert C Wolf
- University of Heidelberg, Baden-Württemberg, Germany
| | | | | | - Georg Grön
- University of Ulm, Baden-Württemberg, Germany
| |
Collapse
|
34
|
Abstract
Rapid and reactive control of movement is essential in a dynamic environment and is disrupted in several neuropsychiatric disorders. Nonhuman primate neurophysiology studies have made significant contributions to our understanding of how saccadic eye movements can be rapidly inhibited, changed, and monitored. These results highlight a frontostriatal network involved in gaze control and provide a strong basis for understanding how cognitive control of action is implemented in the human brain. The goal of the present study was to bridge human and nonhuman primate studies by investigating reactive control of eye movements during fMRI using a task that has been used in neurophysiology studies: the search-step task. This task requires a speeded response to a visual target (no-step trial). On a minority (40%) of trials, the target jumps to a new location and participants are instructed to inhibit the initially planned saccade and redirect gaze toward the new location (redirect trial). Compared with no-step trials, greater activation in a frontal oculomotor network, including frontal and supplementary eye fields (SEFs), and the striatum was observed during correctly executed redirect trials. Individual differences in stopping efficiency were related to striatal activation. Further, greater activation in SEF was in a region anterior to that activated during visually guided saccades and scaled positively with error magnitude, suggesting a prominent role in response monitoring. Combined, these data lend new evidence for a role of the striatum in reactive saccade control and further clarify the role of SEF in action inhibition and performance monitoring.
Collapse
|
35
|
Steele VR, Claus ED, Aharoni E, Harenski C, Calhoun VD, Pearlson G, Kiehl KA. A large scale (N=102) functional neuroimaging study of error processing in a Go/NoGo task. Behav Brain Res 2014; 268:127-38. [PMID: 24726752 PMCID: PMC4095785 DOI: 10.1016/j.bbr.2014.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/29/2014] [Accepted: 04/03/2014] [Indexed: 01/08/2023]
Abstract
We report a functional magnetic resonance imaging (fMRI) study of 102 healthy participants who completed a demanding Go/NoGo task. The primary purpose of this study was to delineate the neural systems underlying responses to errors in a large sample. We identified a number of regions engaged during error processing including the anterior cingulate, left lateral prefrontal areas and bilateral inferior frontal gyrus, and the subthalamic nucleus. The power afforded by the large cohort enabled identification of regions not consistently measured during Go/NoGo tasks thus helping to incrementally refine our understanding of the neural correlates of error processing. With the present fMRI results, in combination with our previous exploration of response inhibition (Steele et al.), we outline a comprehensive set of regions associated with both response inhibition and error processing.
Collapse
Affiliation(s)
- Vaughn R Steele
- The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM 87106, USA; University of New Mexico, Albuquerque, USA.
| | - Eric D Claus
- The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM 87106, USA
| | - Eyal Aharoni
- The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM 87106, USA; University of New Mexico, Albuquerque, USA
| | - Carla Harenski
- The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM 87106, USA
| | - Vince D Calhoun
- The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM 87106, USA; University of New Mexico, Albuquerque, USA; Yale University School of Medicine, USA
| | - Godfrey Pearlson
- Yale University School of Medicine, USA; Olin Neuropsychiatry Research Center, Institute of Living, USA
| | - Kent A Kiehl
- The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM 87106, USA; University of New Mexico, Albuquerque, USA
| |
Collapse
|
36
|
Lavallee CF, Herrmann CS, Weerda R, Huster RJ. Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping. PLoS One 2014; 9:e96159. [PMID: 24763435 PMCID: PMC3999100 DOI: 10.1371/journal.pone.0096159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
Humans are rarely faced with one simple task, but are typically confronted with complex stimulus constellations and varying stimulus-relevance in a given situation. Through modifying the prototypical stop-signal task and by combined recording and analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), we studied the effects of stimulus relevance for the generation of a response or its inhibition. Stimulus response mappings were modified by contextual cues, indicating which of two different stimuli following a go stimulus was relevant for stopping. Overall, response inhibition, that is comparing successful stopping to a stop-signal against go-signal related processes, was associated with increased activity in right inferior and left midfrontal regions, as well as increased EEG delta and theta power; however, stimulus-response conditions in which the most infrequent stop-signal was relevant for inhibition, were associated with decreased activity in regions typically involved in response inhibition, as well as decreased activity in the delta and theta bands as compared to conditions wherein the relevant stop-signal frequency was higher. Behaviorally, this (aforementioned) condition, which demanded inhibition only from the most infrequent stimulus, was also associated with reduced reaction times and lower error rates. This pattern of results does not align with typical stimulus frequency-driven findings and suggests interplay between task relevance and stimulus frequency of the stop-signal. Moreover, with a multimodal EEG-fMRI analysis, we demonstrated significant parameterization for response inhibition with delta, theta and beta time-frequency values, which may be interpreted as reflecting conflict monitoring, evaluative and/or motor processes as suggested by previous work (Huster et al., 2013; Aron, 2011). Further multimodal results suggest a possible neurophysiological and behavioral benefit under conditions whereby the most infrequent stimulus demanded inhibition, indicating that the frequency of the stop-signal interacts with the current stimulus-response contingency. These results demonstrate that response inhibition is prone to influence from other cognitive functions, making it difficult to dissociate real inhibitory capabilities from the influence of moderating mechanisms.
Collapse
Affiliation(s)
- Christina F. Lavallee
- Experimental Psychology Lab, Psychology Department, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- * E-mail:
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Psychology Department, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Riklef Weerda
- Biological Psychology Lab, Psychology Department, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - René J. Huster
- Experimental Psychology Lab, Psychology Department, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
37
|
Sallard E, Barral J, Chavan CF, Spierer L. Early attentional processes distinguish selective from global motor inhibitory control: An electrical neuroimaging study. Neuroimage 2014; 87:183-9. [DOI: 10.1016/j.neuroimage.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022] Open
|
38
|
Zamorano F, Billeke P, Hurtado JM, López V, Carrasco X, Ossandón T, Aboitiz F. Temporal constraints of behavioral inhibition: relevance of inter-stimulus interval in a Go-Nogo task. PLoS One 2014; 9:e87232. [PMID: 24489875 PMCID: PMC3906165 DOI: 10.1371/journal.pone.0087232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/20/2013] [Indexed: 11/22/2022] Open
Abstract
The capacity to inhibit prepotent and automatic responses is crucial for proper cognitive and social development, and inhibitory impairments have been considered to be key for some neuropsychiatric conditions. One of the most used paradigms to analyze inhibitory processes is the Go-Nogo task (GNG). This task has been widely used in psychophysical and cognitive EEG studies, and more recently in paradigms using fMRI. However, a technical limitation is that the time resolution of fMRI is poorer than that of the EEG technique. In order to compensate for these temporal constraints, it has become common practice in the fMRI field to use longer inter-stimulus intervals (ISI) than those used in EEG protocols. Despite the noticeable temporal differences between these two techniques, it is currently assumed that both approaches assess similar inhibitory processes. We performed an EEG study using a GNG task with both short ISI (fast-condition, FC, as in EEG protocols) and long ISI (slow-condition, SC, as in fMRI protocols). We found that in the FC there was a stronger Nogo-N2 effect than in the SC. Moreover, in the FC, but not in the SC, the number of preceding Go trials correlated positively with the Nogo-P3 amplitude and with the Go trial reaction time; and negatively with commission errors. In addition, we found significant topographical differences for the Go-P3 elicited in FC and SC, which is interpreted in terms of different neurotransmitter dynamics. Taken together, our results provide evidence that frequency of stimulus presentation in the GNG task strongly modulates the behavioral response and the evoked EEG activity. Therefore, it is likely that short-ISI EEG protocols and long-ISI fMRI protocols do not assess equivalent inhibitory processes.
Collapse
Affiliation(s)
- Francisco Zamorano
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Pablo Billeke
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - José M. Hurtado
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Sistemas Complejos de Valparaíso, Valparaíso, Chile
| | - Vladimir López
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Carrasco
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Servicio de Neurología y Psiquiatría, Hospital Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile
| | - Tomás Ossandón
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Moeller SJ, Konova AB, Parvaz MA, Tomasi D, Lane RD, Fort C, Goldstein RZ. Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatry 2014; 71:61-70. [PMID: 24258223 PMCID: PMC4193926 DOI: 10.1001/jamapsychiatry.2013.2833] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IMPORTANCE Individuals with cocaine use disorder (CUD) have difficulty monitoring ongoing behavior, possibly stemming from dysfunction of brain regions mediating insight and self-awareness. OBJECTIVE To investigate the neural correlates of impaired insight in addiction using a combined functional magnetic resonance imaging and voxel-based morphometry approach. DESIGN, SETTING, AND PARTICIPANTS This multimodal imaging study was performed at the Clinical Research Center at Brookhaven National Laboratory. The study included 33 CUD cases and 20 healthy controls. MAIN OUTCOMES AND MEASURES Functional magnetic resonance imaging, voxel-based morphometry, Levels of Emotional Awareness Scale, and drug use variables. RESULTS Compared with the other 2 study groups, the impaired insight CUD group had lower error-induced rostral anterior cingulate cortex (rACC) activity as associated with more frequent cocaine use, less gray matter within the rACC, and lower Levels of Emotional Awareness Scale scores. CONCLUSIONS AND RELEVANCE These results point to rACC functional and structural abnormalities and diminished emotional awareness in a subpopulation of CUD cases characterized by impaired insight. Because the rACC has been implicated in appraising the affective and motivational significance of errors and other types of self-referential processing, functional and structural abnormalities in this region could result in lessened concern (frequently ascribed to minimization and denial) about behavioral outcomes that could potentially culminate in increased drug use. Treatments that target this CUD subgroup could focus on enhancing the salience of errors (eg, lapses).
Collapse
Affiliation(s)
- Scott J. Moeller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anna B. Konova
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| | - Muhammad A. Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | - Richard D. Lane
- Department of Psychiatry, University of Arizona, Tuscon, AZ 85724
| | - Carolyn Fort
- Department of Psychiatry, University of Arizona, Tuscon, AZ 85724
| | - Rita Z. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Correspondence and requests for materials should be addressed to: Rita Z. Goldstein, One Gustave L. Levy Place, Box 1230, New York, NY 10029-6574; tel. (212) 659-8838; fax (212) 996-8931;
| |
Collapse
|
40
|
Kopp B, Rösser N, Tabeling S, Stürenburg HJ, de Haan B, Karnath HO, Wessel K. Performance on the Frontal Assessment Battery is sensitive to frontal lobe damage in stroke patients. BMC Neurol 2013; 13:179. [PMID: 24237624 PMCID: PMC4225667 DOI: 10.1186/1471-2377-13-179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023] Open
Abstract
Background The Frontal Assessment Battery (FAB) is a brief battery of six neuropsychological tasks designed to assess frontal lobe function at bedside [Neurology 55:1621-1626, 2000]. The six FAB tasks explore cognitive and behavioral domains that are thought to be under the control of the frontal lobes, most notably conceptualization and abstract reasoning, lexical verbal fluency and mental flexibility, motor programming and executive control of action, self-regulation and resistance to interference, inhibitory control, and environmental autonomy. Methods We examined the sensitivity of performance on the FAB to frontal lobe damage in right-hemisphere-damaged first-ever stroke patients based on voxel-based lesion-behavior mapping. Results Voxel-based lesion-behavior mapping of FAB performance revealed that the integrity of the right anterior insula (BA13) is crucial for the FAB global composite score, for the FAB conceptualization score, as well as for the FAB inhibitory control score. Furthermore, the FAB conceptualization and mental flexibility scores were sensitive to damage of the right middle frontal gyrus (MFG; BA9). Finally, the FAB inhibitory control score was sensitive to damage of the right inferior frontal gyrus (IFG; BA44/45). Conclusions These findings indicate that several FAB scores (including composite and item scores) provide valid measures of right hemispheric lateral frontal lobe dysfunction, specifically of focal lesions near the anterior insula, in the MFG and in the IFG.
Collapse
Affiliation(s)
- Bruno Kopp
- Cognitive Neurology, Technische Universität Braunschweig, Salzdahlumer Str, 90, Braunschweig 38126, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Pawliczek CM, Derntl B, Kellermann T, Kohn N, Gur RC, Habel U. Inhibitory control and trait aggression: Neural and behavioral insights using the emotional stop signal task. Neuroimage 2013; 79:264-74. [DOI: 10.1016/j.neuroimage.2013.04.104] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 12/27/2022] Open
|
42
|
Parkinson J, Haggard P. Hedonic value of intentional action provides reinforcement for voluntary generation but not voluntary inhibition of action. Conscious Cogn 2013; 22:1253-61. [PMID: 24021853 DOI: 10.1016/j.concog.2013.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Intentional inhibition refers to stopping oneself from performing an action at the last moment, a vital component of self-control. It has been suggested that intentional inhibition is associated with negative hedonic value, perhaps due to the frustration of cancelling an intended action. Here we investigate hedonic implications of the free choice to act or inhibit. Participants gave aesthetic ratings of arbitrary visual stimuli that immediately followed voluntary decisions to act or to inhibit action. We found that participants for whom decisions to act produced a strong positive hedonic value for the immediately following visual stimulus made more choices to act than those with weaker hedonic value for action. This finding is consistent with reinforcement learning of action decisions. However, participants who experienced inhibition as generating more positive hedonic value did not choose to inhibit more than other participants. Thus, voluntary inhibition of action did not act as reinforcement for future inhibitory behaviour. Our finding that inhibition of action lacks motivational capacity may explain why self-control is both difficult and limited.
Collapse
Affiliation(s)
- Jim Parkinson
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | | |
Collapse
|
43
|
Bari A, Robbins TW. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog Neurobiol 2013; 108:44-79. [DOI: 10.1016/j.pneurobio.2013.06.005] [Citation(s) in RCA: 1193] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/24/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
|
44
|
Whalley HC, Sussmann JE, Romaniuk L, Stewart T, Papmeyer M, Sprooten E, Hackett S, Hall J, Lawrie SM, McIntosh AM. Prediction of depression in individuals at high familial risk of mood disorders using functional magnetic resonance imaging. PLoS One 2013; 8:e57357. [PMID: 23483904 PMCID: PMC3590244 DOI: 10.1371/journal.pone.0057357] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/21/2013] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Bipolar disorder is a highly heritable condition. First-degree relatives of affected individuals have a more than a ten-fold increased risk of developing bipolar disorder (BD), and a three-fold risk of developing major depressive disorder (MDD) than the general population. It is unclear however whether differences in brain activation reported in BD and MDD are present before the onset of illness. METHODS We studied 98 young unaffected individuals at high familial risk of BD and 58 healthy controls using functional Magnetic Resonance Imaging (fMRI) scans and a task involving executive and language processing. Twenty of the high-risk subjects subsequently developed MDD after the baseline fMRI scan. RESULTS At baseline the high-risk subjects who later developed MDD demonstrated relatively increased activation in the insula cortex, compared to controls and high risk subjects who remained well. In the healthy controls and high-risk group who remained well, this region demonstrated reduced engagement with increasing task difficulty. The high risk subjects who subsequently developed MDD did not demonstrate this normal disengagement. Activation in this region correlated positively with measures of cyclothymia and neuroticism at baseline, but not with measures of depression. CONCLUSIONS These results suggest that increased activation of the insula can differentiate individuals at high-risk of bipolar disorder who later develop MDD from healthy controls and those at familial risk who remain well. These findings offer the potential of future risk stratification in individuals at risk of mood disorder for familial reasons.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zandbelt BB, Bloemendaal M, Hoogendam JM, Kahn RS, Vink M. Transcranial Magnetic Stimulation and Functional MRI Reveal Cortical and Subcortical Interactions during Stop-signal Response Inhibition. J Cogn Neurosci 2013; 25:157-74. [DOI: 10.1162/jocn_a_00309] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Stopping an action requires suppression of the primary motor cortex (M1). Inhibitory control over M1 relies on a network including the right inferior frontal cortex (rIFC) and the supplementary motor complex (SMC), but how these regions interact to exert inhibitory control over M1 is unknown. Specifically, the hierarchical position of the rIFC and SMC with respect to each other, the routes by which these regions control M1, and the causal involvement of these regions in proactive and reactive inhibition remain unclear. We used off-line repetitive TMS to perturb neural activity in the rIFC and SMC followed by fMRI to examine effects on activation in the networks involved in proactive and reactive inhibition, as assessed with a modified stop-signal task. We found repetitive TMS effects on reactive inhibition only. rIFC and SMC stimulation shortened the stop-signal RT (SSRT) and a shorter SSRT was associated with increased M1 deactivation. Furthermore, rIFC and SMC stimulation increased right striatal activation, implicating frontostriatal pathways in reactive inhibition. Finally, rIFC stimulation altered SMC activation, but SMC stimulation did not alter rIFC activation, indicating that rIFC lies upstream from SMC. These findings extend our knowledge about the functional organization of inhibitory control, an important component of executive functioning, showing that rIFC exerts reactive control over M1 via SMC and right striatum.
Collapse
|
46
|
Hendrick OM, Luo X, Zhang S, Li CSR. Saliency processing and obesity: a preliminary imaging study of the stop signal task. Obesity (Silver Spring) 2012; 20:1796-802. [PMID: 21720427 PMCID: PMC3653271 DOI: 10.1038/oby.2011.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity has been associated with altered cerebral functions including cognitive control. The stop signal task (SST) has been widely used to study cognitive control by producing high conflict stop trials among many low conflict go trials. Contrasting these stop trials with go trials provides a measure of saliency processing and response inhibition. By comparing functional magnetic resonance images of obese (BMI >30) and lean (BMI <22) females performing the SST, we observed differences in regional brain activations despite similar behavioral performance between groups. Specifically, lean females had greater activations in the insula, inferior parietal cortex, cuneus, and supplementary motor area than obese females during stop as compared to go trials. This difference was caused by diminished brain activations in obese females in stop as compared to go trials. Furthermore, the brain activations in these regions inversely correlated to BMI across subjects. These preliminary findings suggest altered neural processes of cognitive control in obesity.
Collapse
Affiliation(s)
- Olivia M Hendrick
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
47
|
Farr OM, Hu S, Zhang S, Li CSR. Decreased saliency processing as a neural measure of Barratt impulsivity in healthy adults. Neuroimage 2012; 63:1070-7. [PMID: 22885245 DOI: 10.1016/j.neuroimage.2012.07.049] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/27/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Cognitive control is necessary to navigating through an uncertain world. With the stop signal task (SST), we measure how cognitive control functions in a controlled environment. There has been conflicting evidence on whether trait impulsivity might reflect differences in cognitive control during the SST. While some studies find that trait impulsivity relates to measures of response inhibition, such as the stop signal reaction time (SSRT), other studies do not. Here, in 92 young adult participants (58 females; age 25 ± 4 years), we examined whether trait impulsivity, measured by the Barratt impulsivity scale (BIS-11), is associated with differences in performance and regional brain activations for the component processes of cognitive control during the SST. Across participants, trait impulsivity showed a trend-level correlation with SSRT (F(1.90)=3.18, p<.07; Pearson regression). In simple regressions, activation of the right anterior dorsal insula and middle frontal cortex (MFC) during stop as compared to go trials negatively correlated with motor and non-planning impulsivity score. Using the generalized form of psychophysiological interaction (gPPI), we showed that functional connectivity of the right insula and MFC with the left dorsolateral prefrontal cortex and bilateral visual areas were also negatively correlated with impulsivity. None of the other component processes of cognitive control, including response inhibition, error processing, post-error slowing, were significantly related to Barratt impulsivity. These results suggest that trait impulsivity as measured by BIS-11 may have distinct effects on saliency processing in adult individuals.
Collapse
Affiliation(s)
- Olivia M Farr
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
48
|
Pauls AM, O'Daly OG, Rubia K, Riedel WJ, Williams SCR, Mehta MA. Methylphenidate effects on prefrontal functioning during attentional-capture and response inhibition. Biol Psychiatry 2012; 72:142-9. [PMID: 22552046 DOI: 10.1016/j.biopsych.2012.03.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/01/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Methylphenidate improves motor response inhibition, typically assessed with the stop-signal task. The exact underlying mechanism for this, however, remains unknown. In addition, recent studies highlight that stop signals can have a confounding attentional-capture effect because of their low frequency in the task. In the current study, we assessed the effects of methylphenidate on neural networks of inhibitory control and attentional-capture within the context of two inhibitory control tasks. METHODS The effects of methylphenidate (40 mg) were assessed using functional magnetic resonance imaging in 16 healthy volunteers in a within-subject, double-blind, placebo-controlled design. RESULTS Methylphenidate significantly reduced activation of different regions within the right inferior frontal gyrus/insula to infrequent stimuli associated with successful inhibition, failed inhibition, and attentional capture. These inferior frontal gyrus regions showed different interregional connections with inhibitory and attention networks. For failed inhibitions, methylphenidate increased activation within performance-monitoring regions, including the superior frontal, anterior cingulate, and parietal-occipital cortices, but only after controlling for attentional capture. CONCLUSIONS Our findings suggest that the improvement of response inhibition seen following methylphenidate administration is due to its influence on underlying attentional mechanisms linked to response control requirements.
Collapse
Affiliation(s)
- Astrid M Pauls
- Department of Neuroimaging, Institute of Psychiatry, King's College London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
49
|
Krämer UM, Solbakk AK, Funderud I, Løvstad M, Endestad T, Knight RT. The role of the lateral prefrontal cortex in inhibitory motor control. Cortex 2012; 49:837-49. [PMID: 22699024 DOI: 10.1016/j.cortex.2012.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/20/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
Research on inhibitory motor control has implicated several prefrontal as well as subcortical and parietal regions in response inhibition. Whether prefrontal regions are critical for inhibition, attention or task-set representation is still under debate. We investigated the influence of the lateral prefrontal cortex (PFC) in a response inhibition task by using cognitive electrophysiology in prefrontal lesion patients. Patients and age- and education-matched controls performed in a visual Stop-signal task featuring lateralized stimuli, designed to challenge either the intact or lesioned hemisphere. Participants also underwent a purely behavioral Go/Nogo task, which included a manipulation of inhibition difficulty (blocks with 50 vs. 80% go-trials) and a Change-signal task that required switching to an alternative response. Patients and controls did not differ in their inhibitory speed (stop-signal and change-signal reaction time, SSRT and CSRT), but patients made more errors in the Go/Nogo task and showed more variable performance. The behavioral data stress the role of the PFC in maintaining inhibitory control but not in actual inhibition. These results support a dissociation between action cancellation and PFC-dependent action restraint. Laplacian transformed event-related potentials (ERPs) revealed reduced parietal activity in PFC patients in response to the stop-signals, and increased frontal activity over the intact hemisphere. This electrophysiological finding supports altered PFC-dependent visual processing of the stop-signal in parietal areas and compensatory activity in the intact frontal cortex. No group differences were found in the mu and beta decrease as measures of response preparation and inhibition at electrodes over sensorimotor cortex. Taken together, the data provide evidence for a central role of the lateral PFC in attentional control in the context of response inhibition.
Collapse
Affiliation(s)
- Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Civai C, Crescentini C, Rustichini A, Rumiati RI. Equality versus self-interest in the brain: differential roles of anterior insula and medial prefrontal cortex. Neuroimage 2012; 62:102-12. [PMID: 22548807 DOI: 10.1016/j.neuroimage.2012.04.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022] Open
Abstract
Everything else being the same, an equal outcome is generally preferred; however, an equitable allocation sometimes is possible only by sacrificing the total amount of resources available to society. Moreover, direct interests may interact with the perception of equality. Here, we have investigated individual preferences, and their neural basis, by employing a task in which an allocation of a fixed amount between the subject and another person (MS condition) or two third parties (TP condition) is randomly determined. The subject can accept or reject the outcome, in the same fashion as the Ultimatum Game: thus an unequal offer may be rejected at the cost of a loss in total amount. Behavioral results show preference for equal outcomes in TP and for equal and advantageous outcomes in MS. An activation of medial prefrontal cortex (mPFC), extending to the anterior middle cingulate cortex (aMCC), was found in MS unequal outcomes, particularly for disadvantageous outcomes and consequent rejections. The anterior insula (AI) was active for unequal outcomes, in both MS and TP. We propose that the equal treatment is a default social norm, and its violation is signaled by the AI, whereas aMCC/mPFC activation, negatively correlated to rejections, reflects the effort to overcome the default rule of equal treatment in favor of a self-advantageous efficiency.
Collapse
Affiliation(s)
- Claudia Civai
- Cognitive Neuroscience Sector, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste (TS), Italy.
| | | | | | | |
Collapse
|