1
|
Yu R, Kong DL, Liao C, Yu YJ, He ZW, Wang Y. Natural products as the therapeutic strategies for addiction. Biomed Pharmacother 2024; 175:116687. [PMID: 38701568 DOI: 10.1016/j.biopha.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
World Drug Report 2023 concluded that 296 million people abused drugs, 39.5 million became addiction and 494,000 died as a direct or indirect result of addiction. Addiction has become a growing problem that affects individuals, their families, societies, countries and even the world. However, treatment for addiction is only limited to some developed countries because of the high cost, difficult implementation, and time consuming. Therefore, there is an urgent need to develop a low-cost, effective drug for the development of addiction treatment in more countries, which is essential for the stability and sustainable development of the world. In this review, it provided an overview of the abuse of common addictive drugs, related disorders, and current therapeutic regimen worldwide, and summarized the mechanisms of drug addiction as reward circuits, neuroadaptation and plasticity, cognitive decision-making, genetics, and environment. According to their chemical structure, 43 natural products and 5 herbal combinations with potential to treat addiction were classified, and their sources, pharmacological effects and clinical trials were introduced. It was also found that mitragine, ibogine, L-tetrahydropalmatine and crocin had greater potential for anti-addiction.
Collapse
Affiliation(s)
- Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Guo C, Chen L, Wang Y. Substance abuse and neurodegenerative diseases: focus on ferroptosis. Arch Toxicol 2023; 97:1519-1528. [PMID: 37100932 DOI: 10.1007/s00204-023-03505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Psychostimulants and alcohol are widely abused substances with the adverse effects on global public health. Substance abuse seriously harms people's health and causes various diseases, especially neurodegenerative diseases. Neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The pathogenesis of neurodegenerative diseases is complex and diverse, usually involving oxidative stress, mitochondrial dysfunction, metal homeostasis disorder, and neuro-inflammation. The precise molecular mechanisms underlying neurodegeneration remain unclear, which is a major obstacle to therapeutic approaches. Therefore, it is urgent to improve the understanding of the molecular mechanisms of neurodegenerative processes and to identify the therapeutic targets for treatment and prevention. Ferroptosis is a regulatory cell necrosis caused by iron ion catalysis and lipid peroxidation induced by reactive oxygen species (ROS), which is thought to be associated with nervous system diseases, particularly neurodegenerative diseases. This review overviewed the ferroptosis process and explored the relationship of ferroptosis with substance abuse and neurodegenerative diseases, which provides a new way to study the molecular mechanisms of neurodegenerative diseases induced by alcohol, cocaine, and methamphetamine (MA), and also provides the potential therapeutic targets for substance abuse-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Guo
- School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Lei Chen
- International Education School, China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
3
|
Watling SE, Jagasar S, McCluskey T, Warsh J, Rhind SG, Truong P, Chavez S, Houle S, Tong J, Kish SJ, Boileau I. Imaging oxidative stress in brains of chronic methamphetamine users: A combined 1H-magnetic resonance spectroscopy and peripheral blood biomarker study. Front Psychiatry 2023; 13:1070456. [PMID: 36704729 PMCID: PMC9871559 DOI: 10.3389/fpsyt.2022.1070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Preclinical data suggest methamphetamine (MA), a widely used stimulant drug, can harm the brain by causing oxidative stress and inflammation, but only limited information is available in humans. We tested the hypothesis that levels of glutathione (GSH), a major antioxidant, would be lower in the brains of chronic human MA preferring polysubstance users. We also explored if concentrations of peripheral immunoinflammatory blood biomarkers were related with brain GSH concentrations. Methods 20 healthy controls (HC) (33 years; 11 M) and 14 MA users (40 years; 9 M) completed a magnetic resonance spectroscopy (MRS) scan, with GSH spectra obtained by the interleaved J-difference editing MEGA-PRESS method in anterior cingulate cortex (ACC) and left dorsolateral prefrontal cortex (DLPFC). Peripheral blood samples were drawn for measurements of immunoinflammatory biomarkers. Independent samples t-tests evaluated MA vs. HC differences in GSH. Results GSH levels did not differ between HC and MA users (ACC p = 0.30; DLPFC p = 0.85). A total of 17 of 25 immunoinflammatory biomarkers were significantly elevated in MA users and matrix metalloproteinase (MMP)-2 (r = 0.577, p = 0.039), myeloperoxidase (MPO) (r = -0.556, p = 0.049), and MMP-9 (r = 0.660, p = 0.038) were correlated with brain levels of GSH. Conclusion Normal brain GSH in living brain of chronic MA users is consistent with our previous postmortem brain finding and suggests that any oxidative stress caused by MA, at the doses used by our participants, might not be sufficient to cause either a compensatory increase in, or substantial overutilization of, this antioxidant. Additionally, more research is required to understand how oxidative stress and inflammatory processes are related and potentially dysregulated in MA use.
Collapse
Affiliation(s)
- Sarah E. Watling
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Kish
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Pérez MJ, Carden TR, Dos Santos Claro PA, Silberstein S, Páez PM, Cheli VT, Correale J, Pasquini JM. Transferrin Enhances Neuronal Differentiation. ASN Neuro 2023; 15:17590914231170703. [PMID: 37093743 PMCID: PMC10134178 DOI: 10.1177/17590914231170703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Although transferrin (Tf) is a glycoprotein best known for its role in iron delivery, iron-independent functions have also been reported. Here, we assessed apoTf (aTf) treatment effects on Neuro-2a (N2a) cells, a mouse neuroblastoma cell line which, once differentiated, shares many properties with neurons, including process outgrowth, expression of selective neuronal markers, and electrical activity. We first examined the binding of Tf to its receptor (TfR) in our model and verified that, like neurons, N2a cells can internalize Tf from the culture medium. Next, studies on neuronal developmental parameters showed that Tf increases N2a survival through a decrease in apoptosis. Additionally, Tf accelerated the morphological development of N2a cells by promoting neurite outgrowth. These pro-differentiating effects were also observed in primary cultures of mouse cortical neurons treated with aTf, as neurons matured at a higher rate than controls and showed a decrease in the expression of early neuronal markers. Further experiments in iron-enriched and iron-deficient media showed that Tf preserved its pro-differentiation properties in N2a cells, with results hinting at a modulatory role for iron. Moreover, N2a-microglia co-cultures revealed an increase in IL-10 upon aTf treatment, which may be thought to favor N2a differentiation. Taken together, these findings suggest that Tf reduces cell death and favors the neuronal differentiation process, thus making Tf a promising candidate to be used in regenerative strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- María Julia Pérez
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Tomas Roberto Carden
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Paula Ayelen Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBIoBA), CONICET-Partner Institute of The Max Plank Society, Buenos Aires, Argentina
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBIoBA), CONICET-Partner Institute of The Max Plank Society, Buenos Aires, Argentina
| | - Pablo Martin Páez
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, New York, USA
| | - Veronica Teresita Cheli
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jorge Correale
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | - Juana M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
6
|
Dysregulation of iron homeostasis and methamphetamine reward behaviors in Clk1-deficient mice. Acta Pharmacol Sin 2022; 43:1686-1698. [PMID: 34811513 PMCID: PMC9253021 DOI: 10.1038/s41401-021-00806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study, we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.
Collapse
|
7
|
Hašková P, Applová L, Jansová H, Homola P, Franz KJ, Vávrová K, Roh J, Šimůnek T. Examination of diverse iron-chelating agents for the protection of differentiated PC12 cells against oxidative injury induced by 6-hydroxydopamine and dopamine. Sci Rep 2022; 12:9765. [PMID: 35697900 PMCID: PMC9192712 DOI: 10.1038/s41598-022-13554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.
Collapse
Affiliation(s)
- Pavlína Hašková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Applová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Hana Jansová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Pavel Homola
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | | | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Su H, Yang P, Chen T, Deng D, Zhong N, Jiang H, Du J, Peng S, Zhao M. Metabolomics changes after rTMS intervention reveal potential peripheral biomarkers in methamphetamine dependence. Eur Neuropsychopharmacol 2022; 56:80-88. [PMID: 34990999 DOI: 10.1016/j.euroneuro.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022]
Abstract
Methamphetamine is one of the most commonly used drugs around the world, leading to serious public health and psychiatric problems. Due to the lackness of objective laboratory evaluation indicators, the molecular mechanisms of methamphetamine dependence still remain unclear. Previous evidence demonstrated that repetitive transcranial magnetic stimulation (rTMS) may be useful in treating drug addiction. The aim of this study was to identify and validate plasma metabolomics biomarkers in patients with methamphetamine use disorder before and after rTMS intervention. An untargeted gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) based metabolomics approach was applied to characterize the metabolic profile of forty methamphetamine dependent subjects and thirty-eight healthy controls in peripheral blood mononuclear cells (PBMCs). Patients were randomized to receive either rTMS or sham over the DLPFC for four weeks (20 daily sessions, 900 pulses per day). Cognitive function were assessed before and after rTMS intervention. Eight PBMC metabolites responsible for distinguishing real rTMS from sham treatment were identified. These metabolites were mainly involved in energy metabolism and oxidative stress. Compared with baseline, the expression of three metabolites was reversed after rTMS intervention: alpha-tocopherol, glyceric acid and fumaric acid. Changes of the alpha-tocopherol were associated with cognitive function improvement following rTMS. These findings suggest that energy metabolism and oxidative stress system may be associated with the effect of rTMS on cognitive function in methamphetamine dependence, and warrant further investigation.
Collapse
Affiliation(s)
- Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingyuan Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Mitochondrial Clk1-iron-DAT regulation pathway: a possible new therapeutic target for methamphetamine use disorder. Acta Pharmacol Sin 2021; 43:1887-1888. [PMID: 34873315 PMCID: PMC9343602 DOI: 10.1038/s41401-021-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
|
10
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
11
|
Tian Y, He Y, Song W, Zhang E, Xia X. Neuroprotective effect of deferoxamine on N-methyl-d-aspartate-induced excitotoxicity in RGC-5 cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:827-834. [PMID: 28910980 DOI: 10.1093/abbs/gmx082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 01/20/2023] Open
Abstract
Many N-methyl-d-aspartate (NMDA) receptor antagonists have been used to treat neurodegenerative diseases induced by glutamate excitotoxicity in clinics. However, the universality of the glutamic acid neurotransmitter system makes the glutamic acid receptor blockers inefficient and unsafe. Thus, regulating the downstream signaling pathway in the excitotoxicity of glutamic acid may be a more effective and safer way to antagonize the glutamic acid receptor. In this study, we investigated the effect of deferoxamine (DFO), an iron chelator, on the NMDA-induced excitotoxicity. RGC-5 cells were cultured and identified in vitro, and the NMDA-induced injury was assessed. Then the MTT assay was used to estimate the cell survival and JC-1 staining was performed to detect changes in mitochondrial membrane potential. Immunofluorescent staining and western blot analysis were used to analyze the expressions of respiratory chain proteins. It was found that DFO increased the survival rate of RGC-5 cells and that this effect was positively correlated with the concentration of DFO and the treatment time. The mitochondrial membrane potential and the expression levels of succinate dehydrogenase subunit A and cytochrome c oxidase subunit IV were also increased after DFO treatment, while NMDA reduced their expression levels. These data demonstrate that DFO has significant neuroprotective activity against NMDA-induced excitotoxicity in RGC-5 cells.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ye He
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weitao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Endong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Moszczynska A, Callan SP. Molecular, Behavioral, and Physiological Consequences of Methamphetamine Neurotoxicity: Implications for Treatment. J Pharmacol Exp Ther 2017; 362:474-488. [PMID: 28630283 PMCID: PMC11047030 DOI: 10.1124/jpet.116.238501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/09/2017] [Indexed: 04/28/2024] Open
Abstract
Understanding the relationship between the molecular mechanisms underlying neurotoxicity of high-dose methamphetamine (METH) and related clinical manifestations is imperative for providing more effective treatments for human METH users. This article provides an overview of clinical manifestations of METH neurotoxicity to the central nervous system and neurobiology underlying the consequences of administration of neurotoxic METH doses, and discusses implications of METH neurotoxicity for treatment of human abusers of the drug.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Sean Patrick Callan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
13
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
14
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
15
|
Tung CS, Chang ST, Huang CL, Huang NK. The neurotoxic mechanisms of amphetamine: Step by step for striatal dopamine depletion. Neurosci Lett 2017; 639:185-191. [PMID: 28065841 DOI: 10.1016/j.neulet.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 11/29/2022]
Abstract
Amphetamine (AMPH) is a commonly abused psychostimulant that induces neuronal cell death/degeneration in humans and experimental animals. Although multiple neurotoxic mechanisms of AMPH have been intensively investigated, the interplay between these mechanisms has remained elusive. In this study, we used a rat model of AMPH-induced long-lasting striatal dopamine (DA) depletion and identified mechanisms of neurotoxicity, energy failure, excitotoxicity, and oxidative stress. Pretreatment with nicotinamide (NAM, a co-factor for the electron transport chain) blocked AMPH-induced free radical formation, energy failure, and striatal DA decrease. Also, MK-801 (a NMDA receptor antagonist) blocked AMPH-induced free radical formation and striatal DA but not energy failure decrease, indicating excitotoxicity may occur before free radical formation and after energy failure. Thus, these results show that during AMPH intoxication, energy failure, excitotoxicity, and free radical formation are orchestrated consecutively to mediate the depletion of striatal DA.
Collapse
Affiliation(s)
- Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Shang-Tang Chang
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
| | - Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, Hsintien, New Taipei City, Taiwan, ROC; Graduate Institute of Physiology & Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Nai-Kuei Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
Wong YK, Chou MK, Shen YC, Wang YH, Yen JC, Chen CF, Lin SK, Liao JF. Preventive effect of baicalein on methamphetamine-induced amnesia in the passive avoidance test in mice. Pharmacology 2014; 93:278-85. [PMID: 25170749 DOI: 10.1159/000365008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Methamphetamine abuse may produce cognitive impairment. Baicalein, a bioactive flavonoid, has antioxidative, anti-inflammatory and neuroprotective effects. This study examined the effects of baicalein pretreatment on memory performance in the passive avoidance test after either one dose or an acute binge of methamphetamine in Institute of Cancer Research (ICR) mice. METHODS Methamphetamine was administered by intraperitoneal (i.p.) injection of either one dose (3 mg/kg) or an acute binge (3 mg/kg, 4 i.p. injections at 2-hour intervals). The effects of baicalein pretreatment (1 mg/kg, i.p.) on methamphetamine-induced changes of locomotor activity and memory performance were compared with those of eticlopride, a selective dopamine D2 receptor antagonist. The effects of baicalein on acute binge methamphetamine-induced oxidative stress (malondialdehyde- and nitrotyrosine-modified protein production) in the mouse hippocampus were also examined. RESULTS One-dose methamphetamine treatment (i.p., 30 min before or immediately after the training trial) induced hyperlocomotion and amnesia in mice, which were blocked by eticlopride but not by baicalein pretreatment. The memory performance in mice was impaired 5 days after acute binge methamphetamine, which was significantly attenuated by baicalein but not by eticlopride pretreatment. Baicalein pretreatment also attenuated acute binge methamphetamine-induced oxidative stress in the mouse hippocampus. CONCLUSIONS Baicalein exhibits antioxidative and neuroprotective effects in attenuating acute binge methamphetamine-induced memory deficits and oxidative hippocampal damage.
Collapse
Affiliation(s)
- Yi-Kuei Wong
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther 2014; 144:28-40. [PMID: 24836729 DOI: 10.1016/j.pharmthera.2014.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/30/2023]
Abstract
Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine.
Collapse
|
18
|
Shah A, Kumar S, Simon SD, Singh DP, Kumar A. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis 2013; 4:e850. [PMID: 24113184 PMCID: PMC3824683 DOI: 10.1038/cddis.2013.374] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/05/2013] [Accepted: 08/20/2013] [Indexed: 11/09/2022]
Abstract
HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS-mediated apoptotic cell death. In conclusion, this is the first report on the involvement of CYP and NOX pathways in gp120/MA-induced oxidative stress and apoptotic cell death in astrocytes, which has clinical implications in neurodegenerative diseases, including neuroAIDS.
Collapse
Affiliation(s)
- A Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
19
|
Esparza JL, Garcia T, Gómez M, Nogués MR, Giralt M, Domingo JL. Role of deferoxamine on enzymatic stress markers in an animal model of Alzheimer's disease after chronic aluminum exposure. Biol Trace Elem Res 2011; 141:232-45. [PMID: 20455029 DOI: 10.1007/s12011-010-8715-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/22/2010] [Indexed: 01/09/2023]
Abstract
The effect of the chelator deferoxamine (DFO) on the activity of enzymatic stress markers was assessed in amyloid beta peptide (AβPP) transgenic mice, an animal model of Alzheimer's disease, after oral aluminum (Al) exposure for 6 months. AβPP transgenic (Tg2576) and C57BL6/SJL wild-type mice of 5 months of age were fed a diet supplemented with Al lactate (1 mg of Al/g food). Four groups of Tg2576 and wild-type animals were used: control, Al only, DFO only, and Al plus DFO. Mice in the DFO-treated groups received also subcutaneous injections of 0.20 mmol/kg/d of this chelating agent twice a week until the end of the study at 11 months of age. The hippocampus, cerebellum, and cortex were removed and processed to examine a number of oxidative stress markers. Furthermore, the expression of Cu-Zn superoxide dismutase, glutathione reductase, and catalase was evaluated by quantitative reverse transcriptase polymerase chain reaction analysis. Aluminum levels in the hippocampus of Tg2576 mice were higher than those found in cerebellum and cortex, while the main oxidative effects were evidenced in the presence of DFO only. Oral Al exposure of AβPP transgenic mice would have some potential to promote pro-oxidant events, while DFO administration would not help in preventing these deleterious effects.
Collapse
Affiliation(s)
- José L Esparza
- Laboratory of Toxicology and Environmental Health, IISPV, School of Medicine Universitat Rovira i Virgili, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Moszczynska A, Yamamoto BK. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem 2011; 116:1005-17. [PMID: 21166679 DOI: 10.1111/j.1471-4159.2010.07147.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methamphetamine (METH) is toxic to dopaminergic (DAergic) terminals in animals and humans. An early event in METH neurotoxicity is an oxidative stress followed by damage to proteins and lipids. The removal of damaged proteins is accomplished by the ubiquitin-proteasome system (UPS) and the impairment of this system can cause neurodegeneration. Whether dysfunction of the UPS contributes to METH toxicity to DAergic terminals has not been determined. The present investigation examined the effects of METH on functions of parkin and proteasome in rat striatal synaptosomes. METH rapidly modified parkin via conjugation with 4-hydroxy-2-nonenal (4-HNE) to decrease parkin levels and decreased the activity of the 26S proteasome while simultaneously increasing chymotrypsin-like activity and 20S proteasome levels. Prior injections of vitamin E diminished METH-induced changes to parkin and the 26S proteasome as well as long-term decreases in DA and its metabolites' concentrations in striatal tissue. These results suggest that METH causes lipid peroxidation-mediated damage to parkin and the 26S proteasome. As the changes in parkin and 26S occur before the sustained deficits in DAergic markers, an early loss of UPS function may be important in mediating the long-term degeneration of striatal DAergic terminals via toxic accumulation of parkin substrates and damaged proteins.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, USA.
| | | |
Collapse
|
21
|
Abstract
Iron (Fe) is an essential element for many metabolic processes, serving as a cofactor for heme and nonheme proteins. Cellular iron deficiency arrests cell growth and leads to cell death; however, like most transition metals, an excess of intracellular iron is toxic. The ability of Fe to accept and donate electrons can lead to the formation of reactive nitrogen and oxygen species, and oxidative damage to tissue components; contributing to disease and, perhaps, aging itself. It has also been suggested that iron-induced oxidative stress can play a key role in the pathogenesis of several neurodegenerative diseases. Iron progressively accumulates in the brain both during normal aging and neurodegenerative processes. However, iron accumulation occurs without the concomitant increase in tissue ferritin, which could increase the risk of oxidative stress. Moreover, high iron concentrations in the brain have been consistently observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In this regard, metalloneurobiology has become extremely important in understanding the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms involved in high iron induced in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| |
Collapse
|
22
|
Zhang X, Banerjee A, Banks WA, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Brain Res 2009; 1275:87-95. [PMID: 19374890 PMCID: PMC2702674 DOI: 10.1016/j.brainres.2009.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays an important role in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Methamphetamine (METH) is an amphetamine analog that causes degeneration of the dopaminergic system in mammals and subsequent oxidative stress. In our present study, we have used immortalized human brain microvascular endothelial (HBMVEC) cells to test whether N-acetylcysteine amide (NACA), a novel antioxidant, prevents METH-induced oxidative stress in vitro. Our studies showed that NACA protects against METH-induced oxidative stress in HBMVEC cells. NACA significantly protected the integrity of our blood brain barrier (BBB) model, as shown by permeability and trans-endothelial electrical resistance (TEER) studies. NACA also significantly increased the levels of intracellular glutathione (GSH) and glutathione peroxidase (GPx). Malondialdehyde (MDA) levels increased dramatically after METH exposure, but this increase was almost completely prevented when the cells were treated with NACA. Generation of reactive oxygen species (ROS) also increased after METH exposure, but was reduced to control levels with NACA treatment, as measured by dichlorofluorescin (DCF). These results suggest that NACA protects the BBB integrity in vitro, which could prevent oxidative stress-induced damage; therefore, the effectiveness of this antioxidant should be evaluated for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Xinsheng Zhang
- Department of Chemistry, Missouri University of Science & Technology, Rolla MO 65409
| | - Atrayee Banerjee
- Department of Chemistry, Missouri University of Science & Technology, Rolla MO 65409
| | - William A. Banks
- Departments of Internal Medicine, Geriatric Division and Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63106
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science & Technology, Rolla MO 65409
| |
Collapse
|
23
|
Iron is a potential key mediator of glutamate excitotoxicity in spinal cord motor neurons. Brain Res 2009; 1257:102-7. [DOI: 10.1016/j.brainres.2008.12.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022]
|
24
|
de Lima MNM, Dias CP, Torres JP, Dornelles A, Garcia VA, Scalco FS, Guimarães MR, Petry RC, Bromberg E, Constantino L, Budni P, Dal-Pizzol F, Schröder N. Reversion of age-related recognition memory impairment by iron chelation in rats. Neurobiol Aging 2008; 29:1052-9. [PMID: 17346856 DOI: 10.1016/j.neurobiolaging.2007.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 12/26/2006] [Accepted: 02/05/2007] [Indexed: 01/17/2023]
Abstract
It is now generally accepted that iron accumulates in the brain during the ageing process. Increasing evidence demonstrate that iron accumulation in selective regions of the brain may generate free radicals, thereby possessing implications for the etiology of neurodegenerative disorders. In a previous study we have reported that aged rats present recognition memory deficits. The aim of the present study was to evaluate the effect of desferoxamine (DFO), an iron chelator agent, on age-induced memory impairment. Aged Wistar rats received intraperitoneal injections of saline or DFO (300mg/kg) for 2 weeks. The animals were submitted to a novel object recognition task 24h after the last injection. DFO-treated rats showed normal recognition memory while the saline group showed long-term recognition memory deficits. The results show that DFO is able to reverse age-induced recognition memory deficits. We also demonstrated that DFO reduced the oxidative damage to proteins in cortex and hippocampus. Thus, the present findings provide the first evidence that iron chelators might prevent age-related memory dysfunction.
Collapse
Affiliation(s)
- Maria Noêmia Martins de Lima
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Valvassori SS, Petronilho FC, Réus GZ, Steckert AV, Oliveira VBM, Boeck CR, Kapczinski F, Dal-Pizzol F, Quevedo J. Effect of N-acetylcysteine and/or deferoxamine on oxidative stress and hyperactivity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1064-8. [PMID: 18403082 DOI: 10.1016/j.pnpbp.2008.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
Studies have consistently reported the participation of free radicals in Bipolar Disorder. Administration of d-amphetamine (d-AMPH) is a relevant animal model of mania and it increases oxidative stress in rat brain. Evidences indicate that the antioxidants N-acetylcysteine (NAC) and Deferoxamine (DFX) exert protective effects in the brain. The present study was designed to evaluate the effects of NAC, DFX or their combination on AMPH-induced hyperactivity. The protein oxidation levels were analyzed in prefrontal cortex and hippocampus. In the first animal model (reversal treatment), adult male Wistar rats received saline or d-AMPH for 14 days, and from the 8th to the 14th day, they were treated with saline, NAC, DFX, or NAC plus DFX. In the second animal model (prevention treatment), rats were pretreated with saline or antioxidant regime, and from the 8th to the 14th day, they also received saline or d-AMPH. In the prefrontal cortex, the protein carbonyls were not affected by the treatment with antioxidants alone but it was increased by treatment with NAC plus DFX. At the same model, NAC plus DFX reversed the protein damage in the hippocampus, but NAC alone increased this damage. In the prevention treatment, it was observed that the protein damage in the prefrontal cortex was prevented by DFX or NAC plus DFX. In the hippocampus, the pretreatment with all antioxidant regime prevented protein damage induced by d-AMPH. At both treatments (reversal or prevention) the antioxidants did not present any effect against d-AMPH-induced hyperactivity. In conclusion, NAC or DFX and the combination of NAC plus DFX reverse and protect against d-AMPH-induced oxidative protein damage. Using these protocols we could not observe affects on locomotion, however this effect varies depending on the brain region and the treatment regime.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gagné F, Cejka P, André C, Hausler R, Blaise C. Neurotoxicological effects of a primary and ozonated treated wastewater on freshwater mussels exposed to an experimental flow-through system. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:460-70. [PMID: 17662667 DOI: 10.1016/j.cbpc.2007.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 11/19/2022]
Abstract
The neurotoxic potential of a primary-treated and ozonated municipal effluent was examined using feral freshwater Elliptio complanata mussels. Specimens were exposed to increasing concentrations (0, 1, 3, 10 and 20% v/v) of a primary-treated effluent before and after treatment with 10 mg/L of ozone in a mesocosm-type experiment for 30 days. A suite of biomarkers was used to assess the potential neurotoxic stress of the wastewaters on these benthic invertebrates: opiate binding sites, gamma-aminobutyric acid (GABA) metabolism, monoamines levels (serotonin, dopamine), monoamine oxidase, acetylcholinesterase and lipid peroxidation. Gametogenic activity was also determined by the gonado-somatic index and by vitellogenin-like proteins. The results show that the number of opiate binding sites increased slightly, especially after ozonation. GABA metabolism was generally reduced, suggesting higher glutamate stimulation than GABA dampening effects in mussel ganglia. This excitatory state was further confirmed by decreased acetylcholinesterase activity in gonadal tissues. The turnover of dopamine was enhanced with increased serotonin levels, but accompanied by reduced catabolism, as evidenced by decreased monoamine oxidase activity. Moreover, oxidative stress was increased, as determined by lipid peroxidation in the gonad (containing ganglia), which was significantly correlated with acetylcholinesterase activity and dopamine metabolism. The gonado-somatic index was significantly reduced with increased levels of vitellogenin-like proteins, again confirming the estrogenic action of these wastewaters. The data suggest that exposure to a primary-treated municipal effluent before and after ozonation leads to an excitotoxic syndrome implicating perturbations in GABA, dopamine and acetylcholine signaling. The increase in dopamine metabolism may be associated with the occurrence of opiate-like compounds (i.e. morphine) in the effluent. In general, ozonation reduced the severity of the responses, indicating that this disinfection strategy does not increase neurotoxicity to mussels.
Collapse
Affiliation(s)
- F Gagné
- St. Lawrence Centre, Environment Canada, Montréal, Qc., Canada.
| | | | | | | | | |
Collapse
|