1
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Cao L, Zhang J, Li M, Zhou J, Liu Y, Liu C, Li X. Single-Vesicle Electrochemistry Reveals Polysaccharide from Glochidion eriocarpum Champ. Regulates Vesicular Storage and Exocytotic Release of Dopamine. Anal Chem 2024. [PMID: 39262202 DOI: 10.1021/acs.analchem.4c02493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Polysaccharides, which are well-known natural macromolecules, have been recognized for their protective effects on neurons and their influence on extracellular dopamine levels in the brain. It is crucial to investigate the impact of plant polysaccharides on neurotransmission, particularly regarding the vesicular storage and exocytosis of neurotransmitters. In this study, we demonstrated the possibility of studying how the polysaccharide from Glochidion eriocarpum Champ.(GPS) affects vesicle dopamine content and the dynamics of exocytosis in pheochromocytoma (PC12) cells using single-cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC). Our results unambiguously demonstrate that GPS effectively enhances vesicular neurotransmitter content and alters the dynamics of exocytosis, favoring a smaller fraction of content released in exocytotic release, thereby inducing the partial release mode. These significant effects are attributed to GPS's efficient elevation of calcium influx, significant alteration in the composition of exocytosis-related membrane lipids, and enhancement of free radical scavenging ability. These findings not only establish GPS as a promising candidate for preventive or therapeutic interventions against neurodegenerative disorders but also reiterate the importance of screening native neurologic drugs with single-vesicle electrochemical approaches, the combination of SCA and IVIEC, from a neurotransmitter-centric perspective.
Collapse
Affiliation(s)
- Lijiao Cao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Jing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Mo Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Junlan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yuying Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Chunlan Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xianchan Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
3
|
Zhang H, Liu D, Zhang J, Adams E, Gong J, Li W, Wang B, Liu X, Yang R, Wei F, Allen HC. GMP affected assembly behaviors of phosphatidylethanolamine monolayers elucidated by multi-resolved SFG-VS and BAM. Colloids Surf B Biointerfaces 2024; 241:113995. [PMID: 38870647 DOI: 10.1016/j.colsurfb.2024.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
The interaction between nucleotide molecules and lipid molecules plays important roles in cell activities, but the molecular mechanism is very elusive. In the present study, a small but noticeable interaction between the negatively charged phosphatidylethanolamine (PE) and Guanosine monophosphate (GMP) molecules was observed from the PE monolayer at the air/water interface. As shown by the sum frequency generation (SFG) spectra and Pi-A isotherm of the PE monolayer, the interaction between the PE and GMP molecules imposes very small changes to the PE molecules. However, the Brewster angle microscopy (BAM) technique revealed that the assembly conformations of PE molecules are significantly changed by the adsorption of GMP molecules. By comparing the SFG spectra of PE monolayers after the adsorption of GMP, guanosine and guanine, it is also shown that the hydrogen bonding effect plays an important role in the nucleotide-PE interactions. These results provide fundamental insight into the structure changes during the nucleotide-lipid interaction, which may shed light on the molecular mechanism of viral infection, DNA drug delivery, and cell membrane curvature control in the brain or neurons.
Collapse
Affiliation(s)
- Hongjuan Zhang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Dongqi Liu
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Jiawei Zhang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Ellen Adams
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jingjing Gong
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Wenhui Li
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Bing Wang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Xueqing Liu
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Renqiang Yang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Feng Wei
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Gu C, Philipsen MH, Ewing AG. Omega-3 and -6 Fatty Acids Alter the Membrane Lipid Composition and Vesicle Size to Regulate Exocytosis and Storage of Catecholamines. ACS Chem Neurosci 2024; 15:816-826. [PMID: 38344810 PMCID: PMC10884999 DOI: 10.1021/acschemneuro.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
The two essential fatty acids, alpha-linolenic acid and linoleic acid, and the higher unsaturated fatty acids synthesized from them are critical for the development and maintenance of normal brain functions. Deficiencies of these fatty acids have been shown to cause damage to the neuronal development, cognition, and locomotor function. We combined electrochemistry and imaging techniques to examine the effects of the two essential fatty acids on catecholamine release dynamics and the vesicle content as well as on the cell membrane phospholipid composition to understand how they impact exocytosis and by extension neurotransmission at the single-cell level. Incubation of either of the two fatty acids reduces the size of secretory vesicles and enables the incorporation of more double bonds into the cell membrane structure, resulting in higher membrane flexibility. This subsequently affects proteins regulating the dynamics of the exocytotic fusion pore and thereby affects exocytosis. Our data suggest a possible pathway whereby the two essential fatty acids affect the membrane structure to impact exocytosis and provide a potential treatment for diseases and impairments related to catecholamine signaling.
Collapse
Affiliation(s)
- Chaoyi Gu
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Mai H. Philipsen
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
5
|
He X, Ewing AG. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. Chembiochem 2023; 24:e202200694. [PMID: 37043703 DOI: 10.1002/cbic.202200694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Indexed: 04/14/2023]
Abstract
Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
6
|
Hatamie A, He X, Zhang XW, Oomen PE, Ewing AG. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens Bioelectron 2022; 220:114899. [DOI: 10.1016/j.bios.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
7
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
8
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Yue Q, Wang K, Guan M, Zhao Z, Li X, Yu P, Mao L. Single-Vesicle Electrochemistry Reveals Sex Difference in Vesicular Storage and Release of Catecholamine. Angew Chem Int Ed Engl 2022; 61:e202117596. [PMID: 35112448 DOI: 10.1002/anie.202117596] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Quantitative measurements of sex difference in vesicle chemistry (i.e., chemical storage and release) at the single-vesicle level are essential to understand sex differences in cognitive behaviors; however, such measurements are very challenging to conventional analytical methods. By using single-vesicle electrochemistry, we find the duration of single exocytotic events of chromaffin cells prepared from male rats is statistically longer than that from female rats, leading to more neurotransmitter released in the male group. Further analysis reveals that a higher percentage of vesicles in the female group release part of the neurotransmitter, i.e., partial release, during exocytosis than that in male group. This sex dimorphism in neurotransmitter release in exocytosis might relate to the sex difference in the expression of voltage-dependent calcium channels and membrane lipid composition. Our finding offers the first experimental evidence that sex dimorphism even exists in vesicle chemistry, providing a brand new viewpoint for understanding the sex dimorphism in exocytosis.
Collapse
Affiliation(s)
- Qingwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Ming Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,College of Chemistry, Beijing Normal University, Beijing, 100875, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Nguyen TD, Mellander L, Lork A, Thomen A, Philipsen M, Kurczy ME, Phan NT, Ewing AG. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS NANO 2022; 16:4831-4842. [PMID: 35189057 PMCID: PMC8945366 DOI: 10.1021/acsnano.2c00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
For decades, "all-or-none" and "kiss-and-run" were thought to be the only major exocytotic release modes in cell-to-cell communication, while the significance of partial release has not yet been widely recognized and accepted owing to the lack of direct evidence for exocytotic partial release. Correlative imaging with transmission electron microscopy and NanoSIMS imaging and a dual stable isotope labeling approach was used to study the cargo status of vesicles before and after exocytosis; demonstrating a measurable loss of transmitter in individual vesicles following stimulation due to partial release. Model secretory cells were incubated with 13C-labeled l-3,4-dihydroxyphenylalanine, resulting in the loading of 13C-labeled dopamine into their vesicles. A second label, di-N-desethylamiodarone, having the stable isotope 127I, was introduced during stimulation. A significant drop in the level of 13C-labeled dopamine and a reduction in vesicle size, with an increasing level of 127I-, was observed in vesicles of stimulated cells. Colocalization of 13C and 127I- in several vesicles was observed after stimulation. Thus, chemical visualization shows transient opening of vesicles to the exterior of the cell without full release the dopamine cargo. We present a direct calculation for the fraction of neurotransmitter release from combined imaging data. The average vesicular release is 60% of the total catecholamine. An important observation is that extracellular molecules can be introduced to cells during the partial exocytotic release process. This nonendocytic transport process appears to be a general route of entry that might be exploited pharmacologically.
Collapse
Affiliation(s)
- Tho Duc
Khanh Nguyen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Lisa Mellander
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Alicia Lork
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Mai Philipsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
| | - Michael E. Kurczy
- DMPK,
Research and Early Development, Cardiovascular, Renal and Metabolism
(CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg S-431 83, Sweden
| | - Nhu T.N. Phan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
- E-mail:
| |
Collapse
|
11
|
Yue Q, Wang K, Guan M, Zhao Z, Li X, Yu P, Mao L. Single‐Vesicle Electrochemistry Reveals Sex Difference in Vesicular Storage and Release of Catecholamine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingwei Yue
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ming Guan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry Beijing Normal University Beijing 100875 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
He X, Ewing AG. Concentration of stimulant regulates initial exocytotic molecular plasticity at single cells. Chem Sci 2022; 13:1815-1822. [PMID: 35282618 PMCID: PMC8826951 DOI: 10.1039/d1sc05278k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Activity-induced synaptic plasticity has been intensively studied, but is not yet well understood. We examined the temporal and concentration effects of exocytotic molecular plasticity during and immediately after chemical stimulation (30 s K+ stimulation) via single cell amperometry. Here the first and the second 15 s event periods from individual event traces were compared. Remarkably, we found that the amount of catecholamine release and release dynamics depend on the stimulant concentration. No changes were observed at 10 mM K+ stimulation, but changes observed at 30 and 50 mM (i.e., potentiation, increased number of molecules) were opposite to those at 100 mM (i.e., depression, decreased number of events), revealing changes in exocytotic plasticity based on the concentration of the stimulant solution. These results show that molecular changes initiating exocytotic plasticity can be regulated by the concentration strength of the stimulant solution. These different effects on early plasticity offer a possible link between stimulation intensity and synaptic (or adrenal) plasticity. Amperometric measurement of exocytosis (SCA) and vesicle content (IVIEC) over 15 s intervals reveals plasticity (none, potentiation, or depression), that is regulated by the concentration of stimulant solution (e.g., 30 s 10, 30, 50, and 100 mM K+).![]()
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg 412 96 Gothenburg Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg 412 96 Gothenburg Sweden
| |
Collapse
|
13
|
Philipsen MH, Ranjbari E, Gu C, Ewing AG. Mass Spectrometry Imaging Shows Modafinil, A Student Study Drug, Changes the Lipid Composition of the Fly Brain. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mai H. Philipsen
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Göteborg Sweden
| |
Collapse
|
14
|
Philipsen MH, Ranjbari E, Gu C, Ewing AG. Mass Spectrometry Imaging Shows Modafinil, A Student Study Drug, Changes the Lipid Composition of the Fly Brain. Angew Chem Int Ed Engl 2021; 60:17378-17382. [PMID: 34041832 PMCID: PMC8361715 DOI: 10.1002/anie.202105004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Modafinil, a widely used psychoactive drug, has been shown to exert a positive impact on cognition and is used to treat sleep disorders and hyperactivity. Using time-of-flight secondary ion mass spectrometric imaging, we studied the changes of brain lipids of Drosophila melanogaster induced by modafinil to gain insight into the functional mechanism of modafinil in the brain. We found that upon modafinil treatment, the abundance of phosphatidylcholine and sphingomyelin species in the central brain of Drosophila is significantly decreased, whereas the levels of phosphatidylethanolamine and phosphatidylinositol in the brains show significant enhancement compared to the control flies. The alteration of brain lipids caused by modafinil is consistent with previous studies about cognition-related drugs and offers a plausible mechanism regarding the action of modafinil in the brain as well as a potential target for the treatment of certain disorders.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GöteborgSweden
| |
Collapse
|
15
|
Bahja J, Dymond MK. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes? Free Radic Biol Med 2021; 171:191-202. [PMID: 34000382 DOI: 10.1016/j.freeradbiomed.2021.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The effects of oxidative stress on cells are associated with a wide range of pathologies. Oxidative stress is predominantly initiated by the action of reactive oxygen species and/or lipoxygenases on polyunsaturated fatty acid containing lipids. The downstream products are oxidised phospholipids, bioactive aldehydes and a range of Schiff base by-products between aldehydes and lipids, or other biomacromolecules. In this review we assess the impact of oxidative stress on lipid membranes, focusing on the changes that occur to the curvature preference (lipid spontaneous curvature) and elastic properties of membranes, since these biophysical properties modulate phospholipid homeostasis. Studies show that the lipid products of oxidative stress reduce stored curvature elastic energy in membranes. Based upon this observation, we hypothesize that the effects of oxidative stress on lipid membranes will be reduced by compounds that increase stored curvature elastic energy. We find a strong correlation appears across literature studies that we have reviewed, such that many compounds like vitamin E, Curcumin, Coenzyme Q10 and vitamin A show behaviour consistent with this hypothesis. Finally, we consider whether age-related changes in lipid composition represent the homeostatic response of cells to compensate for the accumulation of in vivo lipid oxidation products.
Collapse
Affiliation(s)
- Julia Bahja
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK
| | - Marcus K Dymond
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK.
| |
Collapse
|
16
|
Combined electrochemistry and mass spectrometry imaging to interrogate the mechanism of action of modafinil, a cognition-enhancing drug, at the cellular and sub-cellular level. QRB DISCOVERY 2021. [PMID: 37529675 PMCID: PMC10392688 DOI: 10.1017/qrd.2021.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractModafinil is a mild psychostimulant-like drug enhancing wakefulness, improving attention and developing performance in various cognitive tasks, but its mechanism of action is not completely understood. This is the first combination of amperometry, electrochemical cytometry and mass spectrometry to interrogate the mechanism of action of a drug, here modafinil, at cellular and sub-cellular level. We employed single-cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC) to investigate the alterations in exocytotic release and vesicular catecholamine storage following modafinil treatment. The SCA results reveal that modafinil slows down the exocytosis process so that, the number of catecholamines released per exocytotic event is enhanced in the modafinil-treated cells. Also, IVIEC results offer an upregulation effect of modafinil on the vesicular catecholamine storage. Mass spectrometry imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS) illustrates that treatment with modafinil reduces the cylindrical-shaped phosphatidylcholine at the cellular membrane, while the high curvature lipids with conical structures such as phosphatidylethanolamine and phosphatidylinositol are elevated after modafinil treatment. Combining the results obtained by SCA, IVIEC and ToF-SIMS suggests that modafinil-treated cells release a larger portion of their vesicular content at least in part by changing the lipid composition of the cell membrane, suggesting regulation of cognition.
Collapse
|
17
|
Mass Spectrometric Imaging of Plasma Membrane Lipid Alteration Correlated with Amperometrically Measured Activity-Dependent Plasticity in Exocytosis. Int J Mol Sci 2020; 21:ijms21249519. [PMID: 33327662 PMCID: PMC7765135 DOI: 10.3390/ijms21249519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022] Open
Abstract
The mechanism of synaptic plasticity and its link to memory formation are of interest, yet relatively obscure, especially the initial chemical change in the cell membrane following transmitter release. To understand the chemical mechanism of plasticity, we studied how repetitive stimuli regulate certain membrane lipid species to enhance exocytotic release using mass spectrometric imaging. We found that increasing high-curvature lipid species and decreasing low-curvature lipids in the cell membrane favor the formation of a longer-lasting exocytotic fusion pore, resulting in higher release fraction for individual exocytotic events. The lipid changes observed following repetitive stimuli are similar to those after exposure to the cognitive enhancing drug, methylphenidate, examined in a previous study, and offer an interesting point of view regarding the link between plasticity and memory and cognition.
Collapse
|
18
|
Aref M, Ranjbari E, Romiani A, Ewing AG. Intracellular injection of phospholipids directly alters exocytosis and the fraction of chemical release in chromaffin cells as measured by nano-electrochemistry. Chem Sci 2020; 11:11869-11876. [PMID: 34123212 PMCID: PMC8162797 DOI: 10.1039/d0sc03683h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022] Open
Abstract
Using a nano-injection method, we introduced phospholipids having different intrinsic geometries into single secretory cells and used single cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC) with nanotip electrodes to monitor the effects of intracellular incubation on the exocytosis process and vesicular storage. Combining tools, this work provides new information to understand the impact of intracellular membrane lipid engineering on exocytotic release, vesicular content and fraction of chemical release. We also assessed the effect of membrane lipid alteration on catecholamine storage of isolated vesicles by implementing another amperometric technique, vesicle impact electrochemical cytometry (VIEC), outside the cell. Exocytosis analysis reveals that the intracellular nano-injection of phosphatidylcholine and lysophosphatidylcholine decreases the number of released catecholamines, whereas phosphatidylethanolamine shows the opposite effect. These observations support the emerging hypothesis that lipid curvature results in membrane remodeling through secretory pathways, and also provide new evidence for a critical role of the lipid localization in modulating the release process. Interestingly, the IVIEC data imply that total vesicular content is also affected by in situ supplementation of the cells with some lipids, while, the corresponding VIEC results show that the neurotransmitter content in isolated vesicles is not affected by altering the vesicle membrane lipids. This suggests that the intervention of phospholipids inside the cell has its effect on the cellular machinery for vesicle release rather than vesicle structure, and leads to the somewhat surprising conclusion that modulating release has a direct effect on vesicle structure, which is likely due to the vesicles opening and closing again during exocytosis. These findings could lead to a novel regulatory mechanism for the exocytotic or synaptic strength based on lipid heterogeneity across the cell membrane.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Armaghan Romiani
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| |
Collapse
|
19
|
Philipsen MH, Phan NTN, Fletcher JS, Ewing AG. Interplay between Cocaine, Drug Removal, and Methylphenidate Reversal on Phospholipid Alterations in Drosophila Brain Determined by Imaging Mass Spectrometry. ACS Chem Neurosci 2020; 11:806-813. [PMID: 32045198 PMCID: PMC7077924 DOI: 10.1021/acschemneuro.0c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cocaine dependence displays a broad impairment in cognitive performance including attention, learning, and memory. To obtain a better understanding of the action of cocaine in the nervous system, and the relation between phospholipids and memory, we have investigated whether phospholipids recover in the brain following cocaine removal using the fly model, Drosophila melanogaster. In addition, the effects of methylphenidate, a substitute medication for cocaine dependence, on fly brain lipids after cocaine abuse are also determined to see if it can rescue the lipid changes caused by cocaine. Time of flight secondary ion mass spectrometry with a (CO2)6000+ gas cluster ion beam was used to detect intact phospholipids. We show that cocaine has persistent effects, both increasing and decreasing the levels of specific phosphatidylethanolamines and phosphatidylinositols. These changes remain after cocaine withdrawal and are not rescued by methylphenidate. Cocaine is again shown to generally increase the levels of phosphatidylcholines in the fly brain; however, after drug withdrawal, the abundance of these lipids returns to the original level and methylphenidate treatment of the flies following cocaine exposure enhances the reversal of the lipid level reducing them below the original control. The study provides insight into the molecular effects of cocaine and methylphenidate on brain lipids. We suggest that phosphatidylcholines could be a potential target for the treatment of cocaine abuse as well as be a significant hallmark of cognition and memory loss with cocaine.
Collapse
Affiliation(s)
- Mai Hoang Philipsen
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, Gothenburg, Sweden
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, Gothenburg, Sweden
| | - John Stephen Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, Gothenburg, Sweden
| |
Collapse
|
20
|
Varga K, Jiang ZJ, Gong LW. Phosphatidylserine is critical for vesicle fission during clathrin-mediated endocytosis. J Neurochem 2019; 152:48-60. [PMID: 31587282 DOI: 10.1111/jnc.14886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Collapse
Affiliation(s)
- Kelly Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of North Texas at Dallas, Dallas, Texas, USA
| | - Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Plasticity in exocytosis revealed through the effects of repetitive stimuli affect the content of nanometer vesicles and the fraction of transmitter released. Proc Natl Acad Sci U S A 2019; 116:21409-21415. [PMID: 31570594 DOI: 10.1073/pnas.1910859116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrochemical techniques with disk and nano-tip electrodes, together with calcium imaging, were used to examine the effect of short-interval repetitive stimuli on both exocytosis and vesicular content in a model cell line. We show that the number of events decreases markedly with repeated stimuli suggesting a depletion of exocytosis machinery. However, repetitive stimuli induce a more stable fusion pore, leading to an increased amount of neurotransmitter release. In contrast, the total neurotransmitter content inside the vesicles decreases after repetitive stimuli, resulting in a higher average release fraction from each event. We suggest a possible mechanism regarding a link between activity-induced plasticity and fraction of release.
Collapse
|
22
|
Zhu W, Gu C, Dunevall J, Ren L, Zhou X, Ewing AG. Combined Amperometry and Electrochemical Cytometry Reveal Differential Effects of Cocaine and Methylphenidate on Exocytosis and the Fraction of Chemical Release. Angew Chem Int Ed Engl 2019; 58:4238-4242. [PMID: 30688389 PMCID: PMC6519382 DOI: 10.1002/anie.201813717] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/08/2019] [Indexed: 11/18/2022]
Abstract
Amperometry with nanotip electrodes has been applied to show cocaine and methylphenidate not only trigger declines in vesicle content and exocytotic catecholamine release in a model cell line but also differentially change the fraction of transmitter released from each individual vesicle. In addition, cocaine accelerates exocytotic release dynamics while they remain unchanged after methylphenidate treatment. The parameters from pre-spike feet for the two drugs are also in opposition, suggesting this aspect of release is affected differentially. As cocaine and methylphenidate are psychostimulants with similar pharmacologic action but have opposite effects on cognition, these results might provide a missing link between the regulation of exocytosis and vesicles and the effect of this regulation on cognition, learning, and memory. A speculative chemical mechanism of the effect of these drugs on vesicle content and exocytosis is presented.
Collapse
Affiliation(s)
- Wanying Zhu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
- School of PharmacyNanjing Medical UniversityLongmian Avenue 101Nanjing210029China
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Johan Dunevall
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Lin Ren
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Xuemin Zhou
- School of PharmacyNanjing Medical UniversityLongmian Avenue 101Nanjing210029China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
23
|
Ren L, Dowlatshahi Pour M, Malmberg P, Ewing AG. Altered Lipid Composition of Secretory Cells Following Exposure to Zinc Can Be Correlated to Changes in Exocytosis. Chemistry 2019; 25:5406-5411. [PMID: 30762272 DOI: 10.1002/chem.201900010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/20/2022]
Abstract
A micromolar concentration of zinc has been shown to significantly change the dynamics of exocytosis as well as the vesicle contents in a model cell line, providing direct evidence that zinc regulates neurotransmitter release. To provide insight into how zinc modulates these exocytotic processes, neurotransmitter release and vesicle content were compared with single cell amperometry and intracellular impact vesicle cytometry with a range of zinc concentrations. Additionally, time-of-flight secondary ion mass spectrometry (ToF-SIMS) images of lipid distributions in the cell membrane after zinc treatment correlate to changes in exocytosis. By combining electrochemical techniques and mass spectrometry imaging, we proposed a mechanism by which zinc changes the fusion pore and the rate of neurotransmitter release by changing lipid distributions and results in the modulation of synaptic strength and plasticity.
Collapse
Affiliation(s)
- Lin Ren
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Chemical Imaging Infrastructure, CII, University of Gothenburg and Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Chemical Imaging Infrastructure, CII, University of Gothenburg and Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Chemical Imaging Infrastructure, CII, University of Gothenburg and Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
24
|
Zhu W, Gu C, Dunevall J, Ren L, Zhou X, Ewing AG. Combined Amperometry and Electrochemical Cytometry Reveal Differential Effects of Cocaine and Methylphenidate on Exocytosis and the Fraction of Chemical Release. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813717] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wanying Zhu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
- School of PharmacyNanjing Medical University Longmian Avenue 101 Nanjing 210029 China
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical EngineeringChalmers University of Technology Kemivägen 10 41296 Gothenburg Sweden
| | - Lin Ren
- Department of Chemistry and Chemical EngineeringChalmers University of Technology Kemivägen 10 41296 Gothenburg Sweden
| | - Xuemin Zhou
- School of PharmacyNanjing Medical University Longmian Avenue 101 Nanjing 210029 China
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
25
|
Ye D, Gu C, Ewing A. Using Single-Cell Amperometry and Intracellular Vesicle Impact Electrochemical Cytometry To Shed Light on the Biphasic Effects of Lidocaine on Exocytosis. ACS Chem Neurosci 2018; 9:2941-2947. [PMID: 29976059 DOI: 10.1021/acschemneuro.8b00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Single cell amperometry and intracellular vesicle impact electrochemical cytometry were used to examine whether lidocaine can regulate neurotransmitter release or storage for PC12 cells to explain the biphasic effects whereby it can protect neurons and improve cognitive outcome at low concentration, but can cause neurotoxicity at high concentration. We show that lidocaine affects the behavior of PC12 cell exocytosis in a concentration dependent way, which exactly corresponds to its biphasic effects. At a relatively high concentration, it shows a much narrower pore size and a longer-duration fusion pore with less monoamine released than control cells. However, at a relatively low concentration, the fusion pore is open even longer than at high concentration, and with more monoamine released than control cells. Furthermore, intracellular vesicle impact electrochemical cytometry was used to confirm that lidocaine did not change the catecholamine content of the vesicles. These data provide a mechanism for the observed biphasic effects of the drug and suggest that lidocaine influences exocytosis through multiple mechanisms.
Collapse
Affiliation(s)
- Daixin Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 412 96, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
26
|
Huang CH, Moser T. Ca 2+ Regulates the Kinetics of Synaptic Vesicle Fusion at the Afferent Inner Hair Cell Synapse. Front Cell Neurosci 2018; 12:364. [PMID: 30386210 PMCID: PMC6199957 DOI: 10.3389/fncel.2018.00364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
The early auditory pathway processes information at high rates and with utmost temporal fidelity. Consequently, the synapses in the auditory pathway are highly specialized to meet the extraordinary requirements on signal transmission. The calyceal synapses in the auditory brainstem feature more than a hundred active zones (AZs) with thousands of releasable synaptic vesicles (SVs). In contrast, the first auditory synapse, the afferent synapse of inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs), typically exhibits a single ribbon-type AZ tethering only tens of SVs resulting in a highly stochastic pattern of transmitter release. Spontaneous excitatory postsynaptic currents (sEPSCs), besides more conventional EPSCs with a single peak, fast rise and decay (compact), also include EPSCs with multiple peaks, variable rise and decay times (non-compact). The strong heterogeneity in size and shape of spontaneous EPSCs has led to the hypothesis of multivesicular release (MVR) that is more (compact) or less (non-compact) synchronized by coordination of release sites. Alternatively, univesicular release (UVR), potentially involving glutamate release through a flickering fusion pore for non-compact EPSCs, has been suggested to underlie IHC exocytosis. Here, we further investigated the mode of release by recording sEPSCs from SGNs of hearing rats while manipulating presynaptic IHC Ca2+ influx by changes in extracellular [Ca2+] ([Ca2+]e) and by application of the Ca2+ channel antagonist, isradipine, or the Ca2+ channel agonist, BayK8644 (BayK). Our data reveal that Ca2+ influx manipulation leaves the distributions of sEPSC amplitude and charge largely unchanged. Regardless the type of manipulation, the rate of sEPSC decreased with the reduction in Ca2+ influx. The fraction of compact sEPSCs was increased in the presence of BayK, an effect that was abolished when combined with decreased [Ca2+]e. In conclusion, we propose that UVR is the prevailing mode of exocytosis at cochlear IHCs of hearing rats, whereby the rate of exocytosis and the kinetics of SV fusion are regulated by Ca2+ influx.
Collapse
Affiliation(s)
- Chao-Hua Huang
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Associated Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
27
|
Mohammadi AS, Li X, Ewing AG. Mass Spectrometry Imaging Suggests That Cisplatin Affects Exocytotic Release by Alteration of Cell Membrane Lipids. Anal Chem 2018; 90:8509-8516. [PMID: 29912552 DOI: 10.1021/acs.analchem.8b01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We used time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effect of cisplatin, the first member of the platinum-based anticancer drugs, on the membrane lipid composition of model cells to see if lipid changes might be involved in the changes in exocytosis observed. Platinum-based anticancer drugs have been reported to affect neurotransmitter release resulting in what is called the "chemobrain"; however, the mechanism for the influence is not yet understood. TOF-SIMS imaging was carried out using a high energy 40 keV (CO2)6000+ gas cluster ion beam with improved sensitivity for intact lipids in biological samples. Principal components analysis showed that cisplatin treatment of PC12 cells significantly affects the abundance of different lipids and their derivatives, particularly phosphatidylcholine and cholesterol, which are diminished. Treatment of cells with 2 μM and 100 μM cisplatin showed similar effects on induced lipid changes. Lipid content alterations caused by cisplatin treatment at the cell surface are associated with the molecular and bimolecular signaling pathways of cisplatin-induced apoptosis of cells. We suggest that lipid alterations measured by TOF-SIMS are involved, at least in part, in the regulation of exocytosis by cisplatin.
Collapse
Affiliation(s)
- Amir Saeid Mohammadi
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden
| | - Xianchan Li
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology , University of Gothenburg , 40530 Gothenburg , Sweden.,National Center for Imaging Mass Spectrometry , 41296 Gothenburg , Sweden.,Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
28
|
Kahms M, Klingauf J. Novel pH-Sensitive Lipid Based Exo-Endocytosis Tracers Reveal Fast Intermixing of Synaptic Vesicle Pools. Front Cell Neurosci 2018; 12:18. [PMID: 29456492 PMCID: PMC5801418 DOI: 10.3389/fncel.2018.00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 11/13/2022] Open
Abstract
Styryl dyes and genetically encoded pH-sensitive fluorescent proteins like pHluorin are well-established tools for the optical analysis of synaptic vesicle (SV) recycling at presynaptic boutons. Here, we describe the development of a new class of fluorescent probes based on pH-sensitive organic dyes covalently bound to lipids, providing a promising complementary assay to genetically encoded fluorescent probes. These new optical tracers allow a pure read out of membrane turnover during synaptic activity and visualization of multiple rounds of stimulation-dependent SV recycling without genetic perturbation. Measuring the incorporation efficacy of different dye-labeled lipids into budding SVs, we did not observe an enrichment of lipids with affinity for liquid ordered membrane domains. But most importantly, we found no evidence for a static segregation of SVs into recycling and resting pools. A small but significant fraction of SVs that is reluctant to release during a first round of evoked activity can be exocytosed during a second bout of stimulation, showing fast intermixing of SV pools within seconds. Furthermore, we found that SVs recycling spontaneously have a higher chance to re-occupy release sites than SVs recycling during high-frequency evoked activity. In summary, our data provide strong evidence for a highly dynamic and use-dependent control of the fractions of releasable or resting SVs.
Collapse
Affiliation(s)
- Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- IZKF Münster and Cluster of Excellence Cells in Motion, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
30
|
Electrochemical detection of neurotransmitters: Toward synapse-based neural interfaces. Biomed Eng Lett 2017. [DOI: 10.1007/s13534-016-0230-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Abstract
Exocytosis is the fundamental process by which cells communicate with each other. The events that lead up to the fusion of a vesicle loaded with chemical messenger with the cell membrane were the subject of a Nobel Prize in 2013. However, the processes occurring after the initial formation of a fusion pore are very much still in debate. The release of chemical messenger has traditionally been thought to occur through full distention of the vesicle membrane, hence assuming exocytosis to be all or none. In contrast to the all or none hypothesis, here we discuss the evidence that during exocytosis the vesicle-membrane pore opens to release only a portion of the transmitter content during exocytosis and then close again. This open and closed exocytosis is distinct from kiss-and-run exocytosis, in that it appears to be the main content released during regular exocytosis. The evidence for this partial release via open and closed exocytosis is presented considering primarily the quantitative evidence obtained with amperometry.
Collapse
|
32
|
Shen M, Colombo ML. Electrochemical nanoprobes for the chemical detection of neurotransmitters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7095-7105. [PMID: 26327927 PMCID: PMC4551492 DOI: 10.1039/c5ay00512d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| | - Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| |
Collapse
|
33
|
Colombo ML, Sweedler JV, Shen M. Nanopipet-Based Liquid-Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Anal Chem 2015; 87:5095-100. [PMID: 25877788 PMCID: PMC4483307 DOI: 10.1021/ac504151e] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.
Collapse
Affiliation(s)
- Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigström J, Cans AS, Ewing AG. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode. J Am Chem Soc 2015; 137:4344-6. [PMID: 25811247 DOI: 10.1021/ja512972f] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present the electrochemical response to single adrenal chromaffin vesicles filled with catecholamine hormones as they are adsorbed and rupture on a 33 μm diameter disk-shaped carbon electrode. The vesicles adsorb onto the electrode surface and sequentially spread out over the electrode surface, trapping their contents against the electrode. These contents are then oxidized, and a current (or amperometric) peak results from each vesicle that bursts. A large number of current transients associated with rupture of single vesicles (86%) are observed under the experimental conditions used, allowing us to quantify the vesicular catecholamine content.
Collapse
Affiliation(s)
- Johan Dunevall
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Hoda Fathali
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Neda Najafinobar
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jelena Lovric
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Joakim Wigström
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- †Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,‡Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
35
|
Guan J, Harris P, Brimble M, Lei Y, Lu J, Yang Y, Gunn AJ. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin Ther Targets 2015; 19:785-93. [PMID: 25652713 DOI: 10.1517/14728222.2015.1010514] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Exogenous IGF-1 protects the brain from ischemic injury and improves function. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. AREAS COVERED In this review, the authors have discussed the efficacy, pharmacokinetics and mechanisms of IGF-1 derivatives on protecting acute brain injury, preventing memory impairment and improving recovery from neurological degenerative conditions evaluated in various animal models. We have included natural metabolites of IGF-1, glycine-proline-glutamate (GPE), cleaved from N-terminal IGF-1 and cyclic glycine-proline (cGP) as well as the structural analogues of GPE and cGP, glycine-2-methyl-proline-glutamate and cyclo-l-glycyl-l-2-allylproline, respectively. In addition, the regulatory role for cGP in bioavailability of IGF-1 has also been discussed. EXPERT OPINION These small neuropeptides provide effective neuroprotection by offering an improved pharmacokinetic profile and more practical route of administration compared with IGF-1 administration. Developing modified neuropeptides to overcome the limitations of their endogenous counterparts represents a novel strategy of pharmaceutical discovery for neurological disorders. The mechanism of action may involve a regulation of IGF-1 bioavailability.
Collapse
Affiliation(s)
- Jian Guan
- University of Auckland, Liggins Institute , Private Bag 92019, Auckland , New Zealand +64 93 737 599 ext. 86134 ; +64 93 082 385 ;
| | | | | | | | | | | | | |
Collapse
|
36
|
Koseoglu S, Meyer A, Kim D, Meyer BM, Wang Y, Dalluge JJ, Haynes CL. Analytical characterization of the role of phospholipids in platelet adhesion and secretion. Anal Chem 2015; 87:413-21. [PMID: 25439269 PMCID: PMC4287828 DOI: 10.1021/ac502293p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
Abstract
The cellular phospholipid membrane plays an important role in cell function and cell-cell communication, but its biocomplexity and dynamic nature presents a challenge for examining cellular uptake of phospholipids and the resultant effects on cell function. Platelets, small anuclear circulating cell bodies that influence a wide variety of physiological functions through their dynamic secretory and adhesion behavior, present an ideal platform for exploring the effects of exogenous phospholipids on membrane phospholipid content and cell function. In this work, a broad range of platelet functions are quantitatively assessed by leveraging a variety of analytical chemistry techniques, including ultraperformance liquid chromatography-tandem electrospray ionization mass spectrometry (UPLC-MS/MS), vasculature-mimicking microfluidic analysis, and single cell carbon-fiber microelectrode amperometry (CFMA). The relative enrichments of phosphatidylserine (PS) and phosphatidylethanolamine (PE) were characterized with UPLC-MS/MS, and the effects of the enrichment of these two phospholipids on both platelet secretory behavior and adhesion were examined. Results show that, in fact, both PS and PE influence platelet adhesion and secretion. PS was enriched dramatically and decreased platelet adhesion as well as secretion from δ-, α-, and lysosomal granules. PE enrichment was moderate and increased secretion from platelet lysosomes. These insights illuminate the critical connection between membrane phospholipid character and platelet behavior, and both the methods and results presented herein are likely translatable to other mammalian cell systems.
Collapse
Affiliation(s)
- Secil Koseoglu
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Audrey
F. Meyer
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Donghyuk Kim
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Ben M. Meyer
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Yiwen Wang
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph J. Dalluge
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- University of Minnesota, Department of
Chemistry, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Wei F, Xiong W, Li W, Lu W, Allen HC, Zheng W. Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS. Phys Chem Chem Phys 2015; 17:25114-22. [DOI: 10.1039/c5cp03977k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polarization and frequency resolved SFG-VS to distinguish the head/tail groups of lipids, to resolve the assembly and relaxation kinetics of monolayers.
Collapse
Affiliation(s)
- Feng Wei
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Wei Xiong
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Wenhui Li
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Wangting Lu
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Heather C. Allen
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Wanquan Zheng
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
- Institut des Sciences Moléculaires d'Orsay
| |
Collapse
|
38
|
Amperometric detection of vesicular exocytosis from BON cells at carbon fiber microelectrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Trouillon R, Ewing AG. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol 2014; 9:812-20. [PMID: 24400601 PMCID: PMC3985473 DOI: 10.1021/cb400665f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The effect of latrunculin A, an inhibitor
of actin cross-linking,
on exocytosis in PC12 cells was investigated with single cell amperometry.
This analysis strongly suggests that the actin cytoskeleton might
be involved in regulating exocytosis, especially by mediating the
constriction of the pore. In an extended kiss-and-run release mode,
actin could actually control the fraction of neurotransmitters released
by the vesicle. This scaffold appears to contribute, with the lipid
membrane and the protein machinery, to the closing dynamics of the
pore, in competition with other forces mediating the opening of the
exocytotic channel.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
40
|
Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1. Sci Rep 2014; 4:4388. [PMID: 24633053 PMCID: PMC3955921 DOI: 10.1038/srep04388] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 02/02/2023] Open
Abstract
The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.
Collapse
|
41
|
Kurczy ME, Mellander LJ, Najafinobar N, Cans AS. Composition based strategies for controlling radii in lipid nanotubes. PLoS One 2014; 9:e81293. [PMID: 24392077 PMCID: PMC3879231 DOI: 10.1371/journal.pone.0081293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/10/2013] [Indexed: 01/28/2023] Open
Abstract
Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome-lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature.
Collapse
Affiliation(s)
- Michael E. Kurczy
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisa J. Mellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Neda Najafinobar
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
42
|
Guan J, MacGibbon A, Zhang R, Elliffe DM, Moon S, Liu DX. Supplementation of complex milk lipid concentrate (CMLc) improved the memory of aged rats. Nutr Neurosci 2013; 18:22-9. [PMID: 24257209 DOI: 10.1179/1476830513y.0000000096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The socio-economic impact from age-related mental decline is escalating. Supplementation of functional foods for sustaining mental health is desirable. We examined the effect of long-term supplementation of complex milk lipid concentrate (CMLc), mixed dairy phospholipids, on memory and associated vascular and neuronal changes in aged rats. METHODS Fisher/Norway Brown rats were used. Two groups of aged rats (24 months) were fed with either gelatin-formulated CMLc or blank gelatin as the control, for 4 months. To determine age-related changes, a young group (5 months) was also fed with blank gelatin. Morris water maze tests were carried out after the supplementation and brain tissues were collected for biological analysis. RESULTS The aged control rats learnt to locate the platform slower than the young control rats during acquisition trials (*P < 0.05), and made fewer entries to and more initial heading errors from the platform zone during testing trials (*P < 0.05). The CMLc supplementation improved memory by showing the reduced initial heading errors in a delayed probe trial ((#)P < 0.05). We also found that the aged rats with CMLc supplementation improved vascular density, dopamine output, and neuroplasticity ((#)P < 0.05) in the brain regions involved in memory compared with that of the aged control rats. DISCUSSION The data suggested that the supplementation of CMLc during the early stage of brain aging may prevent memory decline possibly through improving vascular and neuronal function.
Collapse
|
43
|
Lipid metabolites enhance secretion acting on SNARE microdomains and altering the extent and kinetics of single release events in bovine adrenal chromaffin cells. PLoS One 2013; 8:e75845. [PMID: 24073281 PMCID: PMC3779176 DOI: 10.1371/journal.pone.0075845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/22/2013] [Indexed: 01/03/2023] Open
Abstract
Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms.
Collapse
|
44
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
45
|
Trouillon R, Ewing AG. Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis. Chemphyschem 2013; 14:2295-301. [PMID: 23824748 PMCID: PMC3794367 DOI: 10.1002/cphc.201300319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Indexed: 11/10/2022]
Abstract
Dynamin is a GTPase mechanochemical enzyme involved in the late steps of endocytosis, where it separates the endocytotic vesicle from the cell membrane. However, recent reports have emphasized its role in exocytosis. In this case, dynamin may contribute to the control of the exocytotic pore, thus suggesting a direct control on the efflux of neurotransmitters. Dynasore, a selective inhibitor of the GTPase activity of dynamin, was used to investigate the role of dynamin in exocytosis. Exocytosis was analyzed by amperometry, thus revealing that dynasore inhibits exocytosis in a dose-dependent manner. Analysis of the exocytotic peaks shows that the inhibition of the GTPase activity of dynamin leads to shorter, smaller events. This observation, together with the rapid effect of dynasore, suggests that the blocking of the GTPase induces the formation of a more narrow and short-lived fusion pore. These results suggest that the GTPase properties of dynamin are involved in the duration and kinetics of exocytotic release. Interestingly, and in strong contrast with its role in endocytosis, the mechanochemical properties of dynamin appear to contribute to the dilation and stability of the pore during exocytosis.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
46
|
Trouillon R, Ewing AG. Single cell amperometry reveals glycocalyx hinders the release of neurotransmitters during exocytosis. Anal Chem 2013; 85:4822-8. [PMID: 23544960 PMCID: PMC3696406 DOI: 10.1021/ac4008682] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diffusional hindrance of the glycocalyx along the cell surface on exocytotic peaks, observed with single cell amperometry, was investigated. Partial digestion of the glycocalyx with neuraminidase led to the observation of faster peaks, as shown by varied peak parameters. This result indicates that diffusion of small molecules in the partially digested glycocalyx is 2.2 faster than in the intact glycocalyx. Similarly, neutralization of the negative charges present in the cell microenvironment led to faster peak kinetics. The analysis of the vesicular efflux indicates that the diffusion coefficient of dopamine at the cell surface is at most 45% of the diffusion coefficient in free solution. This study shows that the glycocalyx plays an important role in the diffusion kinetics of processes along the cell surface, including exocytotic events.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
47
|
Progress toward single cell metabolomics. Curr Opin Biotechnol 2012; 24:95-104. [PMID: 23246232 DOI: 10.1016/j.copbio.2012.10.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
Abstract
The metabolome refers to the entire set of small molecules, or metabolites, within a biological sample. These molecules are involved in many fundamental intracellular functions and reflect the cell's physiological condition. The ability to detect and identify metabolites and determine and monitor their amounts at the single cell level enables an exciting range of studies of biological variation and functional heterogeneity between cells, even within a presumably homogenous cell population. Significant progress has been made in the development and application of bioanalytical tools for single cell metabolomics based on mass spectrometry, microfluidics, and capillary separations. Remarkable improvements in the sensitivity, specificity, and throughput of these approaches enable investigation of multiple metabolites simultaneously in a range of individual cell samples.
Collapse
|
48
|
Abstract
The basis for communication between nerve cells lies in the process of exocytosis, the fusion of neurotransmitter filled vesicles with the cell membrane resulting in release of the signaling molecules. Even though much is known about this process, the extent that the vesicles are emptied upon fusion is a topic that is being debated. We have analyzed amperometric peaks corresponding to release at PC12 cells and find stable plateau currents during the decay of peaks, indicating closing of the vesicle after incomplete release of its content. Using lipid incubations to alter the amount of transmitter released we were able to estimate the initial vesicular content, and from that, the fraction of release. We propose a process for most exocytosis events where the vesicle partially opens to release transmitter and then closes directly again, leaving the possibility for regulation of transmission within events.
Collapse
|
49
|
Simonsson L, Kurczy ME, Trouillon R, Hook F, Cans AS. A functioning artificial secretory cell. Sci Rep 2012; 2:824. [PMID: 23139869 PMCID: PMC3492876 DOI: 10.1038/srep00824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
We present an amperometric study of content release from individual vesicles in an artificial secretory cell designed with the minimal components required to carry out exocytosis. Here, the membranes of the cell and vesicles are substituted for protein-free giant and large unilamellar vesicles respectively. In replacement of the SNARE-complex, the cell model was equipped with an analog composed of complimentary DNA constructs. The DNA constructs hybridize in a zipper-like fashion to bring about docking of the artificial secretory vesicles and following the addition of Ca2+ artificial exocytosis was completed. Exocytotic events recorded from the artificial cell closely approximate exocytosis in live cells. The results together with simulations of vesicular release demonstrate that the molecular flux in this model is attenuated and we suggest that this is the result of restricted diffusion through a semi-stable fusion pore or a partitioning of the signalling molecule out of the fused vesicle membrane.
Collapse
Affiliation(s)
- Lisa Simonsson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
50
|
Rogasevskaia TP, Churchward MA, Coorssen JR. Anionic lipids in Ca(2+)-triggered fusion. Cell Calcium 2012; 52:259-69. [PMID: 22516687 DOI: 10.1016/j.ceca.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 01/30/2023]
Abstract
Anionic lipids are native membrane components that have a profound impact on many cellular processes, including regulated exocytosis. Nonetheless, the full nature of their contribution to the fast, Ca(2+)-triggered fusion pathway remains poorly defined. Here we utilize the tightly coupled quantitative molecular and functional analyses enabled by the cortical vesicle model system to elucidate the roles of specific anionic lipids in the docking, priming and fusion steps of regulated release. Studies with cholesterol sulfate established that effectively localized anionic lipids could contribute to Ca(2+)-sensing and even bind Ca(2+) directly as effectors of necessary membrane rearrangements. The data thus support a role for phosphatidylserine in Ca(2+) sensing. In contrast, phosphatidylinositol would appear to serve regulatory functions in the physiological fusion machine, contributing to priming and thus the modulation and tuning of the fusion process. We note the complexities associated with establishing the specific roles of (anionic) lipids in the native fusion mechanism, including their localization and interactions with other critical components that also remain to be more clearly and quantitatively defined.
Collapse
Affiliation(s)
- Tatiana P Rogasevskaia
- Department of Chemical & Biological Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6 Canada
| | | | | |
Collapse
|