1
|
Zhen LL, Feng L, Jiang WD, Wu P, Liu Y, Tang L, Li SW, Zhong CB, Zhou XQ. Exploring the novel benefits of leucine: Protecting nitrite-induced liver damage in sub-adult grass carp (Ctenopharyngodon idella) through regulating mitochondria quality control. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109690. [PMID: 38866347 DOI: 10.1016/j.fsi.2024.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.
Collapse
Affiliation(s)
- Lu-Lu Zhen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
2
|
Alotaibi AZ, AlMalki RH, Al Mogren M, Sebaa R, Alanazi M, Jacob M, Alodaib A, Alfares A, Abdel Rahman AM. Exploratory Untargeted Metabolomics of Dried Blood Spot Samples from Newborns with Maple Syrup Urine Disease. Int J Mol Sci 2024; 25:5720. [PMID: 38891907 PMCID: PMC11171634 DOI: 10.3390/ijms25115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.
Collapse
Affiliation(s)
- Abeer Z. Alotaibi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11652, Saudi Arabia; (A.Z.A.); (M.A.)
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Maha Al Mogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11652, Saudi Arabia; (A.Z.A.); (M.A.)
| | - Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Ahamd Alodaib
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Ahmad Alfares
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (R.H.A.); (M.A.M.); (M.J.); (A.A.); (A.A.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
3
|
Zemniaçak ÂB, Ribeiro RT, Pinheiro CV, de Azevedo Cunha S, Tavares TQ, Castro ET, Leipnitz G, Wajner M, Amaral AU. In Vivo Intracerebral Administration of α-Ketoisocaproic Acid to Neonate Rats Disrupts Brain Redox Homeostasis and Promotes Neuronal Death, Glial Reactivity, and Myelination Injury. Mol Neurobiol 2024; 61:2496-2513. [PMID: 37910283 DOI: 10.1007/s12035-023-03718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.
Collapse
Affiliation(s)
- Ângela Beatris Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sâmela de Azevedo Cunha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailine Quevedo Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
4
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Mangogna A, Di Girolamo FG, Fiotti N, Vinci P, Landolfo M, Mearelli F, Biolo G. High-protein diet with excess leucine prevents inactivity-induced insulin resistance in women. Clin Nutr 2023; 42:2578-2587. [PMID: 37972527 DOI: 10.1016/j.clnu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Muscle inactivity leads to muscle atrophy and insulin resistance. The branched-chain amino acid (BCAA) leucine interacts with the insulin signaling pathway to modulate glucose metabolism. We have tested the ability of a high-protein BCAA-enriched diet to prevent insulin resistance during long-term bed rest (BR). METHODS Stable isotopes were infused to determine glucose and protein kinetics in the postabsorptive state and during a hyperinsulinemic-euglycemic clamp in combination with amino acid infusion (Clamp + AA) before and at the end of 60 days of BR in two groups of healthy, young women receiving eucaloric diets containing 1 g of protein/kg per day (n = 8) or 1.45 g of protein/kg per day enriched with 0.15 g/kg per day of BCAAs (leucine/valine/isoleucine = 2/1/1) (n = 8). Body composition was determined by Dual X-ray Absorptiometry. RESULTS BR decreased lean body mass by 7.6 ± 0.3 % and 7.2 ± 0.8 % in the groups receiving conventional or high protein-BCAA diets, respectively. Fat mass was unchanged in both groups. At the end of BR, percent changes of insulin-mediated glucose uptake significantly (p = 0.01) decreased in the conventional diet group from 155 ± 23 % to 84 ± 10 % while did not change significantly in the high protein-BCAA diet group from 126 ± 20 % to 141 ± 27 % (BR effect, p = 0.32; BR/diet interaction, p = 0.01; Repeated Measures ANCOVA). In contrast, there were no BR/diet interactions on proteolysis and protein synthesis Clamp + AA changes in the conventional diet and the high protein-BCAA diet groups. CONCLUSION A high protein-BCAA enriched diet prevented inactivity-induced insulin resistance in healthy women.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy; Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Landolfo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Gianni Biolo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy.
| |
Collapse
|
6
|
Tanzo JT, Li VL, Wiggenhorn AL, Moya-Garzon MD, Wei W, Lyu X, Dong W, Tahir UA, Chen ZZ, Cruz DE, Deng S, Shi X, Zheng S, Guo Y, Sims M, Abu-Remaileh M, Wilson JG, Gerszten RE, Long JZ, Benson MD. CYP4F2 is a human-specific determinant of circulating N-acyl amino acid levels. J Biol Chem 2023:104764. [PMID: 37121548 DOI: 10.1016/j.jbc.2023.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023] Open
Abstract
N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genomic associations of four plasma N-acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2,351 individuals from the Jackson Heart Study. We find that plasma levels of specific N-acyl amino acids are associated with cardiometabolic disease endpoints independent of free amino acid plasma levels and in patterns according to the amino acid head group. By integrating whole genome sequencing data with N-acyl amino acid levels, we identify that the genetic determinants of N-acyl amino acid levels also cluster according to amino acid head group. Furthermore, we identify the CYP4F2 locus as a genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels in human plasma. In experimental studies, we demonstrate that CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids (FAHFAs). These studies provide a structural framework for understanding the regulation and disease-associations of N-acyl amino acids in humans and identify that the diversity of this lipid signaling family can be significantly expanded through CYP4F-mediated ω-hydroxylation.
Collapse
Affiliation(s)
- Julia T Tanzo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, CA, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, CA, USA
| | - Wentao Dong
- Stanford ChEM-H, Stanford University, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Daniel E Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yan Guo
- Univ of Mississippi Medical Center, Jackson, MS
| | - Mario Sims
- Univ of Mississippi Medical Center, Jackson, MS
| | - Monther Abu-Remaileh
- Stanford ChEM-H, Stanford University, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, CA, USA.
| | - Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
7
|
Liu R, Zhang L, You H. Insulin Resistance and Impaired Branched-Chain Amino Acid Metabolism in Alzheimer's Disease. J Alzheimers Dis 2023:JAD221147. [PMID: 37125547 DOI: 10.3233/jad-221147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complicated and involves multiple contributing factors. Mounting evidence supports the concept that AD is an age-related metabolic neurodegenerative disease mediated in part by brain insulin resistance, and sharing similar metabolic dysfunctions and brain pathological characteristics that occur in type 2 diabetes mellitus (T2DM) and other insulin resistance disorders. Brain insulin signal pathway is a major regulator of branched-chain amino acid (BCAA) metabolism. In the past several years, impaired BCAA metabolism has been described in several insulin resistant states such as obesity, T2DM and cardiovascular disease. Disrupted BCAA metabolism leading to elevation in circulating BCAAs and related metabolites is an early metabolic phenotype of insulin resistance and correlated with future onset of T2DM. Brain is a major site for BCAA metabolism. BCAAs play pivotal roles in normal brain function, especially in signal transduction, nitrogen homeostasis, and neurotransmitter cycling. Evidence from animal models and patients support the involvement of BCAA dysmetabolism in neurodegenerative diseases including Huntington's disease, Parkinson's disease, and maple syrup urine disease. More recently, growing studies have revealed altered BCAA metabolism in AD, but the relationship between them is poorly understood. This review is focused on the recent findings regarding BCAA metabolism and its role in AD. Moreover, we will explore how impaired BCAA metabolism influences brain function and participates in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rui Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Chinese Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Hao You
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Tanzo JT, Li VL, Wiggenhorn AL, Moya-Garzon MD, Wei W, Lyu X, Dong W, Tahir UA, Chen ZZ, Cruz DE, Deng S, Shi X, Zheng S, Guo Y, Sims M, Abu-Remaileh M, Wilson JG, Gerszten RE, Long JZ, Benson MD. CYP4F2 is a human-specific determinant of circulating N-acyl amino acid levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531581. [PMID: 36945562 PMCID: PMC10028954 DOI: 10.1101/2023.03.09.531581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genetic regulation of four plasma N-fatty acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2,351 individuals from the Jackson Heart Study. N-oleoyl-leucine and N-oleoyl-phenylalanine were positively associated with traits related to energy balance, including body mass index, waist circumference, and subcutaneous adipose tissue. In addition, we identify the CYP4F2 locus as a human-specific genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels. In vitro, CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids (FAHFAs). By contrast, FAAH-regulated N-oleoyl-glycine and N-oleoyl-serine were inversely associated with traits related to glucose and lipid homeostasis. These data uncover a human-specific enzymatic node for the metabolism of a subset of N-fatty acyl amino acids and establish a framework for understanding the cardiometabolic roles of individual N-fatty acyl amino acids in humans.
Collapse
|
9
|
Doestzada M, Zhernakova DV, C L van den Munckhof I, Wang D, Kurilshikov A, Chen L, Bloks VW, van Faassen M, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Riksen NP, Zhernakova A, Kuipers F, Fu J. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study. BMC Med 2022; 20:485. [PMID: 36522747 PMCID: PMC9753387 DOI: 10.1186/s12916-022-02688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Marwah Doestzada
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daoming Wang
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, European Institute of Healthy Ageing (ERIBA), Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Branched-Chain Amino Acids Are Linked with Alzheimer's Disease-Related Pathology and Cognitive Deficits. Cells 2022; 11:cells11213523. [PMID: 36359919 PMCID: PMC9658564 DOI: 10.3390/cells11213523] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with a complex pathophysiology. Type 2 diabetes (T2D) is a strong risk factor for AD that shares similar abnormal features including metabolic dysregulation and brain pathology such as amyloid and/or Tau deposits. Emerging evidence suggests that circulating branched-chain amino acids (BCAAs) are associated with T2D. While excess BCAAs are shown to be harmful to neurons, its connection to AD is poorly understood. Here we show that individuals with AD have elevated circulating BCAAs and their metabolites compared to healthy individuals, and that a BCAA metabolite is correlated with the severity of dementia. APPSwe mouse model of AD also displayed higher plasma BCAAs compared to controls. In pursuit of understanding a potential causality, BCAA supplementation to HT-22 neurons was found to reduce genes critical for neuronal health while increasing phosphorylated Tau. Moreover, restricting BCAAs from diet delayed cognitive decline and lowered AD-related pathology in the cortex and hippocampus in APP/PS1 mice. BCAA restriction for two months was sufficient to correct glycemic control and increased/restored dopamine that were severely reduced in APP/PS1 controls. Treating 5xFAD mice that show early brain pathology with a BCAA-lowering compound recapitulated the beneficial effects of BCAA restriction on brain pathology and neurotransmitters including norepinephrine and serotonin. Collectively, this study reveals a positive association between circulating BCAAs and AD. Our findings suggest that BCAAs impair neuronal functions whereas BCAA-lowering alleviates AD-related pathology and cognitive decline, thus establishing a potential causal link between BCAAs and AD progression.
Collapse
|
11
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
12
|
Park TJ, Park SY, Lee HJ, Abd El-Aty A, Jeong JH, Jung TW. α-ketoisocaproic acid promotes ER stress through impairment of autophagy, thereby provoking lipid accumulation and insulin resistance in murine preadipocytes. Biochem Biophys Res Commun 2022; 603:109-115. [DOI: 10.1016/j.bbrc.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/03/2023]
|
13
|
de Medeiros BZ, Wessler LB, Duarte MB, Lemos IS, Candiotto G, Canarim RO, Dos Santos PCL, Torres CA, Scaini G, Rico EP, Generoso JS, Streck EL. Exposure to leucine induces oxidative stress in the brain of zebrafish. Metab Brain Dis 2022; 37:1155-1161. [PMID: 35275349 DOI: 10.1007/s11011-022-00934-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder caused by a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase complex leading to the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their respective branched-chain α-ketoacids and corresponding hydroxy acids. Considering that Danio rerio, known as zebrafish, has been widely used as an experimental model in several research areas because it has favorable characteristics that complement other experimental models, this study aimed to evaluate oxidative stress parameters in zebrafish exposed to high levels of leucine (2 mM and 5 mM), in a model similar of MSUD. Twenty-four hours after exposure, the animals were euthanized, and the brain content dissected for analysis of oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), 2',7'-dichlorofluorescein oxidation assay (DCF); content of sulfhydryl, and superoxide dismutase (SOD) and catalase (CAT) activities. Animals exposed to 2 mM and 5 mM leucine showed an increase in the measurement of TBARS and decreased sulfhydryl content. There were no significant changes in DCF oxidation. In addition, animals exposed to 2 mM and 5 mM leucine were found to have decreased SOD activity and increased CAT activity. Based on these results, exposure of zebrafish to high doses of leucine can act as a promising animal model for MSUD, providing a better understanding of the toxicity profile of leucine exposure and its use in future investigations and strategies related to the pathophysiology of MSUD.
Collapse
Affiliation(s)
- Bianca Z de Medeiros
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Leticia B Wessler
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Mariane B Duarte
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Isabela S Lemos
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Gabriela Candiotto
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Rafael O Canarim
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Paulo C L Dos Santos
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Carolina A Torres
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Eduardo P Rico
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Jaqueline S Generoso
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Emilio L Streck
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, Brasil.
| |
Collapse
|
14
|
Munasinghe M, Afshari R, Heydarian D, Almotayri A, Dias DA, Thomas J, Jois M. Effects of cocoa on altered metabolite levels in purine metabolism pathways and urea cycle in Alzheimer's disease in C. elegans. TRANSLATIONAL MEDICINE OF AGING 2022. [DOI: 10.1016/j.tma.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Sánchez-Pintos P, Meavilla S, López-Ramos MG, García-Cazorla Á, Couce ML. Intravenous branched-chain amino-acid-free solution for the treatment of metabolic decompensation episodes in Spanish pediatric patients with maple syrup urine disease. Front Pediatr 2022; 10:969741. [PMID: 36046474 PMCID: PMC9420908 DOI: 10.3389/fped.2022.969741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic decompensation episodes (DEs) in Maple Syrup urine disease (MSUD) result in brain accumulation of toxic branched-chain amino acids (BCAAs) and their respective branched-chain α-keto acids that could induce neuroinflammation, disturb brain bioenergetics, and alter glutamate and glutamine synthesis. These episodes require immediate intervention to prevent irreversible neurological damage. Intravenous (IV) administration of BCAA-free solution could represent a powerful alternative for emergency treatment of decompensations. METHODS This pediatric series discusses the management of DEs in MSUD patients with IV BCAA-free solution, as an emergency treatment for DEs or as a prophylactic in cases requiring surgery. Clinical evolution, amino acid profile and adverse effects were evaluated. RESULTS We evaluated the use of BCAA-free solution in 5 DEs in 5 MSUD pediatric patients, all with significantly elevated plasma leucine levels at admission (699-3296 μmol/L) and in 1 episode of risk of DE due to surgery. Leucine normalization was achieved in all cases with resolution or improvement of clinical symptoms following IV BCAA-free solution. The duration of administration ranged from 3-20 days. Administration of IV BCAA-free solution at the beginning of a DE could reverse depletion of the amino acids that compete with BCAAs for the LAT1 transporter, and the observed depletion of alanine, despite IV alanine supplementation. No related adverse events were observed. CONCLUSIONS Administration of standardized IV BCAA-free solution in emergency settings constitutes an important and safe alternative for the treatment of DEs in MSUD, especially in pediatric patients for whom oral or enteral treatment is not viable.
Collapse
Affiliation(s)
- Paula Sánchez-Pintos
- Diagnosis and Treatment Unit of Congenital Metabolic Diseases, Department of Paediatrics, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERER, Instituto Salud Carlos III, Madrid, Spain.,MetabERN, European Reference Network for Rare Hereditary Metabolic Disorders, Udine, Italy
| | - Silvia Meavilla
- MetabERN, European Reference Network for Rare Hereditary Metabolic Disorders, Udine, Italy.,Metabolic Diseases Unit, Neurology Department, CIBERER and MetabERN, Sant Joan de Déu Hospital, Barcelona, Spain
| | - María Goretti López-Ramos
- MetabERN, European Reference Network for Rare Hereditary Metabolic Disorders, Udine, Italy.,Metabolic Diseases Unit, Neurology Department, CIBERER and MetabERN, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Ángeles García-Cazorla
- MetabERN, European Reference Network for Rare Hereditary Metabolic Disorders, Udine, Italy.,Metabolic Diseases Unit, Neurology Department, CIBERER and MetabERN, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Maria L Couce
- Diagnosis and Treatment Unit of Congenital Metabolic Diseases, Department of Paediatrics, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERER, Instituto Salud Carlos III, Madrid, Spain.,MetabERN, European Reference Network for Rare Hereditary Metabolic Disorders, Udine, Italy
| |
Collapse
|
16
|
Hu W, Yang P, Fu Z, Wang Y, Zhou Y, Ye Z, Gong Y, Huang A, Sun L, Zhao Y, Yang T, Li Z, Jiang XC, Yu W, Zhou H. High L-Valine Concentrations Associate with Increased Oxidative Stress and Newly-Diagnosed Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2022; 15:499-509. [PMID: 35221701 PMCID: PMC8865866 DOI: 10.2147/dmso.s336736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Branched-chain amino acids (BCAAs) are essential AAs which are widely used as antioxidants in patients with liver and kidney dysfunction. However, BCAAs are strongly correlated with insulin resistance (IR) and diabetes. This study aimed to evaluate the relationship among BCAAs, oxidative stress, and type 2 diabetes mellitus (T2DM) in a Chinese population. METHODS Anthropometric and biochemical examinations were performed in 816 individuals who participated in the Huai'an Diabetes Prevention Program. Serum BCAAs concentrations were measured by hydrophilic interaction chromatography-tandem mass spectrometric method. Oxidative stress was evaluated by malondialdehyde (MDA) as an index of lipid peroxidation and the superoxide dismutase (SOD) activity. RESULTS A total of 816 participants were divided into three groups: normal glucose metabolism (NGM), prediabetes, and newly-diagnosed diabetes mellitus (NDM). Subjects in NDM group show higher MDA and lower SOD levels than subjects in other groups. L-Val levels positively correlated with MDA levels and negatively with SOD in NDM groups. After adjusting for T2DM risk factors, high L-Val levels were significantly associated with higher BMI, WC, FPG, increased LnTG and decreased HDL-C. L-Val was also independently associated with NDM (OR 1.06, 95% CI 1.02-1.10; P = 0.005). Furthermore, the odds ratios for NDM among participants with high L-Val (≥35.25μg/mL) levels showed a 2.25-fold (95% CI 1.11-4.57; P = 0.024) increase compared to participants with low L-Val (<27.26 μg/mL) levels after adjusting for MDA and confounding factors. CONCLUSION High serum L-Val levels are independently associated with oxidative stress, thus promoting IR and NDM. Further study should be done to clarify the mechanism.
Collapse
Affiliation(s)
- Wen Hu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Huai’an Hospital of Xuzhou Medical College, Huai’an, Jiangsu, People’s Republic of China
| | - Panpan Yang
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical College, Huai’an, Jiangsu, People’s Republic of China
| | - Zhenzhen Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ying Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhengqin Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yingyun Gong
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Aijie Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Luning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Zhao
- School of Public Health Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhong Li
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Weinan Yu
- Department of Endocrinology and Metabolism, The Affiliated Huai’an Hospital of Xuzhou Medical College, Huai’an, Jiangsu, People’s Republic of China
- Weinan Yu, Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, 223001, People’s Republic of China, Email
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Hongwen Zhou, Department of endocrinology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People’s Republic of China, Tel +862583718836-6893, Fax +862583781781, Email
| |
Collapse
|
17
|
de Lonlay P, Posset R, Mütze U, Mention K, Lamireau D, Schiff M, Servais A, Arnoux JB, Brassier A, Dao M, Douillard C, Ottolenghi C, Pontoizeau C, Miotto F, Le Mouhaër J. Real-world management of maple syrup urine disease (MSUD) metabolic decompensations with branched chain amino acid-free formulas in France and Germany: A retrospective observational study. JIMD Rep 2021; 59:110-119. [PMID: 33977036 PMCID: PMC8100389 DOI: 10.1002/jmd2.12207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare inborn metabolic disorder, managed with a strict protein-restricted diet. At any time or age patients may still experience metabolic decompensations, requiring administration of branched chain amino acid (BCAA)-free formula to reduce leucine levels. This retrospective observational study of 126 decompensation episodes from 54 MSUD patients treated at five centers in France and Germany from 2010 to 2016, describes episodes and outcomes for patients stratified into groups who received enteral/oral or intravenous (IV) BCAA-free formula, and by pediatric or adult age categories. IV administration of BCAA-free formula was required in cases of gastric intolerance (33%), refusal to undergo nasogastric tubing (31%), "emergency" (14%) or coma patients (8%), and as prophylaxis before surgery (6%). Overall, mean duration of hospitalization was 6.6 days with oral/enteral BCAA-free formula and 5.4 days with IV formula. Leucine levels at discharge decreased by a mean of 548.5 μmol/L (69.3%) in the oral/enteral group and 657.2 μmol/L (71.3%) in the IV group. In the pediatric subgroup, there were no marked differences between administration groups on any outcome. In the adult subgroup, mean time to episode resolution was 15.8 days in the oral/enteral group and 7.7 days in the IV group (P = .008); mean duration of hospitalization was 6 days in the oral/enteral group and 4.6 days in the IV group (P = NS). Overall, seven serious adverse events in two patients were reported, of which only nausea and vomiting were treatment related.
Collapse
Affiliation(s)
- Pascale de Lonlay
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Roland Posset
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Karine Mention
- Unité Métabolisme et Centre de RéférencePôle Enfant, CHRU de Lille – Hôpital Jeanne de Flandre, Filière G2MLilleFrance
| | - Delphine Lamireau
- Centre de compétence des maladies métaboliquesCHU de Bordeaux‐GH Pellegrin, Filière G2MBordeauxFrance
| | - Manuel Schiff
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Aude Servais
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Jean Baptiste Arnoux
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Anaïs Brassier
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Myriam Dao
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Claire Douillard
- Service d'endocrinologie‐diabétologie‐métabolisme‐nutritionHôpital Huriez, CHRULilleFrance
| | - Chris Ottolenghi
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | - Clément Pontoizeau
- Service et Centre de Référence des maladies métaboliquesHôpital Necker – Enfants Malades, APHP, Université de Paris, Filière G2MFrance
| | | | | |
Collapse
|
18
|
Farias HR, Gabriel JR, Cecconi ML, Lemos IS, de Rezende VL, Wessler LB, Duarte MB, Scaini G, de Oliveira J, Streck EL. The metabolic effect of α-ketoisocaproic acid: in vivo and in vitro studies. Metab Brain Dis 2021; 36:185-192. [PMID: 33034842 DOI: 10.1007/s11011-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Maple syrup urine disease (MSUD) is characterized by a deficiency in the mitochondrial branched-chain α-keto acid dehydrogenase complex activity and, consequently, accumulation of the branched-chain amino acids and their respective branched-chain α-keto acids in fluids and the tissue. MSUD clinical symptoms include neurological alterations. KIC is considered one of the significant neurotoxic metabolites since its increased plasma concentrations are associated with neurological symptoms. We evaluated the effect of KIC intracerebroventricular (ICV) injection in hippocampal mitochondria function in rats. We also investigated the impact of KIC in cells' metabolic activity (using MTT assay) and reactive species (RS) production in HT-22 cells. For this, thirty-day-old male rats were bilaterally ICV injected with KIC or aCSF. Thus, 1 hour after the administration, animals were euthanized, and the hippocampus was harvested for measured the activities of mitochondrial respiratory chain enzymes and RS production. Furthermore, HT-22 cells were incubated with KIC (1-10 mM) in 6, 12, and 24 h. Mitochondrial complexes activities were reduced, and the formation of RS was increased in the hippocampus of rats after KIC administration. Moreover, KIC reduced the cells' metabolic ability to reduce MTT and increased RS production in hippocampal neurons. Impairment in hippocampal mitochondrial function seems to be involved in the neurotoxicity induced by KIC.
Collapse
Affiliation(s)
- Hémelin R Farias
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-000, Brazil
| | - Joice R Gabriel
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Maria Laura Cecconi
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Isabela S Lemos
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Victoria L de Rezende
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Letícia B Wessler
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Mariane B Duarte
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Giselli Scaini
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jade de Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-000, Brazil
| | - Emilio L Streck
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
19
|
Brain Branched-Chain Amino Acids in Maple Syrup Urine Disease: Implications for Neurological Disorders. Int J Mol Sci 2020; 21:ijms21207490. [PMID: 33050626 PMCID: PMC7590055 DOI: 10.3390/ijms21207490] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by decreased activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the irreversible catabolism of branched-chain amino acids (BCAAs). Current management of this BCAA dyshomeostasis consists of dietary restriction of BCAAs and liver transplantation, which aims to partially restore functional BCKDC activity in the periphery. These treatments improve the circulating levels of BCAAs and significantly increase survival rates in MSUD patients. However, significant cognitive and psychiatric morbidities remain. Specifically, patients are at a higher lifetime risk for cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorder. Recent literature suggests that the neurological sequelae may be due to the brain-specific roles of BCAAs. This review will focus on the derangements of BCAAs observed in the brain of MSUD patients and will explore the potential mechanisms driving neurologic dysfunction. Finally, we will discuss recent evidence that implicates the relevance of BCAA metabolism in other neurological disorders. An understanding of the role of BCAAs in the central nervous system may facilitate future identification of novel therapeutic approaches in MSUD and a broad range of neurological disorders.
Collapse
|
20
|
Abstract
The persistent increase in the worldwide burden of type 2 diabetes mellitus (T2D) and the accompanying rise of its complications, including cardiovascular disease, necessitates our understanding of the metabolic disturbances that cause diabetes mellitus. Metabolomics and proteomics, facilitated by recent advances in high-throughput technologies, have given us unprecedented insight into circulating biomarkers of T2D even over a decade before overt disease. These markers may be effective tools for diabetes mellitus screening, diagnosis, and prognosis. As participants of metabolic pathways, metabolite and protein markers may also highlight pathways involved in T2D development. The integration of metabolomics and proteomics with genomics in multiomics strategies provides an analytical method that can begin to decipher causal associations. These methods are not without their limitations; however, with careful study design and sample handling, these methods represent powerful scientific tools that can be leveraged for the study of T2D. In this article, we aim to give a timely overview of circulating metabolomics and proteomics findings with T2D observed in large human population studies to provide the reader with a snapshot into these emerging fields of research.
Collapse
Affiliation(s)
- Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Robert E. Gerszten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
21
|
Guo L, Tian H, Yao J, Ren H, Yin Q, Cao Y. Leucine improves α-amylase secretion through the general secretory signaling pathway in pancreatic acinar cells of dairy calves. Am J Physiol Cell Physiol 2020; 318:C1284-C1293. [PMID: 32320287 DOI: 10.1152/ajpcell.00396.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study aimed to elucidate the mechanisms by which leucine impacts the secretion of pancreatic enzymes, especially amylase, by studying the proteomics profiles of pancreatic acinar (PA) cells from dairy cows. PA cells, the experimental model, were treated with four concentrations of leucine (0, 0.23, 0.45, and 0.90 mM). The abundance of different proteins in the four leucine treatment groups was detected. Label-free proteomic analysis enabled the identification of 1,906 proteins in all four treatment groups, and 1,350 of these proteins showed common expression across the groups. The primary effects of leucine supplementation were increased (P < 0.05) citrate synthase and ATPase activity, which enlarged the cytosolic ATP pool, and the upregulation of secretory protein 61 (Sec61) expression, which promoted protein secretion. In summary, these results suggest that leucine increases citrate synthase in the TCA cycle and ATPase activity and promotes the Sec signaling pathway to increase the exocrine function of PA cells.
Collapse
Affiliation(s)
- Long Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,State Key Laboratory of Grassland Agro-Ecosystems of Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Huibin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hao Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qinyan Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
22
|
Shou J, Chen PJ, Xiao WH. The Effects of BCAAs on Insulin Resistance in Athletes. J Nutr Sci Vitaminol (Tokyo) 2020; 65:383-389. [PMID: 31666474 DOI: 10.3177/jnsv.65.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The toxic catabolic intermediates of branched chain amino acids can cause insulin resistance, and are involved in different mechanisms in different metabolic tissues. In skeletal muscle, 3-hydroxy-isobutyrate produced by valine promotes skeletal muscle fatty acid uptake, resulting in the accumulation of incompletely oxidized lipids in skeletal muscle, causing skeletal muscle insulin resistance. In the liver, branched-chain α-keto acids decompose in large amounts, promote hepatic gluconeogenesis, and lead to the accumulation of multiple acylcarnitines, which damages the mitochondrial tricarboxylic acid cycle, resulting in the accumulation of incomplete oxidation products, oxidative stress in mitochondria, and hepatic insulin resistance. In adipose tissue, the expression of branched-chain amino acid catabolic enzymes (branched-chain amino acid transaminase, branched-chain α-keto acid dehydrogenase) is reduced, resulting in an increased level of plasma branched-chain amino acids, thereby causing massive decomposition of branched-chain amino acids in tissues such as skeletal muscle and liver, and inducing insulin resistance. However, branched-chain amino acids, as a common nutritional supplement for athletes, do not induce insulin resistance. A possible explanation for this phenomenon is that exercise can enhance the mitochondrial oxidative potential of branched-chain amino acids, alleviate or even eliminate the accumulation of branched-chain amino acid catabolic intermediates, and promotes branched-chain amino acids catabolism into beta-aminoisobutyric acid, increasing plasma beta-aminoisobutyric acid concentration, improving insulin resistance. This article reveals the mechanism of BCAA-induced insulin resistance and the relationship between exercise and BCAAs metabolism, adds a guarantee for the use of BCAAs, and provides a new explanation for the occurrence of diabetes and how exercise improves diabetes.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport
| |
Collapse
|
23
|
Siddik MAB, Shin AC. Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond. Endocrinol Metab (Seoul) 2019; 34:234-246. [PMID: 31565875 PMCID: PMC6769348 DOI: 10.3803/enm.2019.34.3.234] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids that are not synthesized in our body; thus, they need to be obtained from food. They have shown to provide many physiological and metabolic benefits such as stimulation of pancreatic insulin secretion, milk production, adipogenesis, and enhanced immune function, among others, mainly mediated by mammalian target of rapamycin (mTOR) signaling pathway. After identified as a reliable marker of obesity and type 2 diabetes in recent years, an increasing number of studies have surfaced implicating BCAAs in the pathophysiology of other diseases such as cancers, cardiovascular diseases, and even neurodegenerative disorders like Alzheimer's disease. Here we discuss the most recent progress and review studies highlighting both correlational and potentially causative role of BCAAs in the development of these disorders. Although we are just beginning to understand the intricate relationships between BCAAs and some of the most prevalent chronic diseases, current findings raise a possibility that they are linked by a similar putative mechanism.
Collapse
Affiliation(s)
- Md Abu Bakkar Siddik
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
24
|
Tissue-specific characterization of mitochondrial branched-chain keto acid oxidation using a multiplexed assay platform. Biochem J 2019; 476:1521-1537. [PMID: 31092703 DOI: 10.1042/bcj20190182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/14/2023]
Abstract
Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.
Collapse
|
25
|
Hauschild TC, Guerreiro G, Mescka CP, Coelho DM, Steffens L, Moura DJ, Manfredini V, Vargas CR. DNA damage induced by alloisoleucine and other metabolites in maple syrup urine disease and protective effect of l-carnitine. Toxicol In Vitro 2019; 57:194-202. [PMID: 30853490 DOI: 10.1016/j.tiv.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited deficiency of the branched-chain α-keto dehydrogenase complex, characterized by accumulation of the branched-chain amino acids (BCAAs) and their respective branched chain α-keto-acids (BCKAs), as well as by the presence of alloisoleucine (Allo). Studies have shown that oxidative stress is involved in the pathophysiology of MSUD. In this work, we investigated using the comet assay whether Allo, BCAAs and BCKAs could induce in vitro DNA damage, as well as the influence of l-Carnitine (L-Car) upon DNA damage. We also evaluated urinary 8-hydroxydeoguanosine (8-OHdG) levels, an oxidative DNA damage biomarker, in MSUD patients submitted to a restricted diet supplemented or not with L-Car. All tested concentrations of metabolites (separated or incubated together) induced in vitro DNA damage, and the co-treatment with L-Car reduced these effects. We found that Allo induced the higher DNA damage class and verified a potentiation of DNA damage induced by synergistic action between metabolites. In vivo, it was observed a significant increase in 8-OHdG levels, which was reversed by L-Car. We demonstrated for the first time that oxidative DNA damage is induced not only by BCAAs and BCKAs but also by Allo and we reinforce the protective effect of L-Car.
Collapse
Affiliation(s)
- Tatiane Cristina Hauschild
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Gilian Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Caroline Paula Mescka
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil
| | - Daniella Moura Coelho
- Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Luiza Steffens
- Laboratório de Genética Toxicológica, UFCSPA, R. Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, UFCSPA, R. Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, BR 472, Km 585, 118, Universidade Federal do Pampa, CEP 97500-970 Uruguaiana, RS, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Scaini G, Tonon T, Moura de Souza CF, Schuck PF, Ferreira GC, Quevedo J, Neto JS, Amorim T, Camelo JS, Margutti AVB, Hencke Tresbach R, Sperb-Ludwig F, Boy R, de Medeiros PFV, Schwartz IVD, Streck EL. Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease. J Inherit Metab Dis 2018; 41:10.1007/s10545-018-0188-x. [PMID: 29740775 DOI: 10.1007/s10545-018-0188-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1β and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1β levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Tássia Tonon
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | - Tatiana Amorim
- Associação de Pais e Amigos dos Excepcionais (APAE), Salvador, Brazil
| | - Jose S Camelo
- Pediatrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Boy
- Pediatrics Department, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula F V de Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | - Ida Vanessa D Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
28
|
Kotby AA, Al-Fahham MM, Elabd HSA, Zaki OK. Prevalence of congenital heart defects among 54 Egyptian children with Maple syrup urine disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Silva LS, Poschet G, Nonnenmacher Y, Becker HM, Sapcariu S, Gaupel AC, Schlotter M, Wu Y, Kneisel N, Seiffert M, Hell R, Hiller K, Lichter P, Radlwimmer B. Branched-chain ketoacids secreted by glioblastoma cells via MCT1 modulate macrophage phenotype. EMBO Rep 2017; 18:2172-2185. [PMID: 29066459 DOI: 10.15252/embr.201744154] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/09/2022] Open
Abstract
Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched-chain ketoacids (BCKAs), metabolites of branched-chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA-generating branched-chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor-excreted BCKAs can be taken up and re-aminated to BCAAs by tumor-associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor-excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti-proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs.
Collapse
Affiliation(s)
- Lidia Santos Silva
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Yannic Nonnenmacher
- Department of Bioinfomatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Holger M Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sean Sapcariu
- Department of Bioinfomatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Magdalena Schlotter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Yonghe Wu
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Niclas Kneisel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rüdiger Hell
- Center for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Karsten Hiller
- Department of Bioinfomatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany .,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
30
|
Taschetto L, Scaini G, Zapelini HG, Ramos ÂC, Strapazzon G, Andrade VM, Réus GZ, Michels M, Dal-Pizzol F, Quevedo J, Schuck PF, Ferreira GC, Streck EL. Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 2017; 32:1507-1518. [PMID: 28550500 DOI: 10.1007/s11011-017-0035-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.
Collapse
Affiliation(s)
- Luciane Taschetto
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Hugo G Zapelini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ândrea C Ramos
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Neuroprotective Effect of Creatine and Pyruvate on Enzyme Activities of Phosphoryl Transfer Network and Oxidative Stress Alterations Caused by Leucine Administration in Wistar Rats. Neurotox Res 2017; 32:575-584. [DOI: 10.1007/s12640-017-9762-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/25/2023]
|
32
|
Shellhammer JP, Morin-Kensicki E, Matson JP, Yin G, Isom DG, Campbell SL, Mohney RP, Dohlman HG. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet 2017; 13:e1006829. [PMID: 28558063 PMCID: PMC5469498 DOI: 10.1371/journal.pgen.1006829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.
Collapse
Affiliation(s)
- James P. Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Jacob P. Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel G. Isom
- The University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert P. Mohney
- Metabolon, Inc., Research Triangle Park, North Carolina, United States of America
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5472792. [PMID: 28261376 PMCID: PMC5316456 DOI: 10.1155/2017/5472792] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.
Collapse
|
34
|
Schulze T, Morsi M, Reckers K, Brüning D, Seemann N, Panten U, Rustenbeck I. Metabolic amplification of insulin secretion is differentially desensitized by depolarization in the absence of exogenous fuels. Metabolism 2017; 67:1-13. [PMID: 28081772 DOI: 10.1016/j.metabol.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The metabolic amplification of insulin secretion is the sequence of events which enables the secretory response to a fuel secretagogue to exceed the secretory response to a purely depolarizing stimulus. The signals in this pathway are incompletely understood. Here, we have characterized an experimental procedure by which the amplifying response to glucose is reversibly desensitized, while the response to α-ketoisocaproic acid (KIC) is unchanged. MATERIALS/METHODS Insulin secretion, NAD(P)H- and FAD-autofluorescence, Fura-2 fluorescence and oxygen consumption were measured in perifused NMRI mouse islets. The ATP- and ADP-contents were measured in statically incubated mouse islets. All islets were freshly isolated. RESULTS While the original observation on the dissociation between glucose- and KIC-amplification was obtained with islets that had been exposed to a high concentration of the sulfonylurea glipizide in the absence of glucose, we now show that in the absence of exogenous fuel a moderate depolarization, irrespective of its mechanism, progressively decreased the amplification in response to both glucose and KIC. However, the amplification in response to glucose declined faster, so a time window exists where glucose was already inefficient, whereas KIC was of unimpaired efficiency. Measurements of adenine nucleotides, NAD(P)H- and FAD-autofluorescence, and oxygen consumption point to a central role of the mitochondrial metabolism in this process. The desensitization could be quickly reversed by increasing oxidative deamination of glutamate and consequently anaplerosis of the citrate cycle. CONCLUSION Depolarization in the absence of exogenous fuel may be a useful model to identify those signals which are indispensable for the generation of metabolic amplification.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Mai Morsi
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Kirstin Reckers
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Nele Seemann
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Uwe Panten
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany.
| |
Collapse
|
35
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
36
|
Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 2016; 54:5709-5719. [PMID: 27660262 DOI: 10.1007/s12035-016-0116-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.
Collapse
|
37
|
Villani GRD, Gallo G, Scolamiero E, Salvatore F, Ruoppolo M. “Classical organic acidurias”: diagnosis and pathogenesis. Clin Exp Med 2016; 17:305-323. [DOI: 10.1007/s10238-016-0435-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
38
|
Ananieva EA, Powell JD, Hutson SM. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Adv Nutr 2016; 7:798S-805S. [PMID: 27422517 PMCID: PMC4942864 DOI: 10.3945/an.115.011221] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA;
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
39
|
Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD. Sci Rep 2016; 6:28775. [PMID: 27373929 PMCID: PMC4931503 DOI: 10.1038/srep28775] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20–50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.
Collapse
|
40
|
Wisniewski MSW, Carvalho-Silva M, Gomes LM, Zapelini HG, Schuck PF, Ferreira GC, Scaini G, Streck EL. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis 2016; 31:377-83. [PMID: 26586008 DOI: 10.1007/s11011-015-9768-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine as well as their corresponding transaminated branched-chain α-ketoacids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. However, the effect of accumulating α-ketoacids in MSUD on neurotrophic factors has not been investigated. Thus, the objective of the present study was to evaluate the effects of acute intracerebroventricular administration of α-ketoisocaproic acid (KIC) on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the brains of young male rats. Ours results showed that intracerebroventricular administration of KIC decreased BDNF levels in hippocampus, striatum and cerebral cortex, without induce a detectable change in pro-BDNF levels. Moreover, NGF levels in the hippocampus were reduced after intracerebroventricular administration of KIC. In conclusion, these data suggest that the effects of KIC on demyelination and memory processes may be mediated by reduced trophic support of BDNF and NGF. Moreover, lower levels of BDNF and NGF are consistent with the hypothesis that a deficit in this neurotrophic factor may contribute to the structural and functional alterations of brain underlying the psychopathology of MSUD, supporting the hypothesis of a neurodegenerative process in MSUD.
Collapse
Affiliation(s)
- Miriam S W Wisniewski
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Hugo G Zapelini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Numerous human studies have consistently demonstrated that concentrations of branched-chain amino acids (BCAAs) in plasma and urine are associated with insulin resistance and have the quality to predict diabetes development. However, it is not known how altered BCAA levels link to insulin action and diabetes. This review addresses some recent findings in BCAA metabolism and discusses their role as reporter molecules of insulin sensitivity and diabetes and their possible contribution to disease progression. RECENT FINDINGS Changes in plasma and urine levels result mainly from altered metabolism in tissues and recent studies have thus focused on organ-specific changes in BCAA handling using animal models and human tissue samples. A decreased mitochondrial oxidation has been demonstrated in peripheral tissues and that was shown to be associated with an increased inflammatory tone and changes in adipokine levels (adiponectin and leptin). These changes appear already before insulin resistance is established. Key findings demonstrating the discordance between changes in BCAA and insulin resistance are derived from studies using insulin sensitizers and from data collected in patients undergoing Roux-en-Y bypass bariatric surgery. Intermediates derived from BCAA breakdown rather than BCAA itself were recently proposed to contribute to the development of insulin resistance and studies now explore the biomarker qualities of these metabolites. SUMMARY Understanding the mechanisms and putative causalities in the alterations in BCAA levels as found in obesity, metabolic syndrome and diabetes is crucial for any intervention options but also for the use of BCAA and derivatives as biomarkers in clinical routine.
Collapse
|
42
|
Jia F, Cui M, Than MT, Han M. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency. J Biol Chem 2015; 291:2967-73. [PMID: 26683372 DOI: 10.1074/jbc.m115.676650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.
Collapse
Affiliation(s)
- Fan Jia
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| | - Mingxue Cui
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| | - Minh T Than
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| | - Min Han
- From the Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
43
|
Mescka CP, Guerreiro G, Donida B, Marchetti D, Wayhs CAY, Ribas GS, Coitinho AS, Wajner M, Dutra-Filho CS, Vargas CR. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis 2015; 30:1167-74. [PMID: 26002427 DOI: 10.1007/s11011-015-9686-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disorder caused by a severe deficiency of the branched-chain α-keto acid dehydrogenase complex activity which leads to the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine and valine and their respective α-keto-acids in body fluids. The main symptomatology presented by MSUD patients includes ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay and mental retardation, but, the neurological pathophysiologic mechanisms are poorly understood. The treatment consists of a low protein diet and a semi-synthetic formula restricted in BCAA and supplemented with essential amino acids. It was verified that MSUD patients present L-carnitine (L-car) deficiency and this compound has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. Since there are no studies in the literature reporting the inflammatory profile of MSUD patients and the L-car role on the inflammatory response in this disorder, the present study evaluates the effect of L-car supplementation on plasma inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-gamma (INF-ɣ), and a correlation with malondialdehyde (MDA), as a marker of oxidative damage, and with free L-car plasma levels in treated MSUD patients. Significant increases of IL-1β, IL-6, and INF-ɣ were observed before the treatment with L-car. Moreover, there is a negative correlation between all cytokines tested and L-car concentrations and a positive correlation among the MDA content and IL-1β and IL-6 values. Our data show that L-car supplementation can improve cellular defense against inflammation and oxidative stress in MSUD patients and may represent an additional therapeutic approach to the patients affected by this disease.
Collapse
Affiliation(s)
- Caroline Paula Mescka
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903, Porto Alegre, RS, Brazil,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Ferreira GC. Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations. Aging Dis 2015; 6:390-9. [PMID: 26425393 DOI: 10.14336/ad.2015.0827] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/27/2015] [Indexed: 11/01/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism caused by the deficiency of phenylalanine hydroxylase. This deficiency leads to the accumulation of Phe and its metabolites in tissues and body fluids of PKU patients. The main signs and symptoms are found in the brain but the pathophysiology of this disease is not well understood. In this context, metabolic alterations such as oxidative stress, mitochondrial dysfunction, and impaired protein and neurotransmitters synthesis have been described both in animal models and patients. This review aims to discuss the main metabolic disturbances reported in PKU and relate them with the pathophysiology of this disease. The elucidation of the pathophysiology of brain damage found in PKU patients will help to develop better therapeutic strategies to improve quality of life of patients affected by this condition.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- 1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda Malgarin
- 1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - José Henrique Cararo
- 1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fabiola Cardoso
- 2 Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio Luiz Streck
- 3 Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Costa Ferreira
- 2 Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 2015; 1620:116-29. [DOI: 10.1016/j.brainres.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
46
|
Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease. Mol Neurobiol 2015; 53:3714-3723. [PMID: 26133302 DOI: 10.1007/s12035-015-9313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds.
Collapse
|
47
|
Wan PJ, Yuan SY, Tang YH, Li KL, Yang L, Fu Q, Li GQ. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH). PLoS One 2015; 10:e0127789. [PMID: 26000452 PMCID: PMC4441501 DOI: 10.1371/journal.pone.0127789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/19/2015] [Indexed: 12/14/2022] Open
Abstract
Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens.
Collapse
Affiliation(s)
- Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - San-Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao-Hua Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Kai-Long Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lu Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
48
|
Baldissera MD, Rech VC, Da Silva AS, Nishihira VS, Ianiski FR, Gressler LT, Grando TH, Vaucher RA, Schwertz CI, Mendes RE, Monteiro SG. Relationship between behavioral alterations and activities of adenylate kinase and creatine kinase in brain of rats infected by Trypanosoma evansi. Exp Parasitol 2015; 151-152:96-102. [DOI: 10.1016/j.exppara.2015.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 12/22/2022]
|
49
|
Abstract
Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.
Collapse
Affiliation(s)
- Christopher J Lynch
- Cellular and Molecular Physiology Department, The Pennsylvania State University, 500 University Drive, MC-H166, Hershey, PA 17033, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
50
|
Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro. Gene 2014; 548:294-8. [PMID: 25046137 DOI: 10.1016/j.gene.2014.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/31/2014] [Accepted: 07/18/2014] [Indexed: 11/20/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited aminoacidopathy caused by a deficiency in branched-chain α-keto acid dehydrogenase complex activity that leads to the accumulation of the branched-chain amino acids (BCAAs) leucine (Leu), isoleucine, and valine and their respective α-keto-acids, α-ketoisocaproic acid (KIC), α keto-β-methylvaleric acid, and α-ketoisovaleric acid. The major clinical features presented by MSUD patients include ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay, and mental retardation; however, the pathophysiology of this disease is poorly understood. MSUD treatment consists of a low protein diet supplemented with a mixture containing micronutrients and essential amino acids but excluding BCAAs. Studies have shown that oxidative stress may be involved in the neuropathology of MSUD, with the existence of lipid and protein oxidative damage in affected patients. In recent years, studies have demonstrated the antioxidant role of L-carnitine (L-Car), which plays a central function in cellular energy metabolism and for which MSUD patients have a deficiency. In this work, we investigated the in vitro effect of Leu and KIC in the presence or absence of L-Car on DNA damage in peripheral whole blood leukocytes using the alkaline comet assay with silver staining and visual scoring. Leu and KIC resulted in a DNA damage index that was significantly higher than that of the control group, and L-Car was able to significantly prevent this damage, mainly that due to KIC.
Collapse
|