1
|
Li B, Yabluchanskiy A, Tarantini S, Allu SR, Şencan-Eğilmez I, Leng J, Alfadhel MAH, Porter JE, Fu B, Ran C, Erdener SE, Boas DA, Vinogradov SA, Sonntag WE, Csiszar A, Ungvari Z, Sakadžić S. Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter. GeroScience 2023; 45:1491-1510. [PMID: 36792820 PMCID: PMC10400746 DOI: 10.1007/s11357-023-00735-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 μm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.
Collapse
Affiliation(s)
- Baoqiang Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Biophotonics Research Center, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ji Leng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Mohammed Ali H Alfadhel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jason E Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sefik Evren Erdener
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary.
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
3
|
Connor M, Kim MM, Cao Y, Hattangadi-Gluth J. Precision Radiotherapy for Gliomas: Implementing Novel Imaging Biomarkers to Improve Outcomes With Patient-Specific Therapy. Cancer J 2021; 27:353-363. [PMID: 34570449 PMCID: PMC8480523 DOI: 10.1097/ppo.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Gliomas are the most common primary brain cancer, yet are extraordinarily challenging to treat because they can be aggressive and infiltrative, locally recurrent, and resistant to standard treatments. Furthermore, the treatments themselves, including radiation therapy, can affect patients' neurocognitive function and quality of life. Noninvasive imaging is the standard of care for primary brain tumors, including diagnosis, treatment planning, and monitoring for treatment response. This article explores the ways in which advanced imaging has and will continue to transform radiation treatment for patients with gliomas, with a focus on cognitive preservation and novel biomarkers, as well as precision radiotherapy and treatment adaptation. Advances in novel imaging techniques continue to push the field forward, to more precisely guided treatment planning, radiation dose escalation, measurement of therapeutic response, and understanding of radiation-associated injury.
Collapse
Affiliation(s)
- Michael Connor
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jona Hattangadi-Gluth
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| |
Collapse
|
4
|
Mouton L, Etienne O, Feat-Vetel J, Barrière DA, Pérès EA, Boumezbeur F, Boussin FD, Le Bihan D. Noninvasive Assessment of Neurodevelopmental Disorders after In Utero Irradiation in Mice: An In Vivo Anatomical and Diffusion MRI Study. Radiat Res 2021; 195:568-583. [PMID: 33826744 DOI: 10.1667/rade-20-00136.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/04/2021] [Indexed: 11/03/2022]
Abstract
In utero exposure to ionizing radiation can lead to cerebral alterations during adulthood. Using anatomical magnetic resonance imaging (MRI), it is possible to assess radiation-induced structural brain damage noninvasively. However, little is currently known about microstructure alterations in brain tissue. Therefore, the goal of this study was to establish, based on an original and robust pipeline of MRI image analysis, whether the long-term effects of in utero radiation exposure on brain tissue microstructure could be detected noninvasively. Pregnant C57BL/6N mice received a single dose of 1 Gy on gestation day 14.5, which led to behavioral impairments in adults. At 3 months old, in vivo MRI data were acquired from in utero irradiated and nonirradiated male mice. An MRI protocol was designed to assess the effects of radiation on the parameters of brain volume, non-Gaussian diffusion (ADC0, kurtosis and signature index) and anisotropic diffusion (fractional anisotropy and mean, axial, radial diffusivities and anisotropic signature index) in 10 key cerebral structures defined using an in-house atlas of the mouse brain. Based on the relative amplitude of these anatomical and microstructural changes, maps of the radiosensitivity of the brain to in utero irradiation were created. We observed microcephaly in irradiated mice with noticeably larger volume changes in the cortex and the corpus callosum. We also observed significantly lower ADC0, anisotropy fraction (sFA), radial diffusivity (sRD), as well as signature index (S-index and SI3) values, which are original markers sensitive to tissue microstructure alterations. All these changes together are in favor of a decreased cellular "imprint" and in some regions a reduced density in myelinated axons. A reduction in the number and complexity of myelinated axons was further revealed by myelin basic protein immunostaining. Combining anatomical and diffusion MRI is a promising approach to noninvasively investigate the radiosensitivity of local brain areas in adult mice after in utero irradiation in terms of microstructure.
Collapse
Affiliation(s)
- L Mouton
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France.,Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - O Etienne
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - J Feat-Vetel
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - D A Barrière
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France
| | - E A Pérès
- Normandie Université, UNICAEN, CEA, CNRS, UMR6030-ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - F Boumezbeur
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France
| | - F D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - D Le Bihan
- NeuroSpin, Frederic Joliot Institute, Commissariat à l'Energie Atomique, Université Paris- Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Le Fèvre C, Cheng X, Loit MP, Keller A, Cebula H, Antoni D, Thiery A, Constans JM, Proust F, Noel G. Role of hippocampal location and radiation dose in glioblastoma patients with hippocampal atrophy. Radiat Oncol 2021; 16:112. [PMID: 34158078 PMCID: PMC8220779 DOI: 10.1186/s13014-021-01835-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/06/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma. METHODS All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy. RESULTS Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall. CONCLUSIONS There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Xue Cheng
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France.,Department of Radiation Oncology, Chongqing University Three Gorges Hospital, 165 Xin Cheng Road, Wanzhou District, Chongqing, 404000, China
| | | | | | - Hélène Cebula
- Neurosurgery Service, Hautepierre University Hospital, 1, rue Molière, 67000, Strasbourg, France
| | - Delphine Antoni
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Alicia Thiery
- Statistic Department, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Jean-Marc Constans
- Radiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
| | - François Proust
- Neurosurgery Service, Hautepierre University Hospital, 1, rue Molière, 67000, Strasbourg, France
| | - Georges Noel
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France.
| |
Collapse
|
6
|
Ren BX, Huen I, Wu ZJ, Wang H, Duan MY, Guenther I, Bhanu Prakash KN, Tang FR. Early postnatal irradiation-induced age-dependent changes in adult mouse brain: MRI based characterization. BMC Neurosci 2021; 22:28. [PMID: 33882822 PMCID: PMC8061041 DOI: 10.1186/s12868-021-00635-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background Brain radiation exposure, in particular, radiotherapy, can induce cognitive impairment in patients, with significant effects persisting for the rest of their life. However, the main mechanisms leading to this adverse event remain largely unknown. A study of radiation-induced injury to multiple brain regions, focused on the hippocampus, may shed light on neuroanatomic bases of neurocognitive impairments in patients. Hence, we irradiated BALB/c mice (male and female) at postnatal day 3 (P3), day 10 (P10), and day 21 (P21) and investigated the long-term radiation effect on brain MRI changes and hippocampal neurogenesis. Results We found characteristic brain volume reductions in the hippocampus, olfactory bulbs, the cerebellar hemisphere, cerebellar white matter (WM) and cerebellar vermis WM, cingulate, occipital and frontal cortices, cerebellar flocculonodular WM, parietal region, endopiriform claustrum, and entorhinal cortex after irradiation with 5 Gy at P3. Irradiation at P10 induced significant volume reduction in the cerebellum, parietal region, cingulate region, and olfactory bulbs, whereas the reduction of the volume in the entorhinal, parietal, insular, and frontal cortices was demonstrated after irradiation at P21. Immunohistochemical study with cell division marker Ki67 and immature marker doublecortin (DCX) indicated the reduced cell division and genesis of new neurons in the subgranular zone of the dentate gyrus in the hippocampus after irradiation at all three postnatal days, but the reduction of total granule cells in the stratum granulosun was found after irradiation at P3 and P10. Conclusions The early life radiation exposure during different developmental stages induces varied brain pathophysiological changes which may be related to the development of neurological and neuropsychological disorders later in life.
Collapse
Affiliation(s)
- Bo Xu Ren
- Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Isaac Huen
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Zi Jun Wu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Radiation Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore, 138602, Singapore
| | - Meng Yun Duan
- Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Ilonka Guenther
- Comparative Medicine, Centre for Life Sciences (CeLS), National University of Singapore, #05-02, 28 Medical Drive, Singapore, 117456, Singapore
| | - K N Bhanu Prakash
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore.
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore, 138602, Singapore.
| |
Collapse
|
7
|
Redmond KJ, Milano MT, Kim MM, Trifiletti DM, Soltys SG, Hattangadi-Gluth JA. Reducing Radiation-Induced Cognitive Toxicity: Sparing the Hippocampus and Beyond. Int J Radiat Oncol Biol Phys 2021; 109:1131-1136. [PMID: 33714520 DOI: 10.1016/j.ijrobp.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
8
|
Zhou G, Xu Y, He B, Ma R, Wang Y, Chang Y, Xie Y, Wu L, Huang J, Xiao Z. Ionizing radiation modulates vascular endothelial growth factor expression through STAT3 signaling pathway in rat neonatal primary astrocyte cultures. Brain Behav 2020; 10:e01529. [PMID: 32106359 PMCID: PMC7177558 DOI: 10.1002/brb3.1529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Radiation-induced brain injury (RBI) usually occurs six months to three years after irradiation, often shows cognitive dysfunction, epilepsy, and other neurological dysfunction. In severe cases, it can cause a wide range of cerebral edema, even herniation. It seriously threatens the survival of patients and their quality of life, and it becomes a key factor in limiting the radiation dose and lowering the therapeutic efficacy in recent years. Therefore, studying the pathogenesis of RBI and exploring new therapeutic targets are of great significance. METHODS In our study, we observed the activation and secretory function in astrocytes as well as the intracellular signal transducer and activator of transcription 3 (STAT3) signal transduction pathway activation status after exposing different doses of X-ray irradiation by using MTT, Immunocytologic analysis, and Western blot analysis. Further, we used the same way to explore the role of vascular endothelial growth factor (VEGF) in signal transduction pathways playing in the activation of astrocytes after irradiating through the use of specificInhivascular endothelial growth factorbitors of STAT3. RESULTS Ast can be directly activated, reactive hyperplasia and hypertrophy, the expression of the activation marker glial fibrillary acidic protein is increased, and the expression of vascular endothelial growth factor (VEGF) in the cells is increased, which may lead to RBI. After the addition of STAT3 pathway inhibitor, most of the Ast radiation activation was suppressed, and the expression of high-level expression of VEGF decreased after irradiation. CONCLUSION Our findings demonstrated that X-ray irradiation directly induced the activation of astrocytes in a persistent manner and X-ray irradiation activated STAT3 signaling pathway. As the same time, we found that X-ray irradiation induced the activation of astrocytes and secretion cytokine. The STAT3 signaling pathway may participate in the pathogenesis of radiation-induced brain injury.
Collapse
Affiliation(s)
- Guijuan Zhou
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yan Xu
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Bing He
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Rundong Ma
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yilin Wang
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yunqian Chang
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yangzhi Xie
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China.,Leiyang People's Hospital, Leiyang, China
| | - Lin Wu
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Jianghua Huang
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Zijian Xiao
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| |
Collapse
|
9
|
Pérès EA, Etienne O, Grigis A, Boumezbeur F, Boussin FD, Le Bihan D. Longitudinal Study of Irradiation-Induced Brain Microstructural Alterations With S-Index, a Diffusion MRI Biomarker, and MR Spectroscopy. Int J Radiat Oncol Biol Phys 2018; 102:1244-1254. [DOI: 10.1016/j.ijrobp.2018.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/19/2017] [Accepted: 01/22/2018] [Indexed: 01/19/2023]
|
10
|
Watve A, Gupta M, Khushu S, Rana P. Longitudinal changes in gray matter regions after cranial radiation and comparative analysis with whole body radiation: a DTI study. Int J Radiat Biol 2018; 94:532-541. [PMID: 29659316 DOI: 10.1080/09553002.2018.1466064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Radiation-induced white matter changes are well known and vastly studied. However, radiation-induced gray matter alterations are still a research question. In the present study, these changes were assessed in a longitudinal manner using Diffusion Tensor Imaging (DTI) and further compared for cranial and whole body radiation exposure. MATERIALS AND METHODS Male mice (C57BL/6) were irradiated with cranial or whole body radiation followed by DTI study at 7T animal MRI system during predose, subacute and early delayed phases of radiation sickness. Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained from brain's gray matter regions. RESULTS Decreased FA with increased MD was observed prominently in animals exposed to cranial radiation showing most changes at 8 months post irradiation. However, whole body radiation induced FA changes were mostly observed at 1 month post irradiation as compared to controls. CONCLUSIONS The differential response after whole body and cranial irradiation observed in the study depicts that radiation exposure of 5 Gy could induce permanent alterations in gray matter regions prominently as observed in Caudoputamen region at all the time points. Thus, our study has bolstered the role of DTI to probe microstructural changes in gray matter regions of brain after radiation exposure.
Collapse
Affiliation(s)
- Apurva Watve
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Mamta Gupta
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Subash Khushu
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Poonam Rana
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| |
Collapse
|
11
|
Seibert TM, Karunamuni R, Bartsch H, Kaifi S, Krishnan AP, Dalia Y, Burkeen J, Murzin V, Moiseenko V, Kuperman J, White NS, Brewer JB, Farid N, McDonald CR, Hattangadi-Gluth JA. Radiation Dose-Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys 2017; 97:263-269. [PMID: 28068234 PMCID: PMC5267344 DOI: 10.1016/j.ijrobp.2016.10.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
Abstract
PURPOSE After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. METHODS AND MATERIALS Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. RESULTS Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=-0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean -6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). CONCLUSIONS The hippocampus demonstrates radiation dose-dependent atrophy after treatment for brain tumors. Quantitative MRI is a noninvasive imaging technique capable of measuring radiation effects on intracranial structures. This technique could be investigated as a potential biomarker for development of reliable dose constraints for improved cognitive outcomes.
Collapse
Affiliation(s)
- Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Hauke Bartsch
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Samar Kaifi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | | | - Yoseph Dalia
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Jeffrey Burkeen
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Vyacheslav Murzin
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Joshua Kuperman
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Nathan S White
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - James B Brewer
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Nikdokht Farid
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California.
| |
Collapse
|
12
|
Brown RJ, Jun BJ, Cushman JD, Nguyen C, Beighley AH, Blanchard J, Iwamoto K, Schaue D, Harris NG, Jentsch JD, Bluml S, McBride WH. Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation. Int J Radiat Oncol Biol Phys 2016; 96:470-478. [PMID: 27478168 PMCID: PMC5563160 DOI: 10.1016/j.ijrobp.2016.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. METHODS AND MATERIALS Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. RESULTS Fractional anisotropy in the splenium of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. CONCLUSIONS The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.
Collapse
Affiliation(s)
- Robert J Brown
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California; Rudi Schulte Research Institute, Santa Barbara, California
| | - Brandon J Jun
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California; Rudi Schulte Research Institute, Santa Barbara, California
| | - Jesse D Cushman
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Christine Nguyen
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Adam H Beighley
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Johnny Blanchard
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kei Iwamoto
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dorthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA Center for the Health Sciences, Los Angeles, California
| | - James D Jentsch
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Stefan Bluml
- Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California; Rudi Schulte Research Institute, Santa Barbara, California
| | - William H McBride
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
13
|
Gupta M, Mishra SK, Kumar BSH, Khushu S, Rana P. Early detection of whole body radiation induced microstructural and neuroinflammatory changes in hippocampus: A diffusion tensor imaging and gene expression study. J Neurosci Res 2016; 95:1067-1078. [PMID: 27436454 DOI: 10.1002/jnr.23833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022]
Abstract
Ionizing radiation is known to a cause systemic inflammatory response within hours of exposure that may affect the central nervous system (CNS). The present study was carried out to look upon the influence of radiation induced systemic inflammatory response in hippocampus within 24 hr of whole body radiation exposure. A Diffusion Tensor Imaging (DTI) study was conducted in mice exposed to a 5-Gy radiation dose through a 60 Co source operating at 2.496 Gy/min at 3 hr and 24 hr post irradiation and in sham-irradiated controls using 7 T animal MRI system. The results showed a significant decrease in Mean Diffusivity (MD), Radial Diffusivity (RD), and Axial Diffusivity (AD) in hippocampus at 24 hr compared with controls. Additionally, marked change in RD was observed at 3 hr. Increased serum C-Reactive Protein (CRP) level depicted an increased systemic/peripheral inflammation. The neuroinflammatory response in hippocampus was characterized by increased mRNA expression of IL-1β, IL-6, and Cox-2 at the 24 hr time point. Additionally, in the irradiated group, reactive astrogliosis was illustrated, with noticeable changes in GFAP expression at 24 hr. Altered diffusivity and enhanced neuroinflammatory expression in the hippocampal region showed peripheral inflammation induced changes in brain. Moreover, a negative correlation between gene expression and DTI parameters depicted a neuroinflammation induced altered microenvironment that might affect water diffusivity. The study showed that there was an influence of whole body radiation exposure on hippocampus even during the early acute phase that could be reflected in terms of neuroinflammatory response as well as microstructural changes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sushanta Kumar Mishra
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B S Hemanth Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
14
|
Duan F, Cheng J, Jiang J, Chang J, Zhang Y, Qiu S. Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma: a diffusion tensor imaging study. Eur Arch Otorhinolaryngol 2016; 273:4453-4459. [PMID: 27272052 DOI: 10.1007/s00405-016-4127-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/30/2016] [Indexed: 02/04/2023]
Abstract
Radiation-induced local white matter (WM) damage has been observed by diffusion tensor imaging (DTI) within a priori-defined regions of interest following radiotherapy (RT) for nasopharyngeal carcinoma (NPC). In this study, we aimed to detect WM changes throughout the brain of NPC patients by DTI. Tract-based spatial statistics (TBSS) was used to analyze DTI data from 81 NPC patients. Fractional anisotropy (FA) and mean diffusivity (MD) were quantified across the whole brain in separate groups: pre-RT, and <6, 6-12, and >12 months post-RT. We found that fractional anisotropy values were significantly lower in the right frontal, parietal, and occipital WM <6 months post-RT compared with pre-RT and remained significantly lower in the right frontal and parietal WM at >12 months. MD values were significantly higher in the right occipital, bilateral temporal, right occipital-temporal junction, left parietal, left centrum semiovale, and left frontal-parietal junction WM <6 months post-RT and remained higher in the right occipital WM at >12 months. This study suggests that changes in white matter microstructure following RT for NPC were widespread, complex, and dynamic. Diffusion tensor imaging with TBSS analysis allows for early non-invasive detection of RT-induced WM damage.
Collapse
Affiliation(s)
- Fuhong Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China.,Department of Medical Imaging Center, The first affiliated hospital of Guangzhou University of Chinese Medicine, 16# Jichang Road, Guangzhou, 510405, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Jianwei Jiang
- Department of Radiology, The Third Affiliated Hospital of Nantong University, No. 585, Xingyuan North Road, Wuxi, 214041, China
| | - Jun Chang
- Department of Radiology, The Third Affiliated Hospital of Nantong University, No. 585, Xingyuan North Road, Wuxi, 214041, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, China
| | - Shijun Qiu
- Department of Medical Imaging Center, The first affiliated hospital of Guangzhou University of Chinese Medicine, 16# Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
15
|
Shen CY, Tyan YS, Kuo LW, Wu CW, Weng JC. Quantitative Evaluation of Rabbit Brain Injury after Cerebral Hemisphere Radiation Exposure Using Generalized q-Sampling Imaging. PLoS One 2015; 10:e0133001. [PMID: 26168047 PMCID: PMC4500591 DOI: 10.1371/journal.pone.0133001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/23/2015] [Indexed: 01/09/2023] Open
Abstract
Radiation therapy is widely used for the treatment of brain tumors and may result in cellular, vascular and axonal injury and further behavioral deficits. The non-invasive longitudinal imaging assessment of brain injury caused by radiation therapy is important for determining patient prognoses. Several rodent studies have been performed using magnetic resonance imaging (MRI), but further studies in rabbits and large mammals with advanced magnetic resonance (MR) techniques are needed. Previously, we used diffusion tensor imaging (DTI) to evaluate radiation-induced rabbit brain injury. However, DTI is unable to resolve the complicated neural structure changes that are frequently observed during brain injury after radiation exposure. Generalized q-sampling imaging (GQI) is a more accurate and sophisticated diffusion MR approach that can extract additional information about the altered diffusion environments. Therefore, herein, a longitudinal study was performed that used GQI indices, including generalized fractional anisotropy (GFA), quantitative anisotropy (QA), and the isotropic value (ISO) of the orientation distribution function and DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD) over a period of approximately half a year to observe long-term, radiation-induced changes in the different brain compartments of a rabbit model after a hemi-brain single dose (30 Gy) radiation exposure. We revealed that in the external capsule, the GFA right to left (R/L) ratio showed similar trends as the FA R/L ratio, but no clear trends in the remaining three brain compartments. Both the QA and ISO R/L ratios showed similar trends in the all four different compartments during the acute to early delayed post-irradiation phase, which could be explained and reflected the histopathological changes of the complicated dynamic interactions among astrogliosis, demyelination and vasogenic edema. We suggest that GQI is a promising non-invasive technique and as compared with DTI, it has better potential ability in detecting and monitoring the pathophysiological cascades in acute to early delayed radiation-induced brain injury by using clinical MR scanners.
Collapse
Affiliation(s)
- Chao-Yu Shen
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yeu-Sheng Tyan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Wei Kuo
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Changwei W. Wu
- Graduate Institute of Biomedical Engineering, National Central University, Taoyuan, Taiwan
| | - Jun-Cheng Weng
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Peiffer AM, Creer RM, Linville C, Olson J, Kulkarni P, Brown JA, Riddle DR, Robbins ME, Brunso-Bechtold JE. Radiation-induced cognitive impairment and altered diffusion tensor imaging in a juvenile rat model of cranial radiotherapy. Int J Radiat Biol 2014; 90:799-806. [PMID: 24991879 DOI: 10.3109/09553002.2014.938278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To assess the long-term effects of fractionated whole brain irradiation (fWBI) using diffusion tensor imaging (DTI) and behavior in a pediatric rodent model for the clinical presentation of adult pediatric cancer survivors. MATERIALS AND METHODS Five-week-old, male F344xBN rats were randomized to receive 0, 5, or 6.5 Gy fractions biweekly for 3 weeks, resulting in Sham, Irradiated-30 (IR-30) and IR-39 Gy total dose groups. Magnetic Resonance Imaging occurred at 1, 3, 6 and 9 months with behavioral assessment at 10-11 months post-fWBI. RESULTS Irradiation reduced brain size (p < 0.001) and body weight (p < 0.001) proportionate to dose. At 1 month post-fWBI and throughout follow-up, diffusion was reduced in IR-30 and IR-39 relative to shams (p < 0.001). IR-30 but not IR-39 rats were impaired relative to Shams on the reversal trial of the Morris Water Maze (p < 0.05), and IR-30 rats preferred a striatum- mediated strategy (p < 0.06). CONCLUSIONS Hippocampal performance was impaired in IR-30 but not IR-39 animals. While gross size differences exist, white matter integrity is preserved in rats after fWBI at 5 weeks. This significant departure from childhood cancer survivors and single fraction rodent studies where white matter degradation is a prominent feature are discussed.
Collapse
Affiliation(s)
- Ann M Peiffer
- Department of Radiation Oncology, Wake Forest School of Medicine , Winston-Salem, NC
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gupta M, Rana P, Trivedi R, Kumar BSH, Khan AR, Soni R, Rathore RKS, Khushu S. Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study. NMR IN BIOMEDICINE 2013; 26:1733-1741. [PMID: 24038203 DOI: 10.1002/nbm.3010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Understanding early differential response of brain during whole body radiation or cranial radiation exposure is of significant importance for better injury management during accidental or intentional exposure to ionizing radiation. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) following whole body and cranial radiation exposure of 8 Gy in mice using a 7.0 T animal MRI system and compared profiles with sham controls at days 1, 3, 5 and 10 post irradiation. A significant decrease in fractional anisotropy (FA) values was found in hippocampus, thalamic and hypothalamic regions (p < 0.05) in both whole body and cranial irradiated groups compared with controls, suggesting radiation induced reactive astrogliosis or neuroinflammatory response. In animals exposed to whole body radiation, FA was significantly decreased in some additional brain regions such as sensory motor cortex and corpus callosum in comparison with cranial irradiation groups and controls. Changes in FA were observed till day 10 post irradiation in both the groups. However, MRS study from hippocampus revealed changes only in the whole body radiation dose group. Significant reduction in the ratios of the metabolites myoinositol (mI, p = 0.02) and taurine (tau, p = 0.03) to total creatine were observed, and these metabolic alterations persisted till day 10 post irradiation. To the best of our knowledge this study has for the first time documented a comparative account of microstructural and metabolic aspects of whole body and cranial radiation induced early brain injury using in vivo MRI. Overall our findings suggest differential response at microstructure and metabolite levels following cranial or whole body radiation exposure.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang S, Young KM. White matter plasticity in adulthood. Neuroscience 2013; 276:148-60. [PMID: 24161723 DOI: 10.1016/j.neuroscience.2013.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/24/2023]
Abstract
CNS white matter is subject to a novel form of neural plasticity which has been termed "myelin plasticity". It is well established that oligodendrocyte generation and the addition of new myelin internodes continue throughout normal adulthood. These new myelin internodes maybe required for the de novo myelination of previously unmyelinated axons, myelin sheath replacement, or even myelin remodeling. Each process could alter axonal conduction velocity, but to what end? We review the changes that occur within the white matter over the lifetime, the known regulators and mediators of white matter plasticity in the mature CNS, and the physiological role this plasticity may play in CNS function.
Collapse
Affiliation(s)
- S Wang
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| | - K M Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia.
| |
Collapse
|
19
|
Hua K, Schindler MK, McQuail JA, Forbes ME, Riddle DR. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats. PLoS One 2012; 7:e52728. [PMID: 23300752 PMCID: PMC3530502 DOI: 10.1371/journal.pone.0052728] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically “activated” phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and represent important end-points for analysis in studies of therapeutic strategies to protect patients from neural dysfunction.
Collapse
Affiliation(s)
- Kun Hua
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. McQuail
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - M. Elizabeth Forbes
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - David R. Riddle
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB. Imaging radiation-induced normal tissue injury. Radiat Res 2012; 177:449-66. [PMID: 22348250 DOI: 10.1667/rr2530.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them.
Collapse
Affiliation(s)
- Mike E Robbins
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The literature on the neuroanatomical changes that occur during normal, non-demented aging is reviewed here with an emphasis on the improved accuracy of studies that use stereological techniques. Loss of neural tissue involved in cognition occurs during aging of humans as well as the other mammals that have been examined. There is considerable regional specificity within the cerebral cortex and the hippocampus in both the degree and cellular basis for loss. The anatomy of the prefrontal cortex is especially vulnerable to the effects of aging while the major subfields of the hippocampus are not. A loss of neurons, dendrites and synapses has been documented, as well as changes in neurotransmitter systems, in some regions of the cortex and hippocampus but not others. Species differences are also apparent in the cortical white matter and the corpus callosum where there are indications of loss of myelin in humans, but most evidence favors preservation in rats. The examination of whether the course of neuroanatomical aging is altered by hormone replacement in females is just beginning. When hormone replacement is started close to the time of cycle cessation, there are indications in humans and rats that replacement can preserve neural tissue but there is some variability due to the type of hormones and regimen of administration.
Collapse
Affiliation(s)
- Janice M Juraska
- Department of Psychology and Program in Neuroscience, University of Illinois, 603 E Daniel, Champaign, IL, 61820, USA,
| | | |
Collapse
|