1
|
Venkata Ratna S, Prasada Rao T, Pathipati D, Chaitanya Kumar TV, Rambabu Naik B, Siva Kumar AVN. Kisspeptin promotes follicular development through its effects on modulation of P450 aromatase expression and steroidogenesis in sheep ovarian follicles. Reprod Domest Anim 2023; 58:1270-1278. [PMID: 37448136 DOI: 10.1111/rda.14430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The present study was conducted to ascertain whether the role of kisspeptin in promoting in vitro development of preantral follicles was through the regulation of P450 aromatase gene expression and steroidogenesis in sheep. Accordingly, the cumulus cells and oocytes were collected from different development stages of preantral follicles grown in vivo and cultured in vitro in TCM199B (Group I), TCM199B + KP (10 μg/mL) (Group II) and Standard medium + KP (10 μg/mL). To measure the steroid (Estradiol-17β; E2 and Progesterone; P4 ) synthesis through ELISA, spent culture medium was collected separately from the same in vitro groups. E2 synthesis in the spent medium collected from all the three groups showed an increasing trend from PFs' exposed to respective culture media for 3 min to 2-day culture stage but decreased thereafter till 6-day culture stage. This is followed by a sharp increase in E2 concentration in the spent medium collected after in vitro maturation. However, P4 synthesis in group III followed increased pattern as the development progressed from PFs' exposed to culture medium for 3 min to in vitro maturation stage. The steroid production was observed at all stages of in vitro development in altered supplemented conditions. The steroid synthesis in the spent medium was highest in the 6 day cultured PFs' in Standard medium + KP matured in vitro for 24 h. Therefore, supplementation of kisspeptin along with other growth factors promoted steroid production in cultured preantral follicles far better than in other media.
Collapse
Affiliation(s)
- S Venkata Ratna
- Department of Veterinary Biochemistry, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| | - T Prasada Rao
- Department of Veterinary Biochemistry, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Deepa Pathipati
- Department of Veterinary Physiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| | - T V Chaitanya Kumar
- Department of Veterinary Biochemistry, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| | - B Rambabu Naik
- Department of Veterinary Physiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| | - A V N Siva Kumar
- Department of Veterinary Physiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
2
|
Zhou W, Wang Y, Wang J, Peng C, Wang Z, Qin H, Li G, Li D. Geosmin disrupts energy metabolism and locomotor behavior of zebrafish in early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160222. [PMID: 36400299 DOI: 10.1016/j.scitotenv.2022.160222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Geosmin has been commonly detected both in various aquatic environments and biota, but its exact toxicological mechanisms to organisms need further experimentation. In the present study, zebrafish embryos were exposed to geosmin at nominal concentrations of 50, 500 and 5000 ng/L for 120 h post-fertilization (hpf), followed by locomotor activity and biochemical parameter examination, and multi-omics investigation of the transcriptome and metabolome. The results showed that geosmin exposure significantly reduced the mitochondrial electron transport chain (ETC) complexes I-V, ATP content and mitochondrial respiration and suppressed the locomotor behavior of zebrafish larvae. Transcriptomics analysis revealed that the transcripts of genes involved in oxidative phosphorylation, glycolysis, and lipid metabolism were significantly affected, indicating that geosmin disrupts energy metabolism. Furthermore, metabolomics results showed that 3 classes of lipids, namely glycerophospholipids (GPs), sphingolipids (SLs) and fatty acyls (FAs) were significantly decreased after geosmin exposure. This study provides novel insight into the underlying mechanisms of geosmin-induced energy metabolism and highlights the need for concern about geosmin exposure.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Comprehensive Innovative Utilization of Ornamental Plant Germplasm, Guangzhou 510640, PR China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
3
|
Iwasa T, Noguchi H, Aoki H, Tamura K, Maeda T, Takeda A, Uchishiba M, Arakaki R, Minato S, Kamada S, Yamamoto S, Imaizumi J, Kagawa T, Yoshida A, Fukui R, Daizumoto K, Kon M, Shinohara N, Yoshida K, Yamamoto Y. Effects of undernutrition and low energy availability on reproductive functions and their underlying neuroendocrine mechanisms. Endocr J 2022; 69:1363-1372. [PMID: 36372440 DOI: 10.1507/endocrj.ej22-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been well established that undernutrition and low energy availability disturb female reproductive functions in humans and many animal species. These reproductive dysfunctions are mainly caused by alterations of some hypothalamic factors, and consequent reduction of gonadotrophin-releasing hormone (GnRH) secretion. Evidence from literature suggests that increased activity of orexigenic factors and decreased activity of anorexigenic/satiety-related factors in undernourished conditions attenuate GnRH secretion in an integrated manner. Likewise, the activity of kisspeptin neurons, which is a potent stimulator of GnRH, is also reduced in undernourished conditions. In addition, it has been suggested that gonadotrophin-inhibitory hormone, which has anti-GnRH and gonadotrophic effects, may be involved in reproductive dysfunctions under several kinds of stress conditions. It should be remembered that these alterations, i.e., promotion of feeding behavior and temporary suppression of reproductive functions, are induced to prioritize the survival of individual over that of species, and that improvements in metabolic and nutritional conditions should be considered with the highest priority.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Rijin Fukui
- Department of Obstetrics & Gynecology, Tokushima Municipal Hospital, Tokushima 770-0812, Japan
| | - Kei Daizumoto
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
4
|
Luo R, Chen L, Song X, Zhang X, Xu W, Han D, Zuo J, Hu W, Shi Y, Cao Y, Ma R, Liu C, Xu C, Li Z, Li X. Possible Role of GnIH as a Novel Link between Hyperphagia-Induced Obesity-Related Metabolic Derangements and Hypogonadism in Male Mice. Int J Mol Sci 2022; 23:ijms23158066. [PMID: 35897643 PMCID: PMC9332143 DOI: 10.3390/ijms23158066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xun Li
- Correspondence: ; Tel.: +86-0771-3235635
| |
Collapse
|
5
|
Iwasa T, Yamamoto Y, Noguchi H, Takeda A, Minato S, Kamada S, Imaizumi J, Kagawa T, Yoshida A, Kawakita T, Yoshida K. Neuroendocrine mechanisms of reproductive dysfunctions in undernourished condition. J Obstet Gynaecol Res 2022; 48:568-575. [PMID: 34979587 DOI: 10.1111/jog.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Campo A, Dufour S, Rousseau K. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts. Front Endocrinol (Lausanne) 2022; 13:1056939. [PMID: 36589829 PMCID: PMC9800884 DOI: 10.3389/fendo.2022.1056939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, the tachykinin system includes tachykinin genes, which encode one or two peptides each, and tachykinin receptors. The complexity of this system is reinforced by the massive conservation of gene duplicates after the whole-genome duplication events that occurred in vertebrates and furthermore in teleosts. Added to this, the expression of the tachykinin system is more widespread than first thought, being found beyond the brain and gut. The discovery of the co-expression of neurokinin B, encoded by the tachykinin 3 gene, and kisspeptin/dynorphin in neurons involved in the generation of GnRH pulse, in mammals, put a spotlight on the tachykinin system in vertebrate reproductive physiology. As food intake and reproduction are linked processes, and considering that hypothalamic hormones classically involved in the control of reproduction are reported to regulate also appetite and energy homeostasis, it is of interest to look at the potential involvement of tachykinins in these two major physiological functions. The purpose of this review is thus to provide first a general overview of the tachykinin system in mammals and teleosts, before giving a state of the art on the different levels of action of tachykinins in the control of reproduction and food intake. This work has been conducted with a comparative point of view, highlighting the major similarities and differences of tachykinin systems and actions between mammals and teleosts.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Volcani Institute, Agricultural Research Organization, Rishon LeTsion, Israel
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Muséum National d’Histoire Naturelle, Research Unit PhyMA Physiologie Moléculaire et Adaptation CNRS, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
7
|
Iwasa T, Minato S, Imaizumi J, Yoshida A, Kawakita T, Yoshida K, Yamamoto Y. Effects of low energy availability on female reproductive function. Reprod Med Biol 2021; 21:e12414. [PMID: 34934398 PMCID: PMC8656184 DOI: 10.1002/rmb2.12414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background It is known that metabolic and nutritional disturbances induce reproductive dysfunction in females. The main cause of these alterations is reduced gonadotrophin‐releasing hormone (GnRH) secretion from the hypothalamus, and the underlying mechanisms have gradually been elucidated. Methods The present review summarizes current knowledge about the effects of nutrition/metabolism on reproductive functions, especially focusing on the GnRH regulation system. Main findings Various central and peripheral factors are involved in the regulation of GnRH secretion, and alterations in their activity combine to affect GnRH neurons. Satiety‐related factors, i.e., leptin, insulin, and alpha‐melanocyte‐stimulating hormone, directly and indirectly stimulate GnRH secretion, whereas orexigenic factors, i.e., neuropeptide Y, Agouti‐related protein, orexin, and ghrelin, attenuate GnRH secretion. In addition, kisspeptin, which is a potent positive regulator of GnRH, expression is reduced by metabolic and nutritional disturbances. Conclusion These neuroendocrine systems may be defensive mechanisms, which help organisms to survive adverse conditions by temporarily suppressing reproduction.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| |
Collapse
|
8
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
9
|
Growth Hormone (GH) Treatment Decreases Plasma Kisspeptin Levels in GH-Deficient Adults with Prader-Willi Syndrome. J Clin Med 2021; 10:jcm10143054. [PMID: 34300220 PMCID: PMC8306252 DOI: 10.3390/jcm10143054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Obesity and growth hormone (GH)-deficiency are consistent features of Prader-Willi syndrome (PWS). Centrally, kisspeptin is involved in regulating reproductive function and can stimulate hypothalamic hormones such as GH. Peripherally, kisspeptin signaling influences energy and metabolic status. We evaluated the effect of 12-month GH treatment on plasma kisspeptin levels in 27 GH-deficient adult PWS patients and analyzed its relationship with metabolic and anthropometric changes. Twenty-seven matched obese subjects and 22 healthy subjects were also studied. Before treatment, plasma kisspeptin concentrations in PWS and obese subjects were similar (140.20 (23.5-156.8) pg/mL vs. 141.96 (113.9-165.6) pg/mL, respectively, p = 0.979)) and higher (p = 0.019) than in healthy subjects (124.58 (107.3-139.0) pg/mL); plasma leptin concentrations were similar in PWS and obese subjects (48.15 (28.80-67.10) ng/mL vs. 33.10 (20.50-67.30) ng/mL, respectively, p = 0.152) and higher (p < 0.001) than in healthy subjects (14.80 (11.37-67.30) ng/mL). After GH therapy, lean body mass increased 2.1% (p = 0.03), total fat mass decreased 1.6% (p = 0.005), and plasma kisspeptin decreased to levels observed in normal-weight subjects (125.1(106.2-153.4) pg/mL, p = 0.027). BMI and leptin levels remained unchanged. In conclusion, 12-month GH therapy improved body composition and decreased plasma kisspeptin in GH deficient adults with PWS. All data are expressed in median (interquartile range).
Collapse
|
10
|
Rzucidlo CL, Sperou ES, Holser RR, Khudyakov JI, Costa DP, Crocker DE. Changes in serum adipokines during natural extended fasts in female northern elephant seals. Gen Comp Endocrinol 2021; 308:113760. [PMID: 33781740 DOI: 10.1016/j.ygcen.2021.113760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.
Collapse
Affiliation(s)
- Caroline L Rzucidlo
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States.
| | - Emily S Sperou
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Rachel R Holser
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States
| |
Collapse
|
11
|
Lambrou GI, Bacopoulou F. Kisspeptin and the "Special Relationship" Between Reproduction and Metabolism: A Computational Approach. Med Chem 2021; 16:796-811. [PMID: 31291878 DOI: 10.2174/1573406415666190710182906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Kisspeptin is one of the most potent stimulators of GnRH secretion and consequent gonadotropin release from the anterior pituitary. Kisspeptin is considered critical in regulating reproductive function in relation to metabolic cues. Reproductive function is gated by the energy reserves of the individual. Conditions of energy insufficiency, such as Anorexia Nervosa, often disturb reproductive function and fertility. OBJECTIVE The aim of this research was to investigate similar or comparable hormonal patterns in kisspeptin mechanics using computational methodology tools. METHODS Twenty-two females with typical or atypical anorexia nervosa and fifteen control females, were recruited from the Center for Adolescent Medicine of the University of Athens. Serum levels of Prolactin (PRL), 17-Hydroxy-Progesterone (17OHPR), Free Triiodothyronine (FT3), Triiodothyronine (T3), Free Thyroxine (FT4), Thyroid Stimulating Hormone (TSH), Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH) and Estradiol (E2) were measured in patients and controls. Data were modelled computationally in order to find similar or comparable patterns between control and anorexic participants, with respect to kisspeptin. RESULTS Kisspeptin manifested symmetrical regression plots between controls and anorexics with respect to 17OHPR, LH and FSH, as well as a threshold pattern among controls, typical and atypical anorexics. CONCLUSION Kisspeptin seems to participate in the anorexic hormonal milieu through threshold or symmetrical mechanisms.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
12
|
Przybył BJ, Szlis M, Wójcik-Gładysz A. Brain-derived neurotrophic factor (BDNF) affects the activity of the gonadotrophic axis in sheep. Horm Behav 2021; 131:104980. [PMID: 33872927 DOI: 10.1016/j.yhbeh.2021.104980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to examine the hypothesis that BDNF modulates the activity of the gonadotrophic axis in sheep. Central infusions of BDNF were administered to sexually mature Polish Merino sheep. The sheep were randomly divided into three groups: the control group received intracerebroventricular (ICV) infusions of the vehicle, the BDNF 10 group received ICV infusions of BDNF at 10 μg/480 μL/day, and the BDNF 60 group was infused with BDNF at 60 μg/480 μL/day. A series of four infusions on three consecutive days was performed. Blood samples were collected on days 0 and 3 of the infusions. Immediately after the experiment, all the sheep were slaughtered, and selected structures of the hypothalamus and pituitaries were collected for Real Time RT-qPCR analysis. The collected plasma samples, as well as parts of pituitaries were stored for radioimmunoassay analysis of LH and FSH. Central treatment with exogenous BDNF stimulated GnRH mRNA expression in the preoptic area, as well as GnRH-R mRNA in the pituitary. Furthermore, substantial changes in the KNDy mRNA expression in the mediobasal hypothalamus were observed after the ICV BDNF administration. Additionally, central BDNF infusion caused a decrease in LH concentration and a simultaneous increase in FSH concentration in peripheral blood. Neither pulse amplitude nor pulse frequency for any gonadotrophin was affected in both groups of sheep that received BDNF infusion. Our results revealed that exogenous BDNF affects GnRH and KNDy gene expression and changes in the LH and FSH pituitary cell secretory activities. These findings suggest that BDNF may participate in the mechanism modulating the activity of the gonadotrophic axis at the central level in female sheep.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
13
|
Evans MC, Hill JW, Anderson GM. Role of insulin in the neuroendocrine control of reproduction. J Neuroendocrinol 2021; 33:e12930. [PMID: 33523515 DOI: 10.1111/jne.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Infertility associated with insulin resistance is characterised by abnormal hormone secretion by the hypothalamus, pituitary gland and gonads. These endocrine tissues can maintain insulin sensitivity even when tissues such as the muscle and liver become insulin-resistant, resulting in excessive insulin stimulation as hyperinsulinaemia develops. Experiments conducted to determine the role of neuronal insulin signalling in fertility were unable to recapitulate early findings of hypogonadotrophic hypogonadism in mice lacking insulin receptors throughout the brain. Rather, it was eventually shown that astrocytes critically mediate the effects of insulin on puberty timing and adult reproductive function. However, specific roles for neurones and gonadotrophs have been revealed under conditions of hyperinsulinaemia and by ablation of insulin and leptin receptors. The collective picture is one of multiple insulin-responsive inputs to gonadotrophin releasing hormone neurones, with astrocytes being the most important player.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Lin XH, Lass G, Kong LS, Wang H, Li XF, Huang HF, O’Byrne KT. Optogenetic Activation of Arcuate Kisspeptin Neurons Generates a Luteinizing Hormone Surge-Like Secretion in an Estradiol-Dependent Manner. Front Endocrinol (Lausanne) 2021; 12:775233. [PMID: 34795643 PMCID: PMC8593229 DOI: 10.3389/fendo.2021.775233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 01/31/2023] Open
Abstract
Traditionally, the anteroventral periventricular (AVPV) nucleus has been the brain area associated with luteinizing hormone (LH) surge secretion in rodents. However, the role of the other population of hypothalamic kisspeptin neurons, in the arcuate nucleus (ARC), has been less well characterized with respect to surge generation. Previous experiments have demonstrated ARC kisspeptin knockdown reduced the amplitude of LH surges, indicating that they have a role in surge amplification. The present study used an optogenetic approach to selectively stimulate ARC kisspeptin neurons and examine the effect on LH surges in mice with different hormonal administrations. LH level was monitored from 13:00 to 21:00 h, at 30-minute intervals. Intact Kiss-Cre female mice showed increased LH secretion during the stimulation period in addition to displaying a spontaneous LH surge around the time of lights off. In ovariectomized Kiss-Cre mice, optogenetic stimulation was followed by a surge-like secretion of LH immediately after the stimulation period. Ovariectomized Kiss-Cre mice with a low dose of 17β-estradiol (OVX+E) replacement displayed a surge-like increase in LH release during period of optic stimulation. No LH response to the optic stimulation was observed in OVX+E mice on the day of estradiol benzoate (EB) treatment (day 1). However, after administration of progesterone (day 2), all OVX+E+EB+P mice exhibited an LH surge during optic stimulation. A spontaneous LH surge also occurred in these mice at the expected time. Taken together, these results help to affirm the fact that ARC kisspeptin may have a novel amplificatory role in LH surge production, which is dependent on the gonadal steroid milieu.
Collapse
Affiliation(s)
- Xian-Hua Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Geffen Lass
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling-Si Kong
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Songjiang District, Shanghai, China
| | - Xiao-Feng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - He-Feng Huang
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Kevin T. O’Byrne
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Kevin T. O’Byrne, kevin.o’
| |
Collapse
|
15
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Abstract
Patients and clinicians alike want to know if stress causes infertility. Stress could impair with reproductive function by a variety of mechanisms, including compromise of ovarian function, spermatogenesis, fertilization, endometrial development, implantation, and placentation. Herein we focus on the pathogenesis and treatment of stress-induced anovulation, which is often termed functional hypothalamic amenorrhea (FHA), with the objective of summarizing the actual knowledge as a clinical guide. FHA is a reversible form of anovulation due to slowing of gonadotropin-releasing hormone pulse frequency that results in insufficient pituitary secretion of gonadotropins to support full folliculogenesis. Importantly, FHA heralds a constellation of neuroendocrine alterations with health concomitants. The activity of the hypothalamic-pituitary-adrenal axis is increased in women with FHA and this observation supports the notion that stress is the cause. The extent of reproductive suppression relates to individual endocrinological and physiological sensitivity to stressors, both metabolic and psychogenic, and chronicity.
Collapse
|
17
|
Dong TS, Vu JP, Oh S, Sanford D, Pisegna JR, Germano P. Intraperitoneal Treatment of Kisspeptin Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice. Dig Dis Sci 2020; 65:2254-2263. [PMID: 31729619 DOI: 10.1007/s10620-019-05950-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kisspeptin is a neuropeptide that plays an integral role in the regulation of energy intake and reproduction by acting centrally on the hypothalamus-pituitary-gonadal axis. Our current study explores for the first time the effects of a pharmacological treatment of intraperitoneal kisspeptin-10 on murine feeding behavior, respirometry parameters, energy balance, and metabolic hormones. METHODS Two groups (n = 16) of age- and sex-matched C57BL/6 wild-type adult mice were individually housed in metabolic cages and intraperitoneally injected with either kisspeptin-10 (2 nmol in 200 µl of saline) (10 µM) or vehicle before the beginning of a dark-phase cycle. Microstructure of feeding and drinking behavior, respirometry gases, respiratory quotient (RQ), total energy expenditure (TEE), metabolic hormones, oral glucose tolerance, and lipid profiles were measured. RESULTS Intraperitoneal treatment with kisspeptin-10 caused a significant reduction in food intake, meal frequency, meal size, and eating rate. Kisspeptin-10 significantly decreased TEE during both the dark and light phase cycles, while also increasing the RQ during the dark-phase cycle. In addition, mice injected with kisspeptin-10 had significantly higher plasma levels of insulin (343.8 pg/ml vs. 106.4 pg/ml; p = 0.005), leptin (855.5 pg/ml vs. 173.1 pg/ml; p = 0.02), resistin (9411.1 pg/ml vs. 4116.5 pg/ml; p = 0.001), and HDL (147.6 mg/dl vs 97.1 mg/dl; p = 0.04). CONCLUSION A pharmacological dose of kisspeptin-10 significantly altered metabolism by suppressing food intake, meal size, eating rate, and TEE while increasing the RQ. These changes were linked to increased levels of insulin, leptin, resistin, and HDL. The current results suggest that a peripheral kisspeptin treatment could alter metabolism and energy homeostasis by suppressing appetite, food intake, and fat accumulation.
Collapse
Affiliation(s)
- Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - John P Vu
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,AbbVie, Sunnyvale, CA, USA
| | - Suwan Oh
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Daniel Sanford
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA.,Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
18
|
Bowdridge EC, Abukabda AB, Engles KJ, McBride CR, Batchelor TP, Goldsmith WT, Garner KL, Friend S, Nurkiewicz TR. Maternal Engineered Nanomaterial Inhalation During Gestation Disrupts Vascular Kisspeptin Reactivity. Toxicol Sci 2020; 169:524-533. [PMID: 30843041 DOI: 10.1093/toxsci/kfz064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Maternal engineered nanomaterial (ENM) inhalation is associated with uterine vascular impairments and endocrine disruption that may lead to altered gestational outcomes. We have shown that nano-titanium dioxide (nano-TiO2) inhalation impairs endothelium-dependent uterine arteriolar dilation in pregnant rats. However, the mechanism underlying this dysfunction is unknown. Due to its role as a potent vasoconstrictor and essential reproductive hormone, we examined how kisspeptin is involved in nano-TiO2-induced vascular dysfunction and placental efficiency. Pregnant Sprague Dawley rats were exposed (gestational day [GD] 10) to nano-TiO2 aerosols (cumulative dose = 525 ± 16 μg; n = 8) or sham exposed (n = 6) and sacrificed on GD 20. Plasma was collected to evaluate estrogen (E2), progesterone (P4), prolactin (PRL), corticosterone (CORT), and kisspeptin. Pup and placental weights were measured to calculate placental efficiency (grams fetus/gram placental). Additionally, pressure myography was used to determine uterine artery vascular reactivity. Contractile responses were assessed via cumulative additions of kisspeptin (1 × 10-9 to 1 × 10-4 M). Estrogen was decreased at GD 20 in exposed (11.08 ± 3 pg/ml) versus sham-control rats (66.97 ± 3 pg/ml), whereas there were no differences in P4, PRL, CORT, or kisspeptin. Placental weights were increased in exposed (0.99 ± 0.03 g) versus sham-control rats (0.70 ± 0.04 g), whereas pup weights (4.01 ± 0.47 g vs 4.15 ± 0.15 g) and placental efficiency (4.5 ± 0.2 vs 6.4 ± 0.5) were decreased in exposed rats. Maternal ENM inhalation exposure augmented uterine artery vasoconstrictor responses to kisspeptin (91.2%±2.0 vs 98.6%±0.10). These studies represent initial evidence that pulmonary maternal ENM exposure perturbs the normal gestational endocrine vascular axis via a kisspeptin-dependent mechanism, and decreased placental, which may adversely affect health outcomes.
Collapse
Affiliation(s)
- Elizabeth C Bowdridge
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Alaeddin B Abukabda
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | | | - Carroll R McBride
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - William T Goldsmith
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Krista L Garner
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown 26505, West Virginia
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506.,Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown 26505, West Virginia
| |
Collapse
|
19
|
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165577. [DOI: 10.1016/j.bbadis.2019.165577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
20
|
Loucks AB. Exercise Training in the Normal Female: Effects of Low Energy Availability on Reproductive Function. ENDOCRINOLOGY OF PHYSICAL ACTIVITY AND SPORT 2020. [DOI: 10.1007/978-3-030-33376-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
21
|
Herber CB, Ingraham HA. Should We Make More Bone or Not, As Told by Kisspeptin Neurons in the Arcuate Nucleus. Semin Reprod Med 2019; 37:147-150. [PMID: 31869843 DOI: 10.1055/s-0039-3400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since its initial discovery in 2002, the neuropeptide Kisspeptin (Kiss1) has been anointed as the master regulator controlling the onset of puberty in males and females. Over the last several years, multiple groups found that Kiss1 signaling is mediated by the 7TM surface receptor GPCR54. Kiss1 mRNA is highly enriched in the basal medial and lateral subregions of the arcuate nucleus (ARC) in the medial basal hypothalamus. Thus, Kiss1ARC neurons reside in a unique anatomical location ideal for sensing and responding to circulating steroid hormones as well as nutrients. Kiss1 expression is highly responsive to fluctuations of the gonadal hormone, estrogen, with nearly 90% of Kiss1ARC neurons expressing the nuclear hormone estrogen receptor alpha (ERa). Here we review recent research that extends the function of Kiss1ARC neurons beyond the regulation of puberty and highlight their emerging, novel roles in controlling energy allocation, behavioral outputs, and sex-dependent bone remodeling in females. Indeed, some of these previously unknown functions for Kiss1 neurons are quite striking as exemplified by the remarkable increase in bone mass after manipulating estrogen signaling in Kiss1ARC neurons. Taken together, we suggest that Kiss1ARC neurons are highly sensitive to nutritional and hormonal cues that dictate energy utilization and reproduction.
Collapse
Affiliation(s)
- Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay Campus, University of California San Francisco, San Francisco, California
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay Campus, University of California San Francisco, San Francisco, California
| |
Collapse
|
22
|
Abstract
While the categories of adolescence and puberty are often treated as one, the existence of two distinct terms points to different kinds of maturation in humans. Puberty refers to a period of coordinated somatic growth and reproductive maturation that shifts individuals from nonreproductive juvenility to reproductive maturity. Adolescence includes the behavioral and social assumption of adult roles. Life history theory offers powerful tools for understanding why puberty occurs later in humans than in other primates, including the benefits of delayed reproduction as part of a cooperation-intensive life history strategy. It also sheds light on the ways that pubertal timing responds to environmental variation. I review the mechanisms of maturation in humans and propose biocultural approaches to integrate life historical understandings of puberty with a broader definition of environment to encompass the concept of adolescence.
Collapse
Affiliation(s)
- Meredith W. Reiches
- Department of Anthropology, University of Massachusetts, Boston, Massachusetts 02125, USA
| |
Collapse
|
23
|
Rohde K, Keller M, la Cour Poulsen L, Rønningen T, Stumvoll M, Tönjes A, Kovacs P, Horstmann A, Villringer A, Blüher M, Böttcher Y. (Epi)genetic regulation of CRTC1 in human eating behaviour and fat distribution. EBioMedicine 2019; 44:476-488. [PMID: 31153815 PMCID: PMC6606956 DOI: 10.1016/j.ebiom.2019.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In brain, CREB-regulated transcription co-activator 1 (CRTC1) is involved in metabolic dysregulation. In humans a SNP in CRTC1 was associated to body fat percentage and two SNPs affected RNA Pol II binding and chromatin structure, implying epigenetic regulation of CRTC1. We sought to understand the relevance of CRTC1 SNPs, DNA methylation and expression in human eating behaviour and its relationship to clinical variables of obesity in blood and adipose tissue. METHODS 13 CRTC1 SNPs were included to analyze eating behaviour. For rs7256986, follow up association analyses were applied on DNA methylation, CRTC1 expression and clinical parameters. Linear regression was used throughout the study adjusted for age, sex and BMI. Besides data extraction from previous work, rs7256986 was de-novo genotyped and DNA methylation was evaluated by using pyrosequencing. FINDINGS We found several SNPs in the CRTC1 locus nominally associated with human eating behaviour or 2hr postprandial insulin levels and observed a correlation with alcohol and coffee intake (all P < 0.05). G-allele carriers of rs7256986 showed slightly increased hip circumference. We showed that rs7256986 represents a methylation quantitative trait locus (meQTL) in whole blood and adipose tissue. The presence of the SNP and/or DNA methylation correlated with CRTC1 gene expression which in turn, related to BMI and fat distribution. INTERPRETATION Our data support the known role of CRCT1 regulating energy metabolism in brain. Here, we highlight relevance of CRTC1 regulation in blood and adipose tissue. FUND: IFB AdiposityDiseases (BMBF); n609020-Scientia Fellows; Helse-SørØst; DFG: CRC 1052/1 and/2; Kompetenznetz Adipositas, German Diabetes Association.
Collapse
Affiliation(s)
- Kerstin Rohde
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway; IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| | - Maria Keller
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| | - Lars la Cour Poulsen
- Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway.
| | - Torunn Rønningen
- Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway.
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, Germany.
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany.
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| | - Annette Horstmann
- Department for Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Arno Villringer
- Department for Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany.
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany; Department of Medicine, University of Leipzig, Leipzig, Germany.
| | - Yvonne Böttcher
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway; IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
24
|
Lv D, Tan T, Zhu T, Wang J, Zhang S, Zhang L, Hu X, Liu G, Xing Y. Leptin mediates the effects of melatonin on female reproduction in mammals. J Pineal Res 2019; 66:e12559. [PMID: 30648765 DOI: 10.1111/jpi.12559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022]
Abstract
Melatonin is a natural molecule produced in the pineal gland and other tissues. It participates in numerous biological activities including the regulation of reproduction. However, the mechanism by which melatonin affects mammalian female reproductive performance is not fully investigated. In the present study, it was observed that melatonin positively regulated the level of leptin in female mouse and pig. To understand the potential association between melatonin and leptin on the female reproductive activities, the melatonin receptor 1 MT1 knockout (MT1-/- ) mouse and Leptin knockout (Leptin-/- ) pig were created. It was found that the deficiency of M T1 caused low leptin secretion and litter size in mouse. Meanwhile, the deletion of leptin in pig did not affect melatonin production, but significantly reduced follicle-stimulating hormone, estradiol-17β (E2), and Luteinizing hormone and increased progesterone (P) at estrum stage, which also led to smaller litter size than that in control. Melatonin treatment increased the production of leptin in pigs, while the supplementary of leptin was also able to improve the ovulation number, polar body rates, and expression of StAR in MT1-/- females. Therefore, it is first time, we described that leptin is the downstream target of melatonin in regulating female reproduction. These findings provide the novel information on the physiology of melatonin in animal reproduction.
Collapse
Affiliation(s)
- Dongying Lv
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tan Tan
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Tianqi Zhu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Suhong Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- College of Biological Science, China Agricultural University, Beijing, China
| | - Lu Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- College of Biological Science, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, Beijing, China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiming Xing
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Wójcik-Gładysz A, Szlis M, Przybył BJ, Polkowska J. Obestatin may affect the GnRH/KNDy gene network in sheep hypothalamus. Res Vet Sci 2019; 123:51-58. [DOI: 10.1016/j.rvsc.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
26
|
D'Occhio MJ, Baruselli PS, Campanile G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019; 125:277-284. [DOI: 10.1016/j.theriogenology.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
|
27
|
Izzi‐Engbeaya C, Comninos AN, Clarke SA, Jomard A, Yang L, Jones S, Abbara A, Narayanaswamy S, Eng PC, Papadopoulou D, Prague JK, Bech P, Godsland IF, Bassett P, Sands C, Camuzeaux S, Gomez‐Romero M, Pearce JTM, Lewis MR, Holmes E, Nicholson JK, Tan T, Ratnasabapathy R, Hu M, Carrat G, Piemonti L, Bugliani M, Marchetti P, Johnson PR, Hughes SJ, James Shapiro AM, Rutter GA, Dhillo WS. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes Obes Metab 2018; 20:2800-2810. [PMID: 29974637 PMCID: PMC6282711 DOI: 10.1111/dom.13460] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. MATERIALS AND METHODS In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m-2 ), we compared the effects of 1 nmol kg-1 h-1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human β-cell line (EndoC-βH1 cells). RESULTS Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. CONCLUSIONS Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions.
Collapse
Affiliation(s)
- Chioma Izzi‐Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Department of EndocrinologyImperial College Healthcare NHS TrustLondonUK
| | - Sophie A. Clarke
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Anne Jomard
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Sophie Jones
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Shakunthala Narayanaswamy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Deborah Papadopoulou
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Julia K. Prague
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Ian F. Godsland
- Section of Metabolic Medicine, Department of Medicine, Imperial College LondonSt Mary's HospitalLondonUK
| | | | - Caroline Sands
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Stephane Camuzeaux
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Maria Gomez‐Romero
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Jake T. M. Pearce
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Matthew R. Lewis
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Elaine Holmes
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Jeremy K. Nicholson
- The MRC‐NIHR National Phenome Centre and Imperial BRC Clinical Phenotyping Centre, Division of Computational, Systems and Digestive Medicine, Department of Surgery and CancerLondonUK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Risheka Ratnasabapathy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Imperial Pancreatic Islet Biology and Diabetes ConsortiumHammersmith Hospital, Imperial College LondonLondonUK
| | - Gaelle Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Imperial Pancreatic Islet Biology and Diabetes ConsortiumHammersmith Hospital, Imperial College LondonLondonUK
| | - Lorenzo Piemonti
- Diabetes Research Institute (SR‐DRI), IRCCS San Raffaele Scientific InstituteMilanItaly
- Faculty of MedicineVita‐Salute San Raffaele UniversityMilanItaly
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell LaboratoryUniversity of PisaPisaItaly
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell LaboratoryUniversity of PisaPisaItaly
| | - Paul R. Johnson
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Oxford Centre for Diabetes, Endocrinology, and MetabolismUniversity of OxfordOxfordUK
- National Institute of Health Research Oxford Biomedical Research Centre, Churchill HospitalOxfordUK
| | - Stephen J. Hughes
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Oxford Centre for Diabetes, Endocrinology, and MetabolismUniversity of OxfordOxfordUK
- National Institute of Health Research Oxford Biomedical Research Centre, Churchill HospitalOxfordUK
| | - A. M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant ProgramUniversity of AlbertaEdmontonCanada
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
- Imperial Pancreatic Islet Biology and Diabetes ConsortiumHammersmith Hospital, Imperial College LondonLondonUK
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of MedicineImperial College LondonLondonUK
| |
Collapse
|
28
|
Orlando G, Leone S, Ferrante C, Chiavaroli A, Mollica A, Stefanucci A, Macedonio G, Dimmito MP, Leporini L, Menghini L, Brunetti L, Recinella L. Effects of Kisspeptin-10 on Hypothalamic Neuropeptides and Neurotransmitters Involved in Appetite Control. Molecules 2018; 23:molecules23123071. [PMID: 30477219 PMCID: PMC6321454 DOI: 10.3390/molecules23123071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Besides its role as key regulator in gonadotropin releasing hormone secretion, reproductive function, and puberty onset, kisspeptin has been proposed to act as a bridge between energy homeostasis and reproduction. In the present study, to characterize the role of hypothalamic kisspeptin as metabolic regulator, we evaluated the effects of kisspeptin-10 on neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) gene expression and the extracellular dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytriptamine, 5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIIA) concentrations in rat hypothalamic (Hypo-E22) cells. Our study showed that kisspeptin-10 in the concentration range 1 nM–10 μM was well tolerated by the Hypo-E22 cell line. Moreover, kisspeptin-10 (100 nM–10 μM) concentration independently increased the gene expression of NPY while BDNF was inhibited only at the concentration of 10 μM. Finally, kisspeptin-10 decreased 5-HT and DA, leaving unaffected NE levels. The inhibitory effect on DA and 5-HT is consistent with the increased peptide-induced DOPAC/DA and 5-HIIA/5-HT ratios. In conclusion, our current findings suggesting the increased NPY together with decreased BDNF and 5-HT activity following kisspeptin-10 would be consistent with a possible orexigenic effect induced by the peptide.
Collapse
Affiliation(s)
- Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Adriano Mollica
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Azzurra Stefanucci
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Giorgia Macedonio
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Marilisa Pia Dimmito
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Lidia Leporini
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
29
|
Leon S, Velasco I, Vázquez MJ, Barroso A, Beiroa D, Heras V, Ruiz-Pino F, Manfredi-Lozano M, Romero-Ruiz A, Sanchez-Garrido MA, Dieguez C, Pinilla L, Roa J, Nogueiras R, Tena-Sempere M. Sex-Biased Physiological Roles of NPFF1R, the Canonical Receptor of RFRP-3, in Food Intake and Metabolic Homeostasis Revealed by its Congenital Ablation in mice. Metabolism 2018; 87:87-97. [PMID: 30075164 DOI: 10.1016/j.metabol.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND RF-amide-related peptide-3 (RFRP-3), the mammalian ortholog of gonadotropin-inhibiting hormone, operates as inhibitory signal for the reproductive axis. Recently, RFRP-3 has been also suggested to stimulate feeding, and therefore might contribute to the control of body weight and its alterations. Yet, characterization of the metabolic actions of RFRP-3 has been so far superficial and mostly pharmacological. Here, we aim to investigate the physiological roles of RFRP-3 signaling in the control of feeding and metabolic homeostasis using a novel mouse model of genetic ablation of its canonical receptor, NPFF1R. METHODS Food intake, body weight gain and composition, and key metabolic parameters, including glucose tolerance and insulin sensitivity, were monitored in mice with constitutive inactivation of NPFF1R. RESULTS Congenital elimination of NPFF1R in male mice resulted in changes in feeding patterns, with a decrease in spontaneous food intake and altered responses to leptin and ghrelin: leptin-induced feeding suppression was exaggerated in NPFF1R null mice, whereas orexigenic responses to ghrelin were partially blunted. Concordant with this pro-anorectic phenotype, hypothalamic expression of Pomc was increased in NPFF1R null mice. In contrast, spontaneous feeding and neuropeptide expression remained unaltered in NPFF1R KO female mice. Despite propensity for reduced feeding, ablation of NPFF1R signaling in male mice did not cause overt alterations in body weight (BW) gain or composition, neither it affected BW responses to high fat diet (HFD), total energy expenditure or RQ ratios. Yet, NPFF1R KO males showed a decrease in locomotor activity. Conversely, NPFF1R null female mice tended to be heavier and displayed exaggerated BW increases in response to obesogenic insults, such as HFD or ovariectomy. These were associated to increased fat mass, decreased total energy expenditure in HFD, and unaltered RQ ratios or spontaneous locomotor activity. Finally, lack of NPFF1R signaling worsened the metabolic impact of HFD on glycemic homeostasis in males, as revealed by impaired glucose tolerance and insulin sensitivity, while female mice remained unaffected. CONCLUSION Our data support a discernible orexigenic role of NPFF1R signaling selectively in males, which might modulate the effects of leptin and ghrelin on food intake. In addition, our study is the first to disclose the sex-biased, deleterious impact of the lack of NPFF1R signaling on body weight and fat composition, energy expenditure, locomotor activity and glucose balance, which exaggerates some of the metabolic consequences of concurrent obesogenic insults, such as HFD, in a sexually dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE Our data are the first to document the nature and magnitude of the regulatory actions of RFRP-3/NPFF1R signaling in the control of feeding and metabolic homeostasis in a physiological setting. Our results not only suggest an orexigenic action of endogenous RFRP-3, specifically in males, but reveal also the detrimental impact of ablation of NPFF1R signaling on body composition, energy expenditure, locomotor activity or glucose balance, especially when concurrent with other obesogenic insults, as HFD, thereby providing the first evidence for additional metabolic effects of RFRP-3, other that the mere control of feeding. Interestingly, alterations of such key metabolic parameters occurred in a sex-biased manner, with males being more sensitive to deregulation of locomotor activity and glycemic control, while females displayed clearer obesogenic responses and deregulated energy expenditure. While our study cannot discard the possibility of RFRP-3 actions via alternative pathways, such as NPFF2R, our data pave the way for future analyses addressing the eventual contribution of altered RFRP-3/NPFF1R signaling in the development of metabolic alterations (including obesity and its comorbidities), especially in conditions associated to reproductive dysfunction.
Collapse
Affiliation(s)
- Silvia Leon
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Maria J Vázquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Daniel Beiroa
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Maria Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Antonio Romero-Ruiz
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Miguel A Sanchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Ruben Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, Instituto de Salud Carlos III, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
30
|
Mandal SK, Shrestha PK, Alenazi FSH, Shakya M, Alhamami HN, Briski KP. Effects of estradiol on lactoprivic signaling of the hindbrain upon the contraregulatory hormonal response and metabolic neuropeptide synthesis in hypoglycemic female rats. Neuropeptides 2018; 70:37-46. [PMID: 29779845 PMCID: PMC6057805 DOI: 10.1016/j.npep.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/27/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Caudal dorsomedial hindbrain detection of hypoglycemia-associated lactoprivation regulates glucose counter-regulation in male rats. In females, estradiol (E) determines hypothalamic neuroanatomical and molecular foci of hindbrain energy sensor activation. This study investigated the hypothesis that E signal strength governs metabolic neuropeptide and counter-regulatory hormone responses to hindbrain lactoprivic stimuli in hypoglycemic female rats. METHODS Ovariectomized animals were implanted with E-filled silastic capsules [30 (E-30) or 300 μg (E-300)/mL] to replicate plasma concentrations at estrous cycle nadir versus peak levels. E-30 and E-300 rats were injected with insulin or vehicle following initiation of continuous caudal fourth ventricular L-lactate infusion. RESULTS Hypoglycemic hypercorticosteronemia was greater in E-30 versus E-300 animals. Glucagon and corticosterone outflow was correspondingly fully or partially reversed by hindbrain lactate infusion. Insulin-injected rats exhibited lactate-reversible augmentation of norepinephrine (NE) accumulation in all preoptic/hypothalamic structures examined, excluding the dorsomedial hypothalamic nucleus (DMH) where hindbrain lactate infusion either suppressed (E-30) or enhanced (E-300) NE content. Expression profiles of hypoglycemia-reactive metabolic neuropeptides were normalized (with greater efficacy in E-300 animals) by lactate infusion. DMH RFamide-related peptide-1 and -3, arcuate neuropeptide Y and kisspeptin, and ventromedial nucleus nitric oxide synthase protein responses to hypoglycemia were E dosage-dependent. CONCLUSIONS Distinct physiological patterns of E secretion characteristic of the female rat estrous cycle elicit differential corticosterone outflow during hypoglycemia, and establish both common and different hypothalamic metabolic neurotransmitter targets of hindbrain lactate deficit signaling. Outcomes emphasize a need for insight on systems-level organization, interaction, and involvement of E signal strength-sensitive neuropeptides in counter-regulatory functions.
Collapse
Affiliation(s)
- Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
31
|
Effects of Low Energy Availability on Reproductive Functions and Their Underlying Neuroendocrine Mechanisms. J Clin Med 2018; 7:jcm7070166. [PMID: 29976877 PMCID: PMC6068835 DOI: 10.3390/jcm7070166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
It is known that metabolic disturbances suppress reproductive functions in females. The mechanisms underlying metabolic and nutritional effects on reproductive functions have been established based on a large body of clinical and experimental data. From the 1980s to 1990s, it was revealed that disrupted gonadotropin-releasing hormone (GnRH) secretion is the main cause of reproductive impairments in metabolic and nutritional disorders. From the late 1990s to early 2000s, it was demonstrated that, in addition to their primary functions, some appetite- or metabolism-regulating factors affect GnRH secretion. Furthermore, in the early 2000s, kisspeptin, which is a potent positive regulator of GnRH secretion, was newly discovered, and it has been revealed that kisspeptin integrates the effects of metabolic status on GnRH neurons. Recent studies have shown that kisspeptin mediates at least some of the effects of appetite- and metabolism-regulating factors on GnRH neurons. Thus, kisspeptin might be a useful clinical target for treatments aimed at restoring reproductive functions in individuals with metabolic or nutritional disturbances, such as those who exercise excessively, experience marked weight loss, or suffer from eating disorders. This paper presents a review of what is currently known about the effects of metabolic status on reproductive functions and their underlying mechanisms by summarizing the available evidence.
Collapse
|
32
|
Kang MJ, Oh YJ, Shim YS, Baek JW, Yang S, Hwang IT. The usefulness of circulating levels of leptin, kisspeptin, and neurokinin B in obese girls with precocious puberty. Gynecol Endocrinol 2018; 34:627-630. [PMID: 29303010 DOI: 10.1080/09513590.2017.1423467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This study investigated the relationships of circulating leptin, kisspeptin, and neurokinin B (NKB) levels with precocious puberty (PP) in overweight/obese girls and evaluated the usefulness of these markers in the initiation of puberty. One hundred and twenty-eight girls aged 7.0-8.9 years with PP (group A, normal-weight; group B, overweight/obese) and 30 age-matched normal controls (NC) were enrolled. Serum levels of leptin, kisspeptin, and NKB were measured by commercial kits. Serum leptin levels were higher in group A (4.21 ng/mL) and B (5.64 ng/mL) compared to the NC (2.35 ng/mL, p < .001). Serum kisspeptin levels were lower in group A (0.59 ng/mL) than in group B (0.66 ng/mL, p = .018). Serum NKB levels were not different among the three groups. The predictive value of leptin (AUC =0.791) was lower than that of IGF-1 (AUC =0.917, p = .009), although both were significant markers for PP in the regression analysis. BMI z-score (AUC =0.806) was a predictive factor of PP. In conclusion, a higher level of leptin, IGF-1, and fatness in overweight/obese girls with PP compared to the NC confirms their roles in the regulation of puberty. Further research is needed if the effects of kisspeptin and NKB on puberty are limited at the levels of neurons or target tissue.
Collapse
Affiliation(s)
- Min Jae Kang
- a Department of Pediatrics , Hallym University College of Medicine , Chuncheon-si , Gangwon-do , Republic of Korea
| | - Yeon Joung Oh
- a Department of Pediatrics , Hallym University College of Medicine , Chuncheon-si , Gangwon-do , Republic of Korea
| | - Young Suk Shim
- a Department of Pediatrics , Hallym University College of Medicine , Chuncheon-si , Gangwon-do , Republic of Korea
| | - Joon Woo Baek
- a Department of Pediatrics , Hallym University College of Medicine , Chuncheon-si , Gangwon-do , Republic of Korea
| | - Seung Yang
- a Department of Pediatrics , Hallym University College of Medicine , Chuncheon-si , Gangwon-do , Republic of Korea
| | - Il Tae Hwang
- a Department of Pediatrics , Hallym University College of Medicine , Chuncheon-si , Gangwon-do , Republic of Korea
| |
Collapse
|
33
|
Goldsammler M, Merhi Z, Buyuk E. Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis. Reprod Biol Endocrinol 2018; 16:45. [PMID: 29743077 PMCID: PMC5941782 DOI: 10.1186/s12958-018-0366-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/03/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Besides being a risk factor for multiple metabolic disorders, obesity could affect female reproduction. While increased adiposity is associated with hormonal changes that could disrupt the function of the hypothalamus and the pituitary, compelling data suggest that obesity-related hormonal and inflammatory changes could directly impact ovarian function. OBJECTIVE To review the available data related to the mechanisms by which obesity, and its associated hormonal and inflammatory changes, could affect the female reproductive function with a focus on the hypothalamic-pituitary-ovarian (HPO) axis. METHODS PubMed database search for publications in English language until October 2017 pertaining to obesity and female reproductive function was performed. RESULTS The obesity-related changes in hormone levels, in particular leptin, adiponectin, ghrelin, neuropeptide Y and agouti-related protein, are associated with reproductive dysfunction at both the hypothalamic-pituitary and the ovarian levels. The pro-inflammatory molecules advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are emerging as relatively new players in the pathophysiology of obesity-related ovarian dysfunction. CONCLUSION There is an intricate crosstalk between the adipose tissue and the inflammatory system with the HPO axis function. Understanding the mechanisms behind this crosstalk could lead to potential therapies for the common obesity-related reproductive dysfunction.
Collapse
Affiliation(s)
- Michelle Goldsammler
- Montefiore’s Institute for Reproductive Medicine and Health, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Hartsdale, NY USA
| | - Zaher Merhi
- 0000 0004 1936 8753grid.137628.9Department of Obstetrics and Gynecology, Division of Reproductive Biology, NYU School of Medicine, New York, NY USA
- 0000000121791997grid.251993.5Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY USA
| | - Erkan Buyuk
- Montefiore’s Institute for Reproductive Medicine and Health, Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Montefiore Medical Center, Hartsdale, NY USA
| |
Collapse
|
34
|
Iwasa T, Matsuzaki T, Yano K, Yanagihara R, Mayila Y, Irahara M. The effects of chronic testosterone administration on hypothalamic gonadotropin-releasing hormone regulatory factors (Kiss1, NKB, pDyn and RFRP) and their receptors in female rats. Gynecol Endocrinol 2018; 34:437-441. [PMID: 29187003 DOI: 10.1080/09513590.2017.1409709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The effects of androgens on gonadotropin-releasing hormone (GnRH) secretion in females have not been fully established. To clarify the direct effects of androgens on hypothalamic reproductive factors, we evaluated the effects of chronic testosterone administration on hypothalamic GnRH regulatory factors in ovariectomized (OVX) female rats. Both testosterone and estradiol reduced the serum luteinizing hormone levels of OVX female rats, indicating that, as has been found for estrogen, testosterone suppresses GnRH secretion via negative feedback. Similarly, the administration of testosterone or estradiol suppressed the hypothalamic mRNA levels of kisspeptin and neurokinin B, both of which are positive regulators of GnRH, whereas it did not affect the hypothalamic mRNA levels of the kisspeptin receptor or neurokinin-3 receptor. On the contrary, the administration of testosterone, but not estradiol, suppressed the hypothalamic mRNA expression of prodynorphin, which is a negative regulator of GnRH. The administration of testosterone did not alter the rats' serum estradiol levels, indicating that testosterone's effects on hypothalamic factors might be induced by its androgenic activity. These findings suggest that as well as estrogen, androgens have negative feedback effects on GnRH in females and that the underlying mechanisms responsible for these effects are similar, but do not completely correspond, to the mechanisms underlying the effects of estrogen on GnRH.
Collapse
Affiliation(s)
- Takeshi Iwasa
- a Department of Obstetrics and Gynecology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Toshiya Matsuzaki
- a Department of Obstetrics and Gynecology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kiyohito Yano
- a Department of Obstetrics and Gynecology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Rie Yanagihara
- a Department of Obstetrics and Gynecology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yiliyasi Mayila
- a Department of Obstetrics and Gynecology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Minoru Irahara
- a Department of Obstetrics and Gynecology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| |
Collapse
|
35
|
Wolfe A, Hussain MA. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front Endocrinol (Lausanne) 2018; 9:184. [PMID: 29740399 PMCID: PMC5928256 DOI: 10.3389/fendo.2018.00184] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, to regulate hypothalamic GnRH neurons, thereby affecting pituitary-gonadal function. Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety of organ systems. Kisspeptin has been revealed as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function. The direct impact of kisspeptin on peripheral metabolic tissues has only recently been recognized. Here, we review the emerging endocrine role of kisspeptin in regulating metabolic function. Controversies and current limitations in the field as well as areas of future studies toward kisspeptin's diverse array of functions will be highlighted.
Collapse
Affiliation(s)
- Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Mehboob A. Hussain
- Department of Internal Medicine Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, United States
| |
Collapse
|
36
|
Rehman R, Jamil Z, Khalid A, Fatima SS. Cross talk between serum Kisspeptin-Leptin during assisted reproduction techniques. Pak J Med Sci 2018; 34:342-346. [PMID: 29805405 PMCID: PMC5954376 DOI: 10.12669/pjms.342.14078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background & objective: Leptin facilitates onset of puberty by impact on hypothalamic Kisspeptin, gonadotropin releasing hormone, follicle stimulating and luteinizing hormone. The link of peripheral Leptin-Kisspeptin in regulating the ovarian and endometrial tissue in relation to adiposity is unknown. Therefore, we wanted to identify Kisspeptin-Leptin association with body mass index (BMI) and success of assisted reproductive treatments (ART) in infertile females. Methods: A cross sectional study was carried from August 2014 till May 2016 after receiving ethical approval at Australian Concept Infertility Medical Centre, and Aga Khan University. The study group comprised of females with an age range of 25-37 year who had duration of unexplained infertility for more than two years. They were grouped as; underweight (<18 kg/m2), normal weight (18-22.9 kg/m2), overweight 23-24.99 kg/m2 and obese (>25 kg/m2). Kisspeptin and Leptin levels were measured by enzyme linked immune sorbent assay before down regulation of ovaries and initiation of treatment protocol of ART. Failure of procedure was detected by beta human chorionic gonadotropin <25mIU/ml (non-pregnant) whereas females with levels >25mIU/ml and cardiac activity on trans-vaginal scan were declared pregnant. Results: Highest Kisspeptin and Leptin levels were seen in normal weight group (374.80 ± 185.08ng/L; 12.78 ± 6.8 pg/ml) respectively, yet the highest number of clinical pregnancy was observed in overweight group (42%).A strong correlation of Kisspeptin with Leptin (r=0.794, p=0.001) was observed in the overweight females. Conclusion: Leptin-Kisspeptin-fertility link is expressed by maximum number of clinical pregnancies in the female group that showed strongest relationship between serum Leptin and Kisspeptin levels, irrespective of their BMI.
Collapse
Affiliation(s)
- Rehana Rehman
- Rehana Rehman, Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Zehra Jamil
- Zehra Jamil, Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Aqsa Khalid
- Aqsa Khalid, Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Syeda Sadia Fatima
- Syeda Sadia Fatima, Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| |
Collapse
|
37
|
Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018; 88:130-137. [DOI: 10.1016/j.mcn.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
|
38
|
Franssen D, Tena-Sempere M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Pract Res Clin Endocrinol Metab 2018; 32:107-123. [PMID: 29678280 DOI: 10.1016/j.beem.2018.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kisspeptin receptor, Kiss1R, also known as Gpr54, is a G protein-coupled receptor (GPCR), deorphanized in 2001, when it was recognized as canonical receptor for the Kiss1-derived peptides, kisspeptins. In 2003, inactivating mutations of Kiss1R gene were first associated to lack of pubertal maturation and hypogonadotropic hypogonadism in humans and rodents. These seminal findings pointed out the previously unsuspected, essential role of Kiss1R and its ligands in control of reproductive maturation and function. This contention has been fully substantiated during the last decade by a wealth of clinical and experimental data, which has documented a fundamental function of the so-called Kiss1/Kiss1R system in the regulation of puberty onset, gonadotropin secretion and ovulation, as well as the metabolic and environmental modulation of fertility. In this review, we provide a succinct summary of some of the most salient facets of Kiss1R, as essential GPCR for the proper maturation and function of the reproductive axis.
Collapse
Affiliation(s)
- Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Cordoba, Spain; FiDiPro Program, Institute of Biomedicine, University of Turku, FIN-20520, Turku, Finland.
| |
Collapse
|
39
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
40
|
Moore AM, Lucas KA, Goodman RL, Coolen LM, Lehman MN. Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Sci Rep 2018; 8:2242. [PMID: 29396547 PMCID: PMC5797235 DOI: 10.1038/s41598-018-20563-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons of the arcuate nucleus (ARC) play a key role in the regulation of fertility. The ability to detect features of KNDy neurons that are essential for fertility may require three-dimensional (3D) imaging of the complete population. Recently developed protocols for optical tissue clearing permits 3D imaging of neuronal populations in un-sectioned brains. However, these techniques have largely been described in the mouse brain. We report 3D imaging of the KNDy cell population in the whole rat brain and sheep hypothalamus using immunolabelling and modification of a solvent-based clearing protocol, iDISCO. This study expands the use of optical tissue clearing for multiple mammalian models and provides versatile analysis of KNDy neurons across species. Additionally, we detected a small population of previously unreported kisspeptin neurons in the lateral region of the ovine mediobasal hypothalamus, demonstrating the ability of this technique to detect novel features of the kisspeptin system.
Collapse
Affiliation(s)
- Aleisha M Moore
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathryn A Lucas
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Robert L Goodman
- Dept. of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
- Dept. of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Michael N Lehman
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
41
|
Sylvia KE, Báez Ramos P, Demas GE. Sickness-induced changes in physiology do not affect fecundity or same-sex behavior. Physiol Behav 2018; 184:68-77. [PMID: 29127071 PMCID: PMC5753605 DOI: 10.1016/j.physbeh.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/04/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022]
Abstract
Previous work in our lab has shown that early-life infection affects female reproductive physiology and function (i.e., smaller ovaries, abnormal estrous cycles) and alters investigation and aggression towards male conspecifics in a reproductive context. Although many studies have investigated the effects of postnatal immune challenge on physiological and behavioral development, fewer studies have examined whether these changes have ultimate effects on reproduction. In the current study, we paired Siberian hamsters (Phodopus sungorus) and simulated a bacterial infection in early life by administering lipopolysaccharide (LPS) to male and female pups on pnd3 and pnd5. In adulthood, hamsters were paired with novel individuals of the same sex, and we scored an array of social behaviors (e.g., investigation, aggression). We then paired animals with individuals of the opposite sex for 5 consecutive nights, providing them with the opportunity to mate. We found that females exhibited impaired reproductive physiology and function in adulthood (i.e., smaller ovaries and abnormal estrous cycles), similar to our previous work. However, both LPS-treated males and females exhibited similar same-sex social behavior when compared with saline-treated controls, they successfully mated, and there were no significant changes in fecundity. These data suggest that the physiological changes in response to neonatal immune challenge may not have long-term effects on reproductive success in a controlled environment. Collectively, the results of this study are particularly important when investigating the relationships between physiology and behavior within an ultimate context. Animals exposed to early-life stress may in fact be capable of compensating for changes in physiology in order to survive and reproduce in some contexts.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Patricia Báez Ramos
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
42
|
Sanchez-Garrido MA, Ruiz-Pino F, Velasco I, Barroso A, Fernandois D, Heras V, Manfredi-Lozano M, Vazquez MJ, Castellano JM, Roa J, Pinilla L, Tena-Sempere M. Intergenerational Influence of Paternal Obesity on Metabolic and Reproductive Health Parameters of the Offspring: Male-Preferential Impact and Involvement of Kiss1-Mediated Pathways. Endocrinology 2018; 159:1005-1018. [PMID: 29309558 DOI: 10.1210/en.2017-00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
Obesity and its comorbidities are reaching epidemic proportions worldwide. Maternal obesity is known to predispose the offspring to metabolic disorders, independently of genetic inheritance. This intergenerational transmission has also been suggested for paternal obesity, with a potential negative impact on the metabolic and, eventually, reproductive health of the offspring, likely via epigenetic changes in spermatozoa. However, the neuroendocrine component of such phenomenon and whether paternal obesity sensitizes the offspring to the disturbances induced by high-fat diet (HFD) remain poorly defined. We report in this work the metabolic and reproductive impact of HFD in the offspring from obese fathers, with attention to potential sex differences and alterations of hypothalamic Kiss1 system. Lean and obese male rats were mated with lean virgin female rats; male and female offspring were fed HFD from weaning onward and analyzed at adulthood. The increases in body weight and leptin levels, but not glucose intolerance, induced by HFD were significantly augmented in the male, but not female, offspring from obese fathers. Paternal obesity caused a decrease in luteinizing hormone (LH) levels and exacerbated the drop in circulating testosterone and gene expression of its key biosynthetic enzymes caused by HFD in the male offspring. LH responses to central kisspeptin-10 administration were also suppressed in HFD males from obese fathers. In contrast, paternal obesity did not significantly alter gonadotropin levels in the female offspring fed HFD, although these females displayed reduced LH responses to kisspeptin-10. Our findings suggest that HFD-induced metabolic and reproductive disturbances are exacerbated by paternal obesity preferentially in males, whereas kisspeptin effects are affected in both sexes.
Collapse
Affiliation(s)
- Miguel Angel Sanchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Daniela Fernandois
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Maria Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Juan Manuel Castellano
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
43
|
Bedenbaugh MN, D’Oliveira M, Cardoso RC, Hileman SM, Williams GL, Amstalden M. Pubertal Escape From Estradiol Negative Feedback in Ewe Lambs Is Not Accounted for by Decreased ESR1 mRNA or Protein in Kisspeptin Neurons. Endocrinology 2018; 159:426-438. [PMID: 29145598 PMCID: PMC5761595 DOI: 10.1210/en.2017-00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022]
Abstract
In this study, we investigated whether decreased sensitivity to estradiol negative feedback is associated with reduced estrogen receptor α (ESR1) expression in kisspeptin neurons as ewe lambs approach puberty. Lambs were ovariectomized and received no implant (OVX) or an implant containing estradiol (OVX+E). In the middle arcuate nucleus (mARC), ESR1 messenger RNA (mRNA) was greater in OVX than OVX+E lambs but did not differ elsewhere. Post hoc analysis of luteinizing hormone (LH) secretion from OVX+E lambs revealed three patterns of LH pulsatility: low [1 to 2 pulses per 12 hours; low frequency (LF), n = 3], moderate [6 to 7 pulses per 12 hours; moderate frequency (MF), n = 6], and high [>10 pulses per 12 hours; high frequency (HF), n = 5]. The percentage of kisspeptin neurons containing ESR1 mRNA in the preoptic area did not differ among HF, MF, or LF groups. However, the percentage of kisspeptin neurons containing ESR1 mRNA in the mARC was greater in HF (57%) than in MF (36%) or LF (27%) lambs and did not differ from OVX (50%) lambs. A higher percentage of kisspeptin neurons contained ESR1 protein in all regions of the arcuate nucleus (ARC) in OVX compared with OVX+E lambs. There were no differences in ESR1 protein among the HF, MF, or LF groups in the preoptic area or ARC. Contrary to our hypothesis, increases in LH pulsatility were associated with enhanced ESR1 mRNA abundance in kisspeptin neurons in the ARC, and absence of estradiol increased the percentage of kisspeptin neurons containing ESR1 protein in the ARC. Therefore, changes in the expression of ESR1, particularly in kisspeptin neurons in the ARC, do not explain the pubertal escape from estradiol negative feedback in ewe lambs.
Collapse
Affiliation(s)
| | - Marcella D’Oliveira
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
- Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, Texas 78102
| | - Stanley M. Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506
| | - Gary L. Williams
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
- Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, Texas 78102
| | - Marcel Amstalden
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
44
|
Wahab F, Atika B, Ullah F, Shahab M, Behr R. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway. Front Endocrinol (Lausanne) 2018; 9:123. [PMID: 29643834 PMCID: PMC5882778 DOI: 10.3389/fendo.2018.00123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
A large body of data has established the hypothalamic kisspeptin (KP) and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body's current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.
Collapse
Affiliation(s)
- Fazal Wahab
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- *Correspondence: Fazal Wahab,
| | - Bibi Atika
- Department of Developmental Biology, Faculty of Biology, University of Göttingen, Göttingen, Germany
| | - Farhad Ullah
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Anuradha, Krishna A. Kisspeptin regulates ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx. Mol Reprod Dev 2017; 84:1155-1167. [DOI: 10.1002/mrd.22876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/09/2017] [Accepted: 08/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Anuradha
- Department of Zoology; Banaras Hindu University; Varanasi India
| | - Amitabh Krishna
- Department of Zoology; Banaras Hindu University; Varanasi India
| |
Collapse
|
46
|
Female Athlete Triad: Future Directions for Energy Availability and Eating Disorder Research and Practice. Clin Sports Med 2017; 36:671-686. [PMID: 28886821 DOI: 10.1016/j.csm.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite more than 3 decades of research on the Female Athlete Triad, research gaps remain. Although low energy availability (EA) is the key etiologic factor in the Triad and the pathways to low EA are varied, its effects can be modified by several factors. Accurate screening, diagnosis, and treatment of disordered eating are a challenge; however, recent techniques combined with novel educational and behavior interventions prove promising. Recently published practice-based guidelines have helped to translate Triad science and should improve as they are refined. This article identifies the current state of research and distinguishes areas that require further investigation.
Collapse
|
47
|
Liver ERα regulates AgRP neuronal activity in the arcuate nucleus of female mice. Sci Rep 2017; 7:1194. [PMID: 28446774 PMCID: PMC5430776 DOI: 10.1038/s41598-017-01393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.
Collapse
|
48
|
Marraudino M, Miceli D, Farinetti A, Ponti G, Panzica G, Gotti S. Kisspeptin innervation of the hypothalamic paraventricular nucleus: sexual dimorphism and effect of estrous cycle in female mice. J Anat 2017; 230:775-786. [PMID: 28295274 DOI: 10.1111/joa.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is the major autonomic output area of the hypothalamus and a critical regulatory center for energy homeostasis. The organism's energetic balance is very important for both the regular onset of puberty and regulation of fertility. Several studies have suggested a relationship among neural circuits controlling food intake, energy homeostasis and the kisspeptin peptide. The kisspeptin system is clustered in two main groups of cell bodies [the anterior ventral periventricular region (AVPV) and the arcuate nucleus (ARC)] projecting mainly to gonadotropin-releasing hormone (GnRH) neurons and to a few other locations, including the PVN. In the present study, we investigated the distribution of the kisspeptin fibers within the PVN of adult CD1 mice. We observed a significant sexual dimorphism for AVPV and ARC, as well as for the PVN innervation. Kisspeptin fibers showed a different density within the PVN, being denser in the medial part than in the lateral one; moreover, in female, the density changed, according to different phases of the estrous cycle (the highest density being in estrus phase). The presence of a profound effect of estrous cycle on the kisspeptin immunoreactivity in AVPV (with a higher signal in estrus) and ARC, and the strong co-localization between kisspeptin and NkB only in ARC and not in PVN suggested that the majority of the kisspeptin fibers found in the PVN might arise directly from AVPV.
Collapse
Affiliation(s)
- Marilena Marraudino
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Dèsirèe Miceli
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Alice Farinetti
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Giovanna Ponti
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - GianCarlo Panzica
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Stefano Gotti
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| |
Collapse
|
49
|
Evans MC, Anderson GM. Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol 2017; 58:R107-R128. [PMID: 28057770 DOI: 10.1530/jme-16-0212] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
50
|
Jing X, Peng Q, Hu R, Wang H, Yu X, Degen A, Zou H, Bao S, Zhao S, Wang Z. Effect of supplements during the cold season on the reproductive system in prepubertal Tibetan sheep ewes. Anim Sci J 2017; 88:1269-1278. [DOI: 10.1111/asj.12762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/01/2016] [Accepted: 10/28/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoping Jing
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| | - Quanhui Peng
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| | - Rui Hu
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| | - Hongze Wang
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| | - Xiaoqiang Yu
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research; Ben-Gurion University of Negev; Beer Sheva Israel
| | - Huawei Zou
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| | - Shanke Bao
- Haibei Demonstration Zone of Plateau Modern Ecological Husbandry Science and Technology; Haibei Qinghai China
| | - Suonan Zhao
- Haibei Demonstration Zone of Plateau Modern Ecological Husbandry Science and Technology; Haibei Qinghai China
| | - Zhisheng Wang
- Animal Nutrition Institute; Sichuan Agricultural University; Ya'an Sichuan China
| |
Collapse
|