1
|
Fiadeiro MB, Diogo JC, Silva AA, Kim YS, Cristóvão AC. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. Antioxid Redox Signal 2024; 41:522-541. [PMID: 38760935 DOI: 10.1089/ars.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.
Collapse
Affiliation(s)
- Mariana B Fiadeiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - João C Diogo
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Ana A Silva
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ana C Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
2
|
Kongsui R, Jittiwat J. Ameliorative effects of 6‑gingerol in cerebral ischemia are mediated via the activation of antioxidant and anti‑inflammatory pathways. Biomed Rep 2023; 18:26. [PMID: 36909941 PMCID: PMC9996095 DOI: 10.3892/br.2023.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Focal ischemia occurs when an embolus or thrombus occludes an artery, causing the rapid obstruction of cerebral blood flow. Although stroke represents a main cause of disability and mortality in developing countries, therapeutic approaches available for this condition remain very limited. The aim of the present study was to examine the effects of the phytochemical, 6-gingerol, on the brain infarct volume, neuronal loss and on the oxidative stress parameters, cyclooxygenase-2 (COX-2) and interleukin (IL)-6, in an animal model of focal ischemic stroke. Male Wistar rats, weighing 250-300 g, were divided into the following six groups: i) The control; ii) right middle cerebral artery occlusion (Rt.MCAO) + vehicle; iii) Rt.MCAO + piracetam; iv) Rt.MCAO + 6-gingerol (6-Gin) at 5 mg/kg body weight (BW); v) Rt.MCAO + 6-Gin at 10 mg/kg BW; and vi) the Rt.MCAO + 6-Gin at 20 mg/kg BW group. The rats in each group received the vehicle or piracetam or 6-gingerol intraperitoneally for 7 days following Rt.MCAO. The brain infarct volume, neuronal loss and alterations in antioxidant and anti-inflammatory levels were assessed in the cortex and hippocampus. The results revealed that the brain infarct volume, malondialdehyde level and the density ratio of COX-2 and IL-6 to β-actin were significantly decreased following treatment with 6-gingerol. In addition, neuronal density and superoxide dismutase activity in the cortex and hippocampus were increased. On the whole, the findings of the present study suggest that 6-gingerol exerts antioxidant and anti-inflammatory effects in vivo, which effectively ameliorate the brain damage induced by focal cerebral ischemic strok.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.,The Unit of Excellence in Translational Neurosciences Initiative, University of Phayao, Phayao 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| |
Collapse
|
3
|
Mehrpooya M, Mazdeh M, Rahmani E, Khazaie M, Ahmadimoghaddam D. Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. J Clin Neurosci 2022; 106:66-75. [DOI: 10.1016/j.jocn.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
4
|
Intertwined Relation between the Endoplasmic Reticulum and Mitochondria in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3335887. [PMID: 35528523 PMCID: PMC9072026 DOI: 10.1155/2022/3335887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 01/01/2023]
Abstract
In ischemic stroke (IS), accumulation of the misfolded proteins in the endoplasmic reticulum (ER) and mitochondria-induced oxidative stress (OS) has been identified as the indispensable inducers of secondary brain injury. With the increasing recognition of an association between ER stress and OS with ischemic stroke and with the improved understanding of the underlying molecular mechanism, novel targets for drug therapy and new strategies for therapeutic interventions are surfacing. This review discusses the molecular mechanism underlying ER stress and OS response as both causes and consequences of ischemic stroke. We also summarize the latest advances in understanding the importance of ER stress and OS in the pathogenesis of ischemic stroke and discuss potential strategies and clinical trials explicitly aiming to restore mitochondria and ER dynamics after IS.
Collapse
|
5
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Sindhu RK, Kaur P, Kaur P, Singh H, Batiha GES, Verma I. Exploring multifunctional antioxidants as potential agents for management of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24458-24477. [PMID: 35064486 DOI: 10.1007/s11356-021-17667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Free radical or oxidative stress may be a fundamental mechanism underlying several human neurologic diseases. Therapy using free radical scavengers (antioxidants) has the potential to prevent, delay, or ameliorate many neurologic disorders. However, the biochemistry of oxidative pathobiology is complex, and optimum antioxidant therapeutic options may vary and need to be tailored to individual diseases. In vitro and animal model studies support the potential beneficial role of various antioxidant compounds in neurological disease. Antioxidants generally play an important role in reducing or preventing the cell damage and other changes which occur in the cells like mitochondrial dysfunction, DNA mutations, and lipid peroxidation in the cell membrane. Based on their mechanism of action, antioxidants can be used to treat various neurological disorders like Huntington's disease, Alzheimer's disease, and Parkinson's disease. Vitamin E has a scavenging action for reactive oxygen species (ROS) and also prevents the lipid peroxidation. Creatine generally reduces the mitochondrial dysfunction in Parkinson's disease (PD) patients. Various metal chelators are used in PD for the prevention of accumulation of the metals. Superoxidase dismutase (SOD), lipases, and proteases act as repair enzymes in patients with AD. Accordingly, the antioxidant defense system is found to be most useful for treating various neurological disorders.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Inderjeet Verma
- Department of Pharmacy Practice, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|
7
|
Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants (Basel) 2021; 10:antiox10121886. [PMID: 34942989 PMCID: PMC8698986 DOI: 10.3390/antiox10121886] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
The production of free radicals is inevitably associated with metabolism and other enzymatic processes. Under physiological conditions, however, free radicals are effectively eliminated by numerous antioxidant mechanisms. Oxidative stress occurs due to an imbalance between the production and elimination of free radicals under pathological conditions. Oxidative stress is also associated with ageing. The brain is prone to oxidative damage because of its high metabolic activity and high vulnerability to ischemic damage. Oxidative stress, thus, plays a major role in the pathophysiology of both acute and chronic pathologies in the brain, such as stroke, traumatic brain injury or neurodegenerative diseases. The goal of this article is to summarize the basic concepts of oxidative stress and its significance in brain pathologies, as well as to discuss treatment strategies for dealing with oxidative stress in stroke.
Collapse
|
8
|
Wang HK, Chen JS, Hsu CY, Su YT, Sung TC, Liang CL, Kwan AL, Wu CC. A Novel NGF Receptor Agonist B355252 Ameliorates Neuronal Loss and Inflammatory Responses in a Rat Model of Cerebral Ischemia. J Inflamm Res 2021; 14:2363-2376. [PMID: 34103967 PMCID: PMC8179829 DOI: 10.2147/jir.s303833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Cerebral ischemia is a leading cause of disability and death worldwide. However, an effective therapeutic approach for the condition remains undiscovered. The previously proposed growth factor-based therapy has been inefficient due to its inability to pass through the blood–brain barrier. B355252, a newly developed small molecule, exhibited a potential neuroprotective effect in vivo. However, its exact efficacy in cerebral ischemia remains unclear. Methods We adopt an endothelin-1 stereotaxic intracranial injection to induced cerebral ischemia in rat. We further conducted 2,3,5-triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA), and behavioral tests to evaluate the efficacy of B355252 in neuroprotection, anti-inflammation, and behavioral outcome improvements. Results We identified that B355252 could protect ischemic neurons from neuronal loss by attenuating DNA damage, reducing ROS production and the LDH level, and preventing neuronal apoptosis. Moreover, inflammatory responses in astrocytic and microglial gliosis, as well as IL-1β and TNF-α levels, were ameliorated. Consequently, the behavioral outcomes of ischemic rats in neurologic responses and fore paw function recovery were improved. Discussion Overall, our study verified the in vivo therapeutic potential of B355252. The study findings further support its application in the development of a therapeutic approach for stroke.
Collapse
Affiliation(s)
- Hao-Kuang Wang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Sheng Chen
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Yu Hsu
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ching Sung
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Loong Liang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Zuo ML, Wang AP, Song GL, Yang ZB. miR-652 protects rats from cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Biomed Pharmacother 2020; 124:109860. [PMID: 32000043 DOI: 10.1016/j.biopha.2020.109860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022] Open
Abstract
Ischemic stroke is a devastating central nervous disease associated with oxidative stress and NOX2 is the main source of ROS responsible for brain tissue. miRNAs are a class of negative regulator of genes in mammals and involves the pathogenesis of ischemic stroke. This study aims to observe the role of target miRNA(miR-652) of NOX2 in ischemic stroke. A rat cerebral ischemia/reperfusion (CI/R) injury model and an SH-SY5Y cell hypoxia/reoxygenation(H/R) model were used to simulate ischemic stroke, and corresponding gene expression, biochemical indicators and pathophysiological indicators were measured to observe the role of miR-652. NOX2 significantly increased in brain tissues subjected to I/R or in SH-SY5Y cells subjected to H/R, while the expression level of miR-652(potential target of NOX2) significantly decreased in both brain tissues and plasma. Overexpression of miR-652 significantly suppressed NOX2 expression and ROS generation in H/R treated SH-SY5Y cells and reduced the relative luciferase activity of cells transfected with plasmid NOX2-WT (reporter gene plasmid). MiR-652 agomir significantly decreased the expression of NOX2 and ROS generation in brain tissues of CIR rats, as well as tissue injury. These data indicated that miR-652 protected rats from cerebral ischemia reperfusion injury by directly targeting NOX2, is a novel target for ischemic stroke therapy.
Collapse
Affiliation(s)
- Mei-Ling Zuo
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Gui-Lin Song
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China; Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| | - Zhong-Bao Yang
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China; Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China.
| |
Collapse
|
10
|
Shah FA, Li T, Kury LTA, Zeb A, Khatoon S, Liu G, Yang X, Liu F, Yao H, Khan AU, Koh PO, Jiang Y, Li S. Pathological Comparisons of the Hippocampal Changes in the Transient and Permanent Middle Cerebral Artery Occlusion Rat Models. Front Neurol 2019; 10:1178. [PMID: 31798514 PMCID: PMC6868119 DOI: 10.3389/fneur.2019.01178] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
Ischemic strokes are categorized by permanent or transient obstruction of blood flow, which impedes delivery of oxygen and essential nutrients to brain. In the last decade, the therapeutic window for tPA has increased from 3 to 5-6 h, and a new technique, involving the mechanical removal of the clot (endovascular thrombectomy) to allow reperfusion of the injured area, is being used more often. This last therapeutic approach can be done until 24 h after stroke onset. Due to this fact, more acute ischemic stroke patients are now being recanalized, and so tMCAO is probably the "best" model to address these patients that have a potential good outcome in terms of survival and functional recovery. However, permanent occlusion patients are also important, not only to increase survival rate but also to improve functional outcomes, although these are more difficult to achieve. So, both models are important, and which target different stroke patients in the clinical scenario. Hippocampus has a vital role in memory and cognition, is prone to ischemic induced neurodegeneration. This study was designed to delineate the molecular, pathological, and neurological changes in rat models of t-MCAO, permanent MCAO (pMCAO), and pMCAO with diabetic conditions in hippocampal tissue. Our results showed that these three models showed distinct discrepancies at numerous pathological process, including key signaling molecules involved in neuronal apoptosis, glutamate induced excitotoxicity, neuroinflammation, oxidative stress, and neurotrophic changes. Our result suggests that the two commonly used MCAO models exhibited tremendous differences in terms of neuronal cell loss, glutamate excitotoxic related signaling, synaptic transmission markers, neuron inflammatory and oxidative stress molecules. These differences may reflect the variations in different models, which may provide valuable information for mechanistic and therapeutic inconsistences as experienced in both preclinical models and clinical trials.
Collapse
Affiliation(s)
- Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, International University, Islamabad, Pakistan
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Alam Zeb
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, International University, Islamabad, Pakistan
| | - Shehla Khatoon
- Department of Anatomy, Khyber Medical College, Khyber Medical University, Peshawar, Pakistan
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fang Liu
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Research Institute, Toronto, ON, Canada
| | - Huo Yao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Arif-Ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, International University, Islamabad, Pakistan
| | - Phil Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju-si, South Korea
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Research Institute, Toronto, ON, Canada
| |
Collapse
|
11
|
Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci 2019; 13:1036. [PMID: 31611768 PMCID: PMC6777147 DOI: 10.3389/fnins.2019.01036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Stroke is a major cause of death and adult disability. However, therapeutic options remain limited. Numerous pathways underlie acute responses of brain tissue to stroke. Early events following ischemic damage include reactive oxygen species (ROS)-mediated oxidative stress and glutamate-induced excitotoxicity, both of which contribute to rapid cell death within the infarct core. A subsequent cascade of inflammatory events escalates damage progression. This review explores potential neuroprotective strategies for targeting key steps in the cascade of ischemia–reperfusion (I/R) injury. NADPH oxidase (NOX) inhibitors and several drugs currently approved by the U.S. Food and Drug Administration including glucose-lowering agents, antibiotics, and immunomodulators, have shown promise in the treatment of stroke in both animal experiments and clinical trials. Ischemic conditioning, a phenomenon by which one or more cycles of a short period of sublethal ischemia to an organ or tissue protects against subsequent ischemic events in another organ, may be another potential neuroprotective strategy for the treatment of stroke by targeting key steps in the I/R injury cascade.
Collapse
Affiliation(s)
- Qianwen Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Chandran R, Kim T, Mehta SL, Udho E, Chanana V, Cengiz P, Kim H, Kim C, Vemuganti R. A combination antioxidant therapy to inhibit NOX2 and activate Nrf2 decreases secondary brain damage and improves functional recovery after traumatic brain injury. J Cereb Blood Flow Metab 2018; 38:1818-1827. [PMID: 29083257 PMCID: PMC6168911 DOI: 10.1177/0271678x17738701] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uncontrolled oxidative stress contributes to the secondary neuronal death that promotes long-term neurological dysfunction following traumatic brain injury (TBI). Surprisingly, both NADPH oxidase 2 (NOX2) that increases and transcription factor Nrf2 that decreases reactive oxygen species (ROS) are induced after TBI. As the post-injury functional outcome depends on the balance of these opposing molecular pathways, we evaluated the effect of TBI on the motor and cognitive deficits and cortical contusion volume in NOX2 and Nrf2 knockout mice. Genetic deletion of NOX2 improved, while Nrf2 worsened the post-TBI motor function recovery and lesion volume indicating that decreasing ROS levels might be beneficial after TBI. Treatment with either apocynin (NOX2 inhibitor) or TBHQ (Nrf2 activator) alone significantly improved the motor function after TBI, but had no effect on the lesion volume, compared to vehicle control. Whereas, the combo therapy (apocynin + TBHQ) given at either 5 min/24 h or 2 h/24 h improved motor and cognitive function and decreased cortical contusion volume compared to vehicle group. Thus, both the generation and disposal of ROS are important modulators of oxidative stress, and a combo therapy that prevents ROS formation and potentiates ROS disposal concurrently is efficacious after TBI.
Collapse
Affiliation(s)
| | - TaeHee Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Suresh L Mehta
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Eshwar Udho
- 2 Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Vishal Chanana
- 2 Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Pelin Cengiz
- 2 Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - HwuiWon Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Chanul Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,3 William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
13
|
Hou L, Wang K, Zhang C, Sun F, Che Y, Zhao X, Zhang D, Li H, Wang Q. Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biol 2018; 14:250-260. [PMID: 28978491 PMCID: PMC5975223 DOI: 10.1016/j.redox.2017.09.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023] Open
Abstract
Microglial NADPH oxidase (Nox2) plays a key role in chronic neuroinflammation and related dopaminergic neurodegeneration in Parkinson's disease (PD). However, the mechanisms behind Nox2 activation remain unclear. Here, we revealed the critical role of complement receptor 3 (CR3), a microglia-specific pattern recognition receptor, in Nox2 activation and subsequent dopaminergic neurodegeneration by using paraquat and maneb-induced PD model. Suppression or genetic deletion of CR3 impeded paraquat and maneb-induced activation of microglial Nox2, which was associated with attenuation of dopaminergic neurodegeneration. Mechanistic inquiry revealed that blocking CR3 reduced paraquat and maneb-induced membrane translocation of Nox2 cytosolic subunit p47phox, an essential step for Nox2 activation. Src and Erk (extracellular regulated protein kinases) were subsequently recognized as the downstream signals of CR3. Moreover, inhibition of Src or Erk impaired Nox2 activation in response to paraquat and maneb co-exposure. Finally, we found that CR3-deficient mice were more resistant to paraquat and maneb-induced Nox2 activation and nigral dopaminergic neurodegeneration as well as motor dysfunction than the wild type controls. Taken together, our results showed that CR3 regulated Nox2 activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway in a two pesticide-induced PD model, providing novel insights into the immune pathogenesis of PD.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Ke Wang
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Cong Zhang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Yuning Che
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, China
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huihua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
14
|
Zhu Y, Tang Q, Wang G, Han R. Tanshinone IIA Protects Hippocampal Neuronal Cells from Reactive Oxygen Species Through Changes in Autophagy and Activation of Phosphatidylinositol 3-Kinase, Protein Kinas B, and Mechanistic Target of Rapamycin Pathways. Curr Neurovasc Res 2018; 14:132-140. [PMID: 28260507 PMCID: PMC5543574 DOI: 10.2174/1567202614666170306105315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
Abstract
Background: Tanshinone IIA is a key active ingredient of danshen, which is derived from the dried root or rhizome of Salviae miltiorrhizae Bge. The tanshinone IIA has protective effects against the focal cerebral ischemic injury. However, the underlying mechanisms remain unclear. Methods: An in vitro model of cerebral ischemia was established by subjecting cultures of hippocampal neuronal cells to oxygen-glucose deprivation followed by reperfusion (OGD/R). The probes of 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) and 5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine,iodide (JC-1) were used to determine the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production. Western-blot was used to detect the expression of proteins in HT-22 cells. Results: The results of cell proliferative assays showed that the tanshinone IIA attenuated OGD/R-mediated neuronal cell death, with the evidence of increased cell viability. In addition, OGD/R exposure led to increase the levels of intracellular reactive oxygen species (ROS), which were significantly suppressed by tanshinone IIA treatment. Furthermore, tanshinone IIA treatment inhibited elevations in MMP and autophagy following exposure to OGD/R. Additionally, OGD/R promoted cell death with concomitant inhibiting phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of Rapamycin (mTOR) pathway, which was reversed by tanshinone IIA. Conclusion: These results suggest that the tanshinone IIA protects against OGD/R-mediated cell death in HT-22 cells, in part, due to activating PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yingchun Zhu
- Department of Neurology Disease, the Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Qiqiang Tang
- Department of Neurology Disease, the Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Guopin Wang
- Department of Neurology Disease, the Affiliated Anhui Provincial Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Ruodong Han
- Department of Intensive Care Division, The People's Hospital of Bozhou, Bozhou 236800, Anhui, China
| |
Collapse
|
15
|
Abstract
Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Daniel S Kikuchi
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Marina S Hernandes
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Qian Xu
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta GA.
| |
Collapse
|
16
|
Zhao Q, Wang X, Chen A, Cheng X, Zhang G, Sun J, Zhao Y, Huang Y, Zhu Y. Rhein protects against cerebral ischemic‑/reperfusion‑induced oxidative stress and apoptosis in rats. Int J Mol Med 2018; 41:2802-2812. [PMID: 29436613 PMCID: PMC5846655 DOI: 10.3892/ijmm.2018.3488] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the protective effects of rhein on cerebral ischemic/reperfusion (I/R) injury in rats. The present study focused on the effect of rhein on oxidative stress and apoptotic factors, which are considered to serve an important role in the onset of I/R injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological functional scores (NFSs) were evaluated according to the Zea Longa's score criteria and the area of brain infarct was determined by triphenyltetrazolium chloride staining. The morphology of the nerve cells in the cortex was observed following hematoxylin and eosin staining. In addition, levels of oxidative stress were assessed by measuring the levels of superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA). Levels of B-cell lymphoma-2 (Bcl-2), apoptosis regulator Bax (BAX), caspase-9, caspase-3 and cleaved caspase-3 expression were analyzed using western blot analysis. Levels of caspase-9 and caspase-3 mRNA expression were obtained using reverse transcription-quantitative polymerase chain reaction. The results revealed that treatment with 50 or 100 mg/kg rhein significantly improved the NFS and markedly attenuated the area of infarction. Rhein also significantly reduced the content of MDA and significantly increased SOD, GSH-Px and CAT activity. Western blot analysis indicated that rhein significantly decreased the expression of BAX and enhanced the expression of Bcl-2. Compared with the I/R group, levels of caspase-9, caspase-3 and cleaved caspase-3 protein expression were significantly decreased in the rhein treatment groups. Additionally, rhein treatment significantly reduced levels of caspase-9 and caspase-3 mRNA expression. These results suggest that rhein exhibits protective effects during cerebral I/R injury and its underlying mechanism of action may involve the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Qipeng Zhao
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ailing Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiuli Cheng
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guoxin Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianmin Sun
- College of Basic Medicine, Yinchuan, Ningxia 750004, P.R. China
| | - Yunsheng Zhao
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu Huang
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yafei Zhu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
17
|
Ischaemic Preconditioning Suppresses Necrosis of Adipocutaneous Flaps in a Diabetic Rat Model Regardless of the Manner of Preischaemia Induction. Dermatol Res Pract 2017; 2017:4137597. [PMID: 29201044 PMCID: PMC5671712 DOI: 10.1155/2017/4137597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022] Open
Abstract
Ischaemic insult in the skin flaps is a major problem in reconstructive surgery particularly in patients with diabetes mellitus. Here, we sought to investigate the effectiveness of ischaemic preconditioning (IP) on diabetic skin flaps in rat animal model. Hundred Wistar rats (90 streptozotocin treated animals and 10 nondiabetic controls) were used. Diabetes mellitus was confirmed by measuring glucose level in blood, HbA1c, and ketonuria. We used blood vessel clamping, hind limb tourniquet, and NO donors (Spermine/NO complex) to induce short-term ischaemia of tissues that will be excised for skin flaps. Animals were followed for 5 days. Flaps were photographed at day 5 and percent of necrosis was determined using planimetry. Significant decrease in percent of necrotic tissue in all groups that received preconditioning was observed. Results show that ischaemic preconditioning suppresses flap necrosis in diabetic rats irrespective of direct or remote tissue IP and irrespective of chemically or physically induced preischaemia. Spermine/NO complex treatment 10 minutes after the flap ischaemia suppressed tissue necrosis. Treatment with NO synthase inhibitor L-NAME reversed effects of IP showing importance of NO for this process. We show that IP is a promising approach for suppression of tissue necrosis in diabetic flaps and potential of NO pathway as therapeutic target in diabetic flaps.
Collapse
|
18
|
Tikamdas R, Singhal S, Zhang P, Smith JA, Krause EG, Stevens SM, Song S, Liu B. Ischemia-responsive protein 94 is a key mediator of ischemic neuronal injury-induced microglial activation. J Neurochem 2017. [PMID: 28640931 DOI: 10.1111/jnc.14111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroinflammation, especially activation of microglia, the key immune cells in the brain, has been proposed to contribute to the pathogenesis of ischemic stroke. However, the dynamics and the potential mediators of microglial activation following ischemic neuronal injury are not well understood. In this study, using oxygen/glucose deprivation and reoxygenation with neuronal and microglial cell cultures as an in vitro model of ischemic neuronal injury, we set out to identify neuronal factors released from injured neurons that are capable of inducing microglial activation. Conditioned media (CM) from hippocampal and cortical neurons exposed to oxygen/glucose deprivation and reoxygenation induced significant activation of microglial cells as well as primary microglia, evidenced by up-regulation of inducible nitric oxide synthase, increased production of nitrite and reactive oxygen species, and increased expression of microglial markers. Mechanistically, neuronal ischemia-responsive protein 94 (Irp94) was a key contributor to microglial activation since significant increase in Irp94 was detected in the neuronal CM following ischemic insult and immunodepletion of Irp94 rendered ischemic neuronal CM ineffective in inducing microglial activation. Ischemic insult-augmented oxidative stress was a major facilitator of neuronal Irp94 release, and pharmacological inhibition of NADPH oxidase significantly reduced the ischemic injury-induced neuronal reactive oxygen species production and Irp94 release. Taken together, these results indicate that neuronal Irp94 may play a pivotal role in the propagation of ischemic neuronal damage. Continued studies may help identify Irp94 and/or related proteins as potential therapeutic targets and/or diagnostic/prognostic biomarkers for managing ischemia-associated brain disorders.
Collapse
Affiliation(s)
- Rajiv Tikamdas
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Sarthak Singhal
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Ping Zhang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Sihong Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Bin Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Deng W, Abliz A, Xu S, Sun R, Guo W, Shi Q, Yu J, Wang W. Severity of pancreatitis‑associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin. Mol Med Rep 2016; 14:3525-34. [PMID: 27573037 PMCID: PMC5042780 DOI: 10.3892/mmr.2016.5678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Recent studies demonstrated that apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) inhibitor, significantly decreased acute pancreatitis-associated inflammatory and oxidative stress parameters. In addition, apocynin was able to reduce ischemic reperfusion injury-associated damage; however, the exact effects of apocynin on acute pancreatitis-associated intestinal mucosal injury have yet to be fully clarified. The present study aimed to investigate the protective effects of apocynin on intestinal mucosal injury in a rat model of severe acute pancreatitis (SAP). A total of 60 male Sprague Dawley rats were randomly divided into four groups (n=15/group): Sham operation group (SO), SAP group, apocynin treatment (APO) group and drug control (APO-CON) group. SAP was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Apocynin was administered 30 min prior to SAP induction in the APO group. All rats were sacrificed 12 h after SAP induction. Intestinal integrity was assessed by measuring diamine oxidase (DAO) levels. Morphological alterations to intestinal tissue were determined under light and transmission electron microscopy. NOX2, p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB expression levels were detected in the intestine by immunohistochemical staining. Oxidative stress was detected by measuring intestinal malondialdehyde (MDA) and superoxide dismutase content. In addition, blood inflammatory cytokines, and amylase (AMY) and lipase (LIP) levels were evaluated. The results demonstrated that apocynin attenuated the following: i) Serum AMY, LIP and DAO levels; ii) pancreatic and intestinal pathological injury; iii) intestinal MDA content; iv) intestinal ultrastructural alterations; v) serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels; and vi) NOX2, p38 MAPK and NF-κB expression in intestinal tissues. These results suggested that apocynin may attenuate intestinal barrier dysfunction in sodium taurocholate-induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF-κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ablikim Abliz
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Xu
- Department of General Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Rongze Sun
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2. Antioxid Redox Signal 2015; 23:460-89. [PMID: 24635113 PMCID: PMC4545676 DOI: 10.1089/ars.2013.5778] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. RECENT ADVANCES Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. CRITICAL ISSUES NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. FUTURE DIRECTIONS Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke.
Collapse
Affiliation(s)
- Federico Carbone
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland .,2 Department of Internal Medicine, University of Genoa School of Medicine , IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Priscila Camillo Teixeira
- 3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| | - Vincent Braunersreuther
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland
| | - François Mach
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland
| | - Nicolas Vuilleumier
- 3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| | - Fabrizio Montecucco
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland .,2 Department of Internal Medicine, University of Genoa School of Medicine , IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy .,3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| |
Collapse
|
23
|
Hirano K, Chen WS, Chueng ALW, Dunne AA, Seredenina T, Filippova A, Ramachandran S, Bridges A, Chaudry L, Pettman G, Allan C, Duncan S, Lee KC, Lim J, Ma MT, Ong AB, Ye NY, Nasir S, Mulyanidewi S, Aw CC, Oon PP, Liao S, Li D, Johns DG, Miller ND, Davies CH, Browne ER, Matsuoka Y, Chen DW, Jaquet V, Rutter AR. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor. Antioxid Redox Signal 2015; 23:358-74. [PMID: 26135714 PMCID: PMC4545375 DOI: 10.1089/ars.2014.6202] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.
Collapse
Affiliation(s)
- Kazufumi Hirano
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Woei Shin Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Adeline L W Chueng
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela A Dunne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Tamara Seredenina
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Aleksandra Filippova
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Sumitra Ramachandran
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela Bridges
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Laiq Chaudry
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Gary Pettman
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Craig Allan
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Sarah Duncan
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Kiew Ching Lee
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Jean Lim
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - May Thu Ma
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Agnes B Ong
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Nicole Y Ye
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shabina Nasir
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Sri Mulyanidewi
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Chiu Cheong Aw
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Pamela P Oon
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shihua Liao
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Dizheng Li
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Douglas G Johns
- 5 Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline , King of Prussia, Pennsylvania
| | - Neil D Miller
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Ceri H Davies
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Edward R Browne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Yasuji Matsuoka
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Deborah W Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Vincent Jaquet
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - A Richard Rutter
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| |
Collapse
|
24
|
Liu C, Song Y, Qu L, Tang J, Meng L, Wang Y. Involvement of NOX in the Regulation of Renal Tubular Expression of Na/K-ATPase in Acute Unilateral Ureteral Obstruction Rats. Nephron Clin Pract 2015; 130:66-76. [DOI: 10.1159/000381858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
|
25
|
Romanini CV, Ferreira EDF, Soares LM, Santiago AN, Milani H, de Oliveira RMW. 4-hydroxy-3-methoxy-acetophenone-mediated long-lasting memory recovery, hippocampal neuroprotection, and reduction of glial cell activation after transient global cerebral ischemia in rats. J Neurosci Res 2015; 93:1240-9. [DOI: 10.1002/jnr.23575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/31/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Cássia Valério Romanini
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | | | - Lígia Mendes Soares
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | - Amanda Nunes Santiago
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics; State University of Maringá; Maringá Paraná Brazil
| | | |
Collapse
|
26
|
Tanshinone IIA attenuates the cerebral ischemic injury-induced increase in levels of GFAP and of caspases-3 and -8. Neuroscience 2015; 288:105-11. [PMID: 25575944 DOI: 10.1016/j.neuroscience.2014.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022]
Abstract
Tanshinone IIA (TSA) is a lipid soluble agent derived from the root of Salvia miltiorrhiza (Danshen). This plant is a traditional Chinese herb, which has been used widely in China especially for enhancing circulation. However mechanisms underlying its efficacy remain poorly understood. The present study was designed to illuminate events that may underlie the apparently neuroprotective effects of TSA following ischemic insult. Adult Sprague-Dawley rats were subjected to transient focal cerebral ischemia by use of a middle cerebral artery occlusion model. They were then randomly divided into a sham-operated control group, and cerebral ischemia/reperfusion groups receiving a two-hour occlusion. Further subsets of groups received the same durations of occlusion or were sham-operated but then received daily i.p. injections of high or low doses of TSA, for seven or 15days. Hematoxylin and eosin staining revealed lesions in the entorhinal cortex of both rats subject to ischemia and to a lesser extent to those receiving TSA after surgery. Levels of glial fibrillary acidic protein (GFAP), caspase-3 and caspase-8, were quantified by both immunohistochemistry and Western blotting. TSA treatment after middle cerebral artery occlusion, markedly reduced infarct size, and reduced the expression of caspase-3 and caspase-8. These changes were considered protective and were generally proportional to the dose of TSA used. These results suggest that TSA may effect neuroprotection by way of reduction of the extent of cell inflammation and death within affected regions.
Collapse
|
27
|
Zhang C, Teng F, Tu J, Zhang D. Ultrasound-enhanced protective effect of tetramethylpyrazine against cerebral ischemia/reperfusion injury. PLoS One 2014; 9:e113673. [PMID: 25409029 PMCID: PMC4237497 DOI: 10.1371/journal.pone.0113673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/28/2014] [Indexed: 12/11/2022] Open
Abstract
In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong) and its bioactive ingredient, tetramethylpyrazine (TMP), have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US) exposure could enhance the protective effect of TMP against cerebral ischemia/reperfusion (I/R) injury. Glutamate-induced toxicity to pheochromocytoma (PC12) cells was used to model I/R injury. TMP was paired with US to examine whether this combination could alleviate glutamate-induced cytotoxicity. The administration of TMP effectively protected cells against glutamate-induced apoptosis, which could be further enhanced by US-mediated sonoporation. The anti-apoptotic effect of TMP was associated with the inhibition of oxidative stress and a change in the levels of apoptosis-related proteins, Bcl-2 and Bax. Furthermore, TMP reduced the expression of proinflammatory cytokines such as TNF-α and IL-8, which likely also contributes to its cytoprotective effects. Taken together, our findings suggest that ultrasound-enhanced TMP treatment might be a promising therapeutic strategy for ischemic stroke. Further study is required to optimize ultrasound treatment parameters.
Collapse
Affiliation(s)
- Chunbing Zhang
- Department of Laboratory Medicine, Jiangsu Province of TCM, Nanjing, Jiangsu, P. R. China
- Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Fengmeng Teng
- Department of Laboratory Medicine, Jiangsu Province of TCM, Nanjing, Jiangsu, P. R. China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Nanjing University, Nanjing, Jiangsu, P. R. China
- * E-mail: (DZ); (JT)
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Nanjing University, Nanjing, Jiangsu, P. R. China
- * E-mail: (DZ); (JT)
| |
Collapse
|
28
|
McCann SK, Dusting GJ, Roulston CL. Nox2 knockout delays infarct progression and increases vascular recovery through angiogenesis in mice following ischaemic stroke with reperfusion. PLoS One 2014; 9:e110602. [PMID: 25375101 PMCID: PMC4222846 DOI: 10.1371/journal.pone.0110602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests the NADPH oxidases contribute to ischaemic stroke injury and Nox2 is the most widely studied subtype in the context of stroke. There is still conjecture however regarding the benefits of inhibiting Nox2 to improve stroke outcome. The current study aimed to examine the temporal effects of genetic Nox2 deletion on neuronal loss after ischaemic stroke using knockout (KO) mice with 6, 24 and 72 hour recovery. Transient cerebral ischaemia was induced via intraluminal filament occlusion and resulted in reduced infarct volumes in Nox2 KO mice at 24 h post-stroke compared to wild-type controls. No protection was evident at either 6 h or 72 h post-stroke, with both genotypes exhibiting similar volumes of damage. Reactive oxygen species were detected using dihydroethidium and were co-localised with neurons and microglia in both genotypes using immunofluorescent double-labelling. The effect of Nox2 deletion on vascular damage and recovery was also examined 24 h and 72 h post-stroke using an antibody against laminin. Blood vessel density was decreased in the ischaemic core of both genotypes 24 h post-stroke and returned to pre-stroke levels only in Nox2 KO mice by 72 h. Overall, these results are the first to show that genetic Nox2 deletion merely delays the progression of neuronal loss after stroke but does not prevent it. Additionally, we show for the first time that Nox2 deletion increases re-vascularisation of the damaged brain by 72 h, which may be important in promoting endogenous brain repair mechanisms that rely on re-vascularisation.
Collapse
Affiliation(s)
- Sarah K. McCann
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Surgery, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, the Royal Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Carli L. Roulston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, St Vincent's Campus, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Li Z, Tian F, Shao Z, Shen X, Qi X, Li H, Wang Z, Chen G. Expression and clinical significance of non-phagocytic cell oxidase 2 and 4 after human traumatic brain injury. Neurol Sci 2014; 36:61-71. [DOI: 10.1007/s10072-014-1909-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
|
30
|
Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants (Basel) 2014; 3:472-501. [PMID: 26785066 PMCID: PMC4665418 DOI: 10.3390/antiox3030472] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Collapse
|
31
|
Gibson CL, Srivastava K, Sprigg N, Bath PMW, Bayraktutan U. Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem 2014; 129:816-26. [PMID: 24528233 DOI: 10.1111/jnc.12681] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 02/07/2014] [Indexed: 12/22/2022]
Abstract
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.
Collapse
Affiliation(s)
- Claire L Gibson
- School of Psychology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
32
|
Capacity of HSYA to inhibit nitrotyrosine formation induced by focal ischemic brain injury. Nitric Oxide 2013; 35:144-51. [PMID: 24126016 DOI: 10.1016/j.niox.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
Abstract
Peroxynitrite-mediated protein tyrosine nitration represents a crucial pathogenic mechanism of stroke. Hydroxysafflor yellow A (HSYA) is the most important active component of the safflower plant. Here we assess the neuroprotective efficacy of HSYA and investigate the mechanism through anti-nitrative pathway. Rats were subjected to 60-min ischemia followed by reperfusion. HSYA (2.5-10mg/kg) was injected at 1h after ischemia onset. Other groups received HSYA (10mg/kg) treatment at 3-9h after onset. Infarct volume, brain edema, and neurological score were evaluated at 24h after ischemia. Nitrotyrosine and inducible NO synthase (iNOS) expression, as well as NO level (nitrate/nitrite) in ischemic cortex was examined within 24h after ischemia. The ability of HSYA to scavenge peroxynitrite was evaluated in vitro. Infarct volume was significantly decreased by HSYA (P<0.05), with a therapeutic window of 3h after ischemia at dose of 10mg/kg. HSYA treatment also reduced brain edema and improved neurological score (P<0.05). Nitrotyrosine formation was dose- and time-dependently inhibited by HSYA. The time window of HSYA in decreasing protein tyrosine nitration paralleled its action in infarct volume. HSYA also greatly reduced iNOS expression and NO content at 24h after ischemia, suggesting prevention of peroxynitrite generation from iNOS. In vitro, HSYA blocked authentic peroxynitrite-induced tyrosine nitration in bovine serum albumin and primary cortical neurons. Collectively, our results indicated that post-ischemic HSYA treatment attenuates brain ischemic injury which is at least partially due to reducing nitrotyrosine formation, possibly by the combined mechanism of its peroxynitrite scavenging ability and its reduction in iNOS production.
Collapse
|
33
|
Li WA, Moore-Langston S, Chakraborty T, Rafols JA, Conti AC, Ding Y. Hyperglycemia in stroke and possible treatments. Neurol Res 2013; 35:479-91. [PMID: 23622737 DOI: 10.1179/1743132813y.0000000209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperglycemia affects approximately one-third of acute ischemic stroke patients and is associated with poor clinical outcomes. In experimental and clinical stroke studies, hyperglycemia has been shown to be detrimental to the penumbral tissue for several reasons. First, hyperglycemia exacerbates both calcium imbalance and the accumulation of reactive oxygen species (ROS) in neurons, leading to increased apoptosis. Second, hyperglycemia fuels anaerobic energy production, causing lactic acidosis, which further stresses neurons in the penumbral regions. Third, hyperglycemia decreases blood perfusion after ischemic stroke by lowering the availability of nitric oxide (NO), which is a crucial mediator of vasodilation. Lastly, hyperglycemia intensifies the inflammatory response after stroke, causing edema, and hemorrhage through disruption of the blood brain barrier and degradation of white matter, which leads to a worsening of functional outcomes. Many neuroprotective treatments addressing hyperglycemia in stroke have been implemented in the past decade. Early clinical use of insulin provided mixed results due to insufficiently controlled glucose levels and heterogeneity of patient population. Recently, however, the latest Stroke Hyperglycemia Insulin Network Effort trial has addressed the shortcomings of insulin therapy. While glucagon-like protein-1 administration, hyperbaric oxygen preconditioning, and ethanol therapy appear promising, these treatments remain in their infancy and more research is needed to better understand the mechanisms underlying hyperglycemia-induced injuries. Elucidation of these mechanistic pathways could lead to the development of rational treatments that reduce hyperglycemia-associated injuries and improve functional outcomes for ischemic stroke patients.
Collapse
Affiliation(s)
- William A Li
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
34
|
McCann SK, Roulston CL. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3:561-98. [PMID: 24961415 PMCID: PMC4061864 DOI: 10.3390/brainsci3020561] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.
Collapse
Affiliation(s)
- Sarah K McCann
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, 42 Fitzroy St, Fitzroy, Melbourne 3065, Australia.
| | - Carli L Roulston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, 42 Fitzroy St, Fitzroy, Melbourne 3065, Australia.
| |
Collapse
|
35
|
Kahles T, Brandes RP. Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 2013; 18:1400-17. [PMID: 22746273 PMCID: PMC3603497 DOI: 10.1089/ars.2012.4721] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Significance and Recent Advances: Ischemic stroke is the leading cause of disability and third in mortality in industrialized nations. Immediate restoration of cerebral blood flow is crucial to salvage brain tissue, but only few patients are eligible for recanalization therapy. Thus, the need for alternative neuroprotective strategies is huge, and antioxidant interventions have long been studied in this context. Reactive oxygen species (ROS) physiologically serve as signaling molecules, but excessive amounts of ROS, as generated during ischemia/reperfusion (I/R), contribute to tissue injury. CRITICAL ISSUES Nevertheless and despite a strong rational of ROS being a pharmacological target, all antioxidant interventions failed to improve functional outcome in human clinical trials. Antioxidants may interfere with physiological functions of ROS or do not reach the crucial target structures of ROS-induced injury effectively. FUTURE DIRECTIONS Thus, a potentially more promising approach is the inhibition of the source of disease-promoting ROS. Within recent years, NADPH oxidases (Nox) of the Nox family have been identified as mediators of neuronal pathology. As, however, several Nox homologs are expressed in neuronal tissue, and as many of the pharmacological inhibitors employed are rather unspecific, the concept of Nox as mediators of brain damage is far from being settled. In this review, we will discuss the contribution of Nox homologs to I/R injury at large as well as to neuronal damage in particular. We will illustrate that the current data provide evidence for Nox2 as the most important NADPH oxidase mediating cerebral injury.
Collapse
Affiliation(s)
- Timo Kahles
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität , Frankfurt am Main, Germany
| | | |
Collapse
|
36
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
37
|
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) was originally identified in immune cells as playing an important microbicidal role. In stroke and cerebrovascular disease, inflammation is increasingly being recognized as contributing negatively to neurological outcome, with NOX as an important source of superoxide. Several labs have now shown that blocking or deleting NOX in the experimental stroke models protects from brain ischemia. Recent work has implicated glucose as an important NOX substrate leading to reperfusion injury, and that NOX inhibition can improve the detrimental effects of hyperglycemia on stroke. NOX inhibition also appears to ameliorate complications of thrombolytic therapy by reducing blood-brain barrier disruption, edema formation, and hemorrhage. Further, NOX from circulating inflammatory cells seems to contribute more to ischemic injury more than NOX generated from endogenous brain residential cells. Several pharmacological inhibitors of NOX are now available. Thus, blocking NOX activation may prove to be a promising treatment for stroke as well as an adjunctive agent to prevent its secondary complications.
Collapse
Affiliation(s)
- Xian Nan Tang
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, USA
| | | | | | | |
Collapse
|
38
|
Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 2012; 69:2345-63. [PMID: 22618244 PMCID: PMC11114534 DOI: 10.1007/s00018-012-1011-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/06/2011] [Accepted: 04/20/2012] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) act physiologically as signaling molecules. In pathological conditions, such as ischemic stroke, ROS are released in excessive amounts and upon reperfusion exceed the body's antioxidant detoxifying capacity. This process leads to brain tissue damage during reoxygenation. Consequently, antioxidant strategies have long been suggested as a therapy for experimental stroke, but clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. As an evolution of this concept, recent studies have targeted the sources of ROS generation-rather than ROS themselves. In this context, NADPH oxidases have been identified as important generators of ROS in the cerebral vasculature under both physiological conditions in general and during ischemia/reoxygenation in particular. Inhibition of NADPH oxidases or genetic deletion of certain NADPH oxidase isoforms has been found to considerably reduce ischemic injury in experimental stroke. This review focuses on recent advances in the understanding of NADPH oxidase-mediated tissue injury in the cerebral vasculature, particularly at the level of the blood-brain barrier, and highlights promising inhibitory strategies that target the NADPH oxidases.
Collapse
Affiliation(s)
- Timo Kahles
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Frankfurt, Germany.
| | | |
Collapse
|
39
|
Sorce S, Krause KH, Jaquet V. Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci 2012; 69:2387-407. [PMID: 22643836 PMCID: PMC11114708 DOI: 10.1007/s00018-012-1014-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
Abstract
Among the pathogenic mechanisms underlying central nervous system (CNS) diseases, oxidative stress is almost invariably described. For this reason, numerous attempts have been made to decrease reactive oxygen species (ROS) with the administration of antioxidants as potential therapies for CNS disorders. However, such treatments have always failed in clinical trials. Targeting specific sources of reactive oxygen species in the CNS (e.g. NOX enzymes) represents an alternative promising option. Indeed, NOX enzymes are major generators of ROS, which regulate progression of CNS disorders as diverse as amyotrophic lateral sclerosis, schizophrenia, Alzheimer disease, Parkinson disease, and stroke. On the other hand, in autoimmune demyelinating diseases, ROS generated by NOX enzymes are protective, presumably by dampening the specific immune response. In this review, we discuss the possibility of developing therapeutics targeting NADPH oxidase (NOX) enzymes for the treatment of different CNS pathologies. Specific compounds able to modulate the activation of NOX enzymes, and the consequent production of ROS, could fill the need for disease-modifying drugs for many incurable CNS pathologies.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| |
Collapse
|
40
|
Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab 2012; 32:1024-34. [PMID: 22354150 PMCID: PMC3367218 DOI: 10.1038/jcbfm.2012.13] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Postictal cerebrovascular dysfunction is an adverse effect of seizures in newborn piglets. The brain heme oxygenase (HO) provides protection against cerebrovascular dysfunction. We investigated the contribution of reactive oxygen species (ROS) to seizure-induced vascular damage and the mechanism of HO vasoprotection. In a bicuculline model of seizures, we addressed the hypotheses: (1) seizures increase brain ROS; (2) ROS contribute to cerebral vascular dysfunction; (3) ROS initiate a vasoprotective mechanisms by activating endogenous HO; and (4) HO products have antioxidant properties. As assessed by dihydroethidium oxidation (ox-DHE), seizures increased ROS in cerebral vessels and cortical astrocytes; ox-DHE elevation was prevented by tiron and apocynin. An HO inhibitor, tin protoporphyrin, potentiated, whereas an HO-1 inducer, cobalt protoporphyrin, blocked seizure-induced increase in DHE oxidation. Heme oxygenase products carbon monoxide (CO) (CORM-A1) and bilirubin attenuated ox-DHE elevation during seizures. Antioxidants tiron and bilirubin prevented the loss of postictal cerebrovascular dilations to bradykinin, glutamate, and sodium nitroprusside. Tiron and apocynin abrogated activation of the brain HO during seizures. Overall, these data suggest that long-term adverse cerebrovascular effects of seizures are attributed to oxidative stress. On the other hand, seizure-induced ROS are required for activation of the endogenous antioxidant HO/CO/bilirubin system that alleviates oxidative stress-induced loss of postictal cerebrovascular function in piglets.
Collapse
|
41
|
Simonyi A, Serfozo P, Lehmidi TM, Cui J, Gu Z, Lubahn DB, Sun AY, Sun GY. The neuroprotective effects of apocynin. Front Biosci (Elite Ed) 2012; 4:2183-93. [PMID: 22202030 DOI: 10.2741/535] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recognition of health benefits of phytomedicines and herbal supplements lead to an increased interest to understand the cellular and molecular basis of their biological activities. Apocynin (4-hydroxy-3-methoxy-acetophenone) is a constituent of the Himalayan medicinal herb Picrorhiza kurroa which is regarded as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, a superoxide-producing enzyme. NADPH oxidase appears to be especially important in the modulation of redox-sensitive signaling pathways and also has been implicated in neuronal dysfunction and degeneration, and neuroinflammmation in diseases ranging from stroke, Alzheimer's and Parkinson's diseases to psychiatric disorders. In this review, we aim to give an overview of current literature on the neuroprotective effects of apocynin in the prevention and treatment of neurodegenerative disorders. Particular attention is given to in vivo studies.
Collapse
Affiliation(s)
- Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
17β-Oestradiol (E(2)) is an important hormone signal that regulates multiple tissues and functions in the body. This review focuses on the neuroprotective actions of E(2) in the brain against cerebral ischaemia and the potential underlying mechanisms. A particular focus of the review will be on the role of E(2) to attenuate NADPH oxidase activation, superoxide and reactive oxygen species generation and reduce oxidative stress in the ischaemic brain as a potentially key neuroprotective mechanism. Evidence of a potential novel role of extranuclear oestrogen receptors in mediating E(2) signalling and neuroprotective actions is also discussed. An additional subject is the growing evidence indicating that periods of long-term oestrogen deprivation, such as those occurring after menopause or surgical menopause, may lead to loss or attenuation of E(2) signalling and neuroprotective actions in the brain, as well as enhanced sensitivity of the hippocampus to ischaemic stress damage. These findings have important implications with respect to the 'critical period hypothesis', which proposes that oestrogen replacement must be initiated at peri-menopause in humans to exert its beneficial cardiovascular and neural effects. The insights gained from these various studies will prove valuable for guiding future directions in the field.
Collapse
Affiliation(s)
- Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Corresponding author: Dr. Darrell W. Brann, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| | - Limor Raz
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
| | - Ruimin Wang
- Hebei United University, Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio TX 78229
| | - Quanguang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Co-Corresponding author: Dr. Quanguang Zhang, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| |
Collapse
|
43
|
Protective effect of apocynin, a NADPH-oxidase inhibitor, against contrast-induced nephropathy in the diabetic rats: A comparison with n-acetylcysteine. Eur J Pharmacol 2012; 674:397-406. [PMID: 22094062 DOI: 10.1016/j.ejphar.2011.10.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/17/2011] [Accepted: 10/30/2011] [Indexed: 01/26/2023]
|
44
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
45
|
Connell BJ, Saleh MC, Khan BV, Saleh TM. Apocynin may limit total cell death following cerebral ischemia and reperfusion by enhancing apoptosis. Food Chem Toxicol 2011; 49:3063-9. [DOI: 10.1016/j.fct.2011.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 12/11/2022]
|
46
|
Genovese T, Mazzon E, Paterniti I, Esposito E, Cuzzocrea S. Neuroprotective effects of olprinone after cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2011; 503:93-9. [DOI: 10.1016/j.neulet.2011.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Accepted: 08/06/2011] [Indexed: 01/06/2023]
|
47
|
Zhang C, Tian X, Luo Y, Meng X. Ginkgolide B attenuates ethanol-induced neurotoxicity through regulating NADPH oxidases. Toxicology 2011; 287:124-30. [DOI: 10.1016/j.tox.2011.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/29/2011] [Accepted: 06/09/2011] [Indexed: 01/05/2023]
|
48
|
Su SY, Hsieh CL. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia. Chin Med 2011; 6:26. [PMID: 21740583 PMCID: PMC3152532 DOI: 10.1186/1749-8546-6-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023] Open
Abstract
Abstracts Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.
Collapse
Affiliation(s)
- Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
| | | |
Collapse
|