1
|
Sırrı Akosman M, Türkmen R, Demirel HH. The protective effect of N-acetylcysteine against MK-801-induced neurodegeneration in mice. Mol Biol Rep 2023; 50:10287-10299. [PMID: 37971568 DOI: 10.1007/s11033-023-08881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Neurological disorders result in not only a decline in the quality of life of patients but also a global economic burden. Therefore, protective medicine becomes more important for society. MK-801 is a chemical agent used to understand the etiology of behavioral disorders and brain degeneration in animal models. This study aims to determine whether N-acetylcysteine (NAC) is useful to treat brain degeneration caused by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist. METHODS AND RESULTS Four groups were formed by dividing 24 male BALB/c mice into groups of six. The control group was given a saline solution (10 ml/kg-i.p.). MK-801 (1 mg/kg-i.p.) was given alone to one group, and it was given with NAC (100 mg/kg-i.p.) to another group, while the last group was given only NAC (100 mg/kg-i.p.). The administration of drugs lasted for fourteen days. After the behavioral tests (open field and elevated plus-maze), all animals were euthanised, and brain tissues were collected for real-time PCR, TAS-TOS analysis, hematoxylin-eosin, Kluver-Barrera, and TUNEL staining. In the MK-801 group, besides nuclear shrinkage in neurons, glial cell infiltration, vacuolization in cortical neurons, white matter damage, and apoptosis were observed. CONCLUSION In the mice given NAC as a protective agent, it was observed that behavioral problems improved, antioxidant levels increased, and nuclear shrinkage, glial cell infiltration, vacuolization in neurons, and white matter degeneration were prevented. Moreover, MBP expression increased, and the number of TUNEL-positive cells significantly decreased. As a result, it was observed that NAC may have a protective effect against brain degeneration.
Collapse
Affiliation(s)
- Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey.
| | - Ruhi Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | | |
Collapse
|
2
|
Geng Y, Zhang H, Zhang G, Zhou J, Zhu M, Ma L, Wang X, James TD, Wang Z. Near-Infrared Fluorescent Probe for the In Situ Visualization of Oxidative Stress in the Brains of Neuroinflammatory and Schizophrenic Mice. Anal Chem 2023; 95:11943-11952. [PMID: 37526416 PMCID: PMC10433243 DOI: 10.1021/acs.analchem.3c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023]
Abstract
Schizophrenia is a common mental disorder with unclear mechanisms. Oxidative stress and neuroinflammation play important roles in the pathological process of schizophrenia. Superoxide anion (O2•-) is an important oxidative stress biomarker in vivo. However, due to the existence of the blood-brain barrier (BBB), few near-infrared (NIR) fluorescent probes have been used for the sensing and detection of O2•- in the brain. With this research, we developed the first near-infrared fluorescent probe (named CT-CF3) for noninvasive detection of endogenous O2•- in the brain of mice. Enabling fluorescence monitoring of the dynamic changes in O2•- flux due to the prolonged activation of microglia in neuroinflamed and schizophrenic (SZ) mice brains, thereby providing direct evidence for the relationship between oxidative stress, neuroinflammation, and schizophrenia. Furthermore, we confirmed the O2•- burst in the brains of first-episode schizophrenic mice and assessed the effect of two atypical antipsychotic drugs (risperidone and olanzapine) on redox homeostasis.
Collapse
Affiliation(s)
- Yujie Geng
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hanchen Zhang
- Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, 100190 Beijing, P. R. China
| | - Guoyang Zhang
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiaying Zhou
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mingguang Zhu
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, P. R. China
- Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, 100190 Beijing, P. R. China
| | - Xuefei Wang
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, P. R. China
| | - Zhuo Wang
- State
Key Laboratory of Chemical Resource Engineering, College of Chemistry,
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
3
|
Geng Y, Zhang G, Chen Y, Peng Y, Wang X, Wang Z. Si-Rhodamine Derivatives for Brain Fluorescence Imaging and Monitoring of H2S in the Brain of Schizophrenic Mice before and after Treatment. Anal Chem 2022; 94:1813-1822. [DOI: 10.1021/acs.analchem.1c04611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzhi Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P.R.China
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Wang J, Qi W, Shi H, Huang L, Ning F, Wang F, Wang K, Bai H, Wu H, Zhuang J, Hong H, Zhou H, Feng H, Zhou Y, Dong N, Liu L, Kong Y, Xie J, Zhao RC. MiR-4763-3p targeting RASD2as a Potential Biomarker and Therapeutic Target for Schizophrenia. Aging Dis 2022; 13:1278-1292. [PMID: 35855328 PMCID: PMC9286908 DOI: 10.14336/ad.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2021] [Indexed: 11/06/2022] Open
Abstract
Existing diagnostic methods are limited to observing appearance and demeanor, even though genetic factors play important roles in the pathology of schizophrenia. Indeed, no molecular-level test exists to assist diagnosis, which has limited treatment strategies. To address this serious shortcoming, we used a bioinformatics approach to identify 61 genes that are differentially expressed in schizophrenia patients compared with healthy controls. In particular, competing endogenous RNA network revealed the important role of the gene RASD2, which is regulated by miR-4763-3p. Indeed, analysis of blood samples confirmed that RASD2 is downregulated in schizophrenia patients. Moreover, positron emission tomography data collected for 44 human samples identified the prefrontal and temporal lobes as potential key brain regions in schizophrenia patients. Mechanistic studies indicated that miR-4763-3p inhibits RASD2 by base-pairing with the 3’ untranslated region of RASD2 mRNA. Importantly, RASD2 has been shown to interact with β-arrestin2, which contributes to the regulation of the DRD2-dependent CREB response element-binding protein pathway in the dopamine system. Finally, results obtained with a mouse model of schizophrenia revealed that inhibition of miR-4763-3p function alleviated anxiety symptoms and improved memory. The dopamine transporters in the striatal regions were significantly reduced in schizophrenia model mice as compared with wild-type mice, suggesting that inhibition of miR-4763-3p can lessen the symptoms of schizophrenia. Our findings demonstrate that miR-4763-3p may target RASD2 mRNA and thus may serve as a potential biomarker and therapeutic target for schizophrenia, providing a theoretical foundation for further studies of the molecular basis of this disease.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China.
- Correspondence should be addressed to: Dr. Jiao Wang (), School of Life Sciences, Shanghai University, Shanghai, China; Dr. Yanyan Kong (), PET Center, Huashan Hospital, Fudan University, Shanghai, China; Dr. Jiang Xie (), School of Computer Engineering and Science, Shanghai University, Shanghai, China, and Dr. Robert Chunhua Zhao (), School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Hongwei Shi
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Lin Huang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Fujiang Ning
- Psychological Rehabilitation Hospital of Penglai District, Yantai, Shandong, China
| | - Fushuai Wang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Haotian Bai
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Junyi Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Huanle Hong
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Haicong Zhou
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Hu Feng
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Yinping Zhou
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Li Liu
- Psychological Rehabilitation Hospital of Penglai District, Yantai, Shandong, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- Correspondence should be addressed to: Dr. Jiao Wang (), School of Life Sciences, Shanghai University, Shanghai, China; Dr. Yanyan Kong (), PET Center, Huashan Hospital, Fudan University, Shanghai, China; Dr. Jiang Xie (), School of Computer Engineering and Science, Shanghai University, Shanghai, China, and Dr. Robert Chunhua Zhao (), School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
- Correspondence should be addressed to: Dr. Jiao Wang (), School of Life Sciences, Shanghai University, Shanghai, China; Dr. Yanyan Kong (), PET Center, Huashan Hospital, Fudan University, Shanghai, China; Dr. Jiang Xie (), School of Computer Engineering and Science, Shanghai University, Shanghai, China, and Dr. Robert Chunhua Zhao (), School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
- Correspondence should be addressed to: Dr. Jiao Wang (), School of Life Sciences, Shanghai University, Shanghai, China; Dr. Yanyan Kong (), PET Center, Huashan Hospital, Fudan University, Shanghai, China; Dr. Jiang Xie (), School of Computer Engineering and Science, Shanghai University, Shanghai, China, and Dr. Robert Chunhua Zhao (), School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Guo L, Xiao P, Zhang X, Yang Y, Yang M, Wang T, Lu H, Tian H, Wang H, Liu J. Inulin ameliorates schizophrenia via modulation of the gut microbiota and anti-inflammation in mice. Food Funct 2021; 12:1156-1175. [PMID: 33432310 DOI: 10.1039/d0fo02778b] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome-gut-brain (MGB) axis, which regulates neurological and cognitive functions, plays an essential role in schizophrenia (SCZ) progression. Dietary inulin could be a novel strategy for the treatment of SCZ due to its modulating effects on the gut microbiota. In this study, the effects of inulin on mice with SCZ were studied. As indicated by the behavioural tests, expression of neurotransmitters, inflammatory indicators, and brain morphology, inulin administration ameliorated aberrant behaviours (locomotor hypoactivity, anxiety disorders and depressive behaviours, and impaired learning and spatial recognition memory) and effectively reduced neuroinflammation and neuronal damage. In addition, inulin improved intestinal integrity and permeability, as indicated by the elevated expression of tight junction proteins (p < 0.05). The results of 16S rRNA sequencing and analysis showed that inulin increased the abundance of Lactobacillus and Bifidobacterium, which were negatively correlated with 5-hydroxytryptamine and inflammatory cytokines and positively correlated with brain-derived neurotrophic factor (BDNF). Inulin caused a reduction in Akkermansia that was positively correlated with inflammatory cytokines and negatively correlated with BDNF. These results suggested that dietary inulin modulated the gut microbiota and exerted anti-inflammatory effects in mice though the MGB axis, which further ameliorated SCZ. Therefore, the results of this study provide a potential explanation for inulin intervention in the treatment of SCZ.
Collapse
Affiliation(s)
- Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Peilun Xiao
- Department of Anatomy, Weifang Medical University, Weifang 261042, Shandong, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yang Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Haixia Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hongyan Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
6
|
Modirshanechi G, Eslampour MA, Abdolmaleki Z. Agonist and antagonist NMDA receptor effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture. Andrologia 2020; 52:e13764. [PMID: 32920884 DOI: 10.1111/and.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022] Open
Abstract
In this work, agonist and antagonist N-methyl-D-aspartate (NMDA) receptor activation effect on cell fate during germ cell differentiation and regulate apoptotic process in 3D organ culture were studied. Afterwards, the effect of D-serine, retinoic acid (RA) and MK801 on spermatogenesis development was investigated. The animals were injected a single dose (40 mg/kg, intraperitoneal) of busulfan. After confirming the model, ten 5-day-old NMRI mice were used as spermatogonial stem cells (SSCs) transplantation donors. The SSCs were confirmed by detecting the promyelocytic leukaemia zinc finger (PLZF) protein. Then, tissue culture of the azoospermia model which had received SSCs was performed in various conditions (seven groups). The apoptosis markers levels of cells were significantly decreased in differentiation media containing RA and serine. In contrast, the expression of apoptotic markers including caspase 3, caspase 9 and Bax was increased in the presence of MK801. In conclusion, a new in vitro system capable of producing mature spermatozoa was developed that would be useful for investigating the medicinal effects of agents on the male reproductive system. Also, a comparison of spermatogenesis development in different media revealed that the presence of D-serine and RA (retinoic acid) in the culture medium has a positive effect on spermatogenesis.
Collapse
Affiliation(s)
- Ghazaleh Modirshanechi
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Eslampour
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
7
|
Zhuo C, Wang D, Zhou C, Chen C, Li J, Tian H, Li S, Ji F, Liu C, Chen M, Zhang L. Double-Edged Sword of Tumour Suppressor Genes in Schizophrenia. Front Mol Neurosci 2019; 12:1. [PMID: 30809121 PMCID: PMC6379290 DOI: 10.3389/fnmol.2019.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SCZ) is a common psychiatric disorder with polygenetic pathogenesis. Among the many identified candidate genes and loci, the group of tumour suppressor genes has drawn our interest. In this mini-review article, we describe evidence of a correlation between major tumour suppressor genes and SCZ development. Genetic mutations ranging from single nucleotide polymorphisms to large structural alterations have been found in tumour-related genes in patients with SCZ. Epigenetic mechanisms, including DNA methylation/acetylation and microRNA regulation of tumour suppressor genes, have also been implicated in SCZ. Beyond genetic correlations, we hope to establish causal relationships between tumour suppressor gene function and SCZ risk. Accumulating evidence shows that tumour suppressor genes may mediate cell survival and neural development, both of which contribute to SCZ aetiology. Moreover, converging intracellular signalling pathways indicate a role of tumour suppressor genes in SCZ pathogenesis. Tumour suppressor gene function may mediate a direct link between neural development and function and psychiatric disorders, including SCZ. A deeper understanding of how neural cell development is affected by tumour suppressors may lead to improved anti-psychotic drugs.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Dawei Wang
- Department of Neuroimaging Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jie Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Shen Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China
| | - Feng Ji
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Min Chen
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Turkmen R, Akosman MS, Demirel HH. Protective effect of N-acetylcysteine on MK-801-induced testicular oxidative stress in mice. Biomed Pharmacother 2019; 109:1988-1993. [DOI: 10.1016/j.biopha.2018.09.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
9
|
Wang X, Yu H, You J, Wang C, Feng C, Liu Z, Li Y, Wei R, Xu S, Zhao R, Wu X, Zhang G. Memantine can improve chronic ethanol exposure-induced spatial memory impairment in male C57BL/6 mice by reducing hippocampal apoptosis. Toxicology 2018; 406-407:21-32. [DOI: 10.1016/j.tox.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
|
10
|
Ding J, Shao Y, Zhou HH, Ma QR, Zhang YW, Ding YX, He YQ, Liu J. Effect of NMDA on proliferation and apoptosis in hippocampal neural stem cells treated with MK-801. Exp Ther Med 2018; 16:1137-1142. [PMID: 30116364 PMCID: PMC6090289 DOI: 10.3892/etm.2018.6346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 05/11/2018] [Indexed: 01/01/2023] Open
Abstract
The purpose of the present study was to investigate effects of N-methyl-D-aspartate (NMDA) on proliferation and apoptosis of hippocampal neural stem cells (NSCs) treated with dizocilpine (MK-801). Cultures of hippocampal NSCs were randomly divided into four groups consisting of an untreated control, cells treated with MK-801, NMDA and a combination of MK801 and NMDA (M+N). Proliferative and apoptotic responses for each of the experimental groups were determined by MTS and flow cytometry. The results revealed that MK-801 and NMDA exerted significant effects on hippocampal NSCs proliferation. Cell survival rates decreased in MK-801, NMDA and M+N treated groups compared with the control group. Cells survival rates in NMDA and M+N treated groups increased compared with the MK-801 treated group. MK-801 and NMDA were demonstrated to significantly affect apoptosis in hippocampal NSCs. Total and early stages of apoptosis in MK-801 and NMDA groups significantly increased compared with the control group. Total and early apoptosis of NSCs in the M+N group significantly decreased compared with MK-801 and NMDA groups. Late apoptosis of NSCs in MK-801 and NMDA groups significantly decreased compared with the control group. Late apoptosis of NSCs in the M+N group significantly increased compared with MK-801 and NMDA groups. The present study revealed that MK-801 inhibited proliferation and increased apoptosis in hippocampal NSCs. NMDA may reduce the neurotoxicity induced by MK-801, which may be associated with its activity towards NMDA receptors and may describe a novel therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Juan Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu Shao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Hui Zhou
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Quan-Rui Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Wei Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin-Xiu Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu-Qing He
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
11
|
Jeon SJ, Kim E, Lee JS, Oh HK, Zhang J, Kwon Y, Jang DS, Ryu JH. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice. Neuropharmacology 2017; 126:168-178. [DOI: 10.1016/j.neuropharm.2017.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
12
|
Ding J, Zhou HH, Ma QR, He ZY, Ma JB, Liu YM, Zhang YW, He YQ, Liu J. Expression of NR1 and apoptosis levels in the hippocampal cells of mice treated with MK‑801. Mol Med Rep 2017; 16:8359-8364. [PMID: 28990059 DOI: 10.3892/mmr.2017.7674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 09/09/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the characteristics of N‑methyl‑D‑aspartate receptor R1 (NR1) expression and apoptosis in the nerve cells of the hippocampus in schizophrenia‑like mice. C57BL/6 mice were randomly allocated to the following groups: i) Blank group; ii) MK‑801 group; iii) MK‑801+NMDA group, according to body weight. The NMDAR antagonist, MK‑801 (0.6 mg/kg/d) was intraperitoneally injected daily for 14 days to induce a schizophrenia‑like phenotype mouse model, and the effect of the NMDA injection via the lateral ventricle was observed. The results demonstrated that the number of NR1 positive cells in the MK‑801 group increased in the CA1 and DG regions, indicating that NMDA may reverse this change. The level of damage decreased in the MK‑801 treated group when compared with the blank group in the CA3 region. The protein expression of NR1 increased however, at the mRNA expression level, NR1 was lower in the MK‑801 treated group when compared to the blank group; NMDA also reversed this change. In addition, early and total apoptosis detected in the hippocampal nerve cells was significantly increased in the MK‑801 group when compared with the blank group, which was reversible following treatment with NMDA. These results indicated that NMDA may regulate the expression of NR1 and suppress apoptosis in hippocampal nerve cells in schizophrenia‑like mice. Thus, NR1 may be a promising therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Juan Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Hui Zhou
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Quan-Rui Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhong-Yi He
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiang-Bo Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin-Ming Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Wei Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu-Qing He
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
13
|
Mahmood D, Akhtar M, Jahan K, Goswami D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. J Basic Clin Physiol Pharmacol 2017; 27:463-71. [PMID: 27089413 DOI: 10.1515/jbcpp-2015-0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 03/05/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. METHODS The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. RESULTS Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. CONCLUSIONS The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.
Collapse
|
14
|
Beurel E, Grieco SF, Amadei C, Downey K, Jope RS. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling. Bipolar Disord 2016; 18:473-480. [PMID: 27687706 PMCID: PMC5071181 DOI: 10.1111/bdi.12436] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. METHODS In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. RESULTS Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. CONCLUSIONS These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Celeste Amadei
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kimberlee Downey
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Zimmermann FF, Gaspary KV, Siebel AM, Bonan CD. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res 2016; 311:368-374. [PMID: 27247142 DOI: 10.1016/j.bbr.2016.05.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia.
Collapse
Affiliation(s)
- Fernanda Francine Zimmermann
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Karina Vidarte Gaspary
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Xiu Y, Kong XR, Zhang L, Qiu X, Gao Y, Huang CX, Chao FL, Wang SR, Tang Y. The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801. J Psychiatr Res 2015; 63:132-40. [PMID: 25748751 DOI: 10.1016/j.jpsychires.2015.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiang-ru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-xia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - San-rong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
17
|
Kim TW, Kang HS, Park JK, Lee SJ, Baek SB, Kim CJ. Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice. Mol Med Rep 2014; 10:2924-30. [PMID: 25323073 DOI: 10.3892/mmr.2014.2644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 03/31/2014] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a chronic and severe mental disorder characterized by the disintegration of cognitive thought processes and emotional responses. Despite the precise cause of schizophrenia remains unclear, it is hypothesized that a dysregulation of the N‑methyl‑D‑aspartate (NMDA) receptor in the brain is a major contributing factor to its development. Brain‑derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is implicated in learning and memory processes. In the present study, we investigated in vivo the effects of voluntary wheel running on behavioral symptoms associated with NMDA receptor expression, using MK‑801‑induced schizophrenic mice. Abilify (aripiprazole), a drug used to treat human schizophrenia patients, was used as the positive control. For the assessment of behavioral symptoms affecting locomotion, social interaction and spatial working memory, the open‑field, social interaction and Morris water maze tests were conducted. For investigating the biochemical parameters, NMDA receptor expression in the hippocampal CA2‑3 regions and prefrontal cortex was detected by NMDA immunofluorescence and BDNF expression in the hippocampus was measured using western blot analysis. MK‑801 injection for 14 days induced schizophrenia‑like behavioral abnormalities with decreased expression of the NMDA receptor and BDNF in the brains of mice. The results indicated that free access to voluntary wheel running for 2 weeks alleviated schizophrenia‑like behavioral abnormalities and increased the expression of NMDA receptor and BDNF, comparable to the effects of aripiprazole treatment. In the present study, the results suggest that NMDA receptor hypofunctioning induced schizophrenia‑like behaviors, and that voluntary wheel running was effective in reducing these symptoms by increasing NMDA receptor and BDNF expression, resulting in an improvement of disease related behavioral deficits.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun-Sik Kang
- Department of Exercise Physiology, School of Sport Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Joon-Ki Park
- Department of Exercise Physiology, Division of Exercise and Health Science, College of Arts and Physical Education, Incheon National University, Incheon 407-772, Republic of Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 608-711, Republic of Korea
| | - Sang-Bin Baek
- Department of Psychiatry, Gangneung Asan Hospital, Ulsan University, Gangneung, Gangwon 210-711, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
18
|
Chung JW, Seo JH, Baek SB, Kim CJ, Kim TW. Treadmill exercise inhibits hippocampal apoptosis through enhancing N-methyl-D-aspartate receptor expression in the MK-801-induced schizophrenic mice. J Exerc Rehabil 2014; 10:218-24. [PMID: 25210696 PMCID: PMC4157928 DOI: 10.12965/jer.140144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a severe mental disorder characterized by abnormal mental functioning and disruptive behaviors. Abnormal expression of N-methyl-D-aspartate (NMDA) receptor, one of the glutamate receptor subtypes, has also been suggested to contribute to the symptoms of schizophrenia. The effect of treadmill exercise on schizophrenia-induced apoptosis in relation with NMDA receptor has not been evaluated. In the present study, we investigated the effect of treadmill exercise on neuronal apoptosis in the hippocampus using MK-801-induced schizophrenic mice. MK-801 was intraperitoneally injected once a day for 2 weeks. The mice in the exercise groups were forced to run on a treadmill exercise for 60 min, once a day for 2 weeks. In the present results, repeated injection of the NMDA receptor antagonist MK-801 reduced expression of NMDA receptor in hippocampal CA2-3 regions. MK-801 injection increased casapse-3 expression and enhanced cytochrome c release in the hippocampus. The ratio of Bax to Bcl-2 was higher in the MK-801-induced schizophrenia mice than the normal mice. In contrast, treadmill exercise enhanced NMDA receptor expression, suppressed caspae-3 activation and cytochrome c release, and inhibited the ratio of Bax to Bcl-2. Based on present finding, we concluded that NMDA receptor hypofunctioning induced neuronal apoptosis in MK-801-induced schizophrenic mice. Treadmill exercise suppressed neuronal apoptosis through enhancing NMDA receptor expression in schizophrenic mice.
Collapse
Affiliation(s)
- Jin Woo Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon, Korea
| | - Jin-Hee Seo
- Division of Sports Science, Baekseok University, Cheonan, Korea
| | - Sang-Bin Baek
- Department of Psychiatry, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
19
|
Xiu Y, Kong XR, Zhang L, Qiu X, Chao FL, Peng C, Gao Y, Huang CX, Wang SR, Tang Y. White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism. Anat Rec (Hoboken) 2014; 297:1498-507. [PMID: 24788877 DOI: 10.1002/ar.22942] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
The etiology of schizophrenia (SZ) is complex and largely unknown. Neuroimaging and postmortem studies have suggested white matter disturbances in SZ. In the present study, we tested the white matter deficits hypothesis of SZ using a mouse model of SZ induced by NMDA receptor antagonist MK-801. We found that mice with repeated chronic MK-801 administration showed increased locomotor activity in the open field test, less exploration of a novel environment in the hole-board test, and increased anxiety in the elevated plus maze but no impairments were observed in coordination or motor function on accelerating rota-rod. The total white matter volume and corpus callosum volume in mice treated with MK-801 were significantly decreased compared to control mice treated with saline. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase were also significantly decreased in the mouse model of SZ. Furthermore, we observed degenerative changes of myelin sheaths in the mouse model of SZ. These results provide further evidence of white matter deficits in SZ and indicate that the animal model of SZ induced by MK-801 is a useful model to investigate mechanisms underlying white matter abnormalities in SZ.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A, Rapinesi C, Brugnoli C, Serata D, Caccia F, Cuomo I, Ambrosi E, Simonetti A, Savoja V, De Chiara L, Danese E, Manfredi G, Janiri D, Motolese M, Nicoletti F, Girardi P, Sani G. Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 2013; 11:535-58. [PMID: 24403877 PMCID: PMC3763761 DOI: 10.2174/1570159x113119990037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/28/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To review the role of Wnt pathways in the neurodevelopment of schizophrenia. METHODS SYSTEMATIC PUBMED SEARCH, USING AS KEYWORDS ALL THE TERMS RELATED TO THE WNT PATHWAYS AND CROSSING THEM WITH EACH OF THE FOLLOWING AREAS: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. RESULTS Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. CONCLUSIONS The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data.
Collapse
Affiliation(s)
- Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giorgio D. Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Brugnoli
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Federica Caccia
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ilaria Cuomo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Elisa Ambrosi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Lavinia De Chiara
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Emanuela Danese
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Delfina Janiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | | | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
21
|
Park SJ, Jeon SJ, dela Peña IC, Lee HE, Kim DH, Kim JM, Lee YW, Jung JM, Shin BY, Lee S, Cheong JH, Shin CY, Jang DS, Ryu JH. Prunella vulgaris
Attenuates Prepulse Inhibition Deficit and Attention Disruption induced by MK-801 in Mice. Phytother Res 2013; 27:1763-9. [DOI: 10.1002/ptr.4929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Se Jin Park
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Se Jin Jeon
- Department of Pharmacology, School of Medicine and Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology; Konkuk University; Seoul 143-701 Korea
| | - Ike C. dela Peña
- Department of Pharmacy; Sahmyook University; Seoul 139-742 Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Dong Hyun Kim
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Jong Min Kim
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Young Woo Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Jun Man Jung
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Bum Young Shin
- Oriental Pharmaceutical Science, College of Pharmacy; Kyung Hee University; Seoul 130-701 Korea
| | - Seungheon Lee
- Faculty of Marine Biomedical Science; Cheju National University; Jeju 690-756 Korea
| | - Jae Hoon Cheong
- Department of Pharmacy; Sahmyook University; Seoul 139-742 Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine and Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology; Konkuk University; Seoul 143-701 Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 130-701 Korea
- Oriental Pharmaceutical Science, College of Pharmacy; Kyung Hee University; Seoul 130-701 Korea
| |
Collapse
|
22
|
Wisniewska MB, Nagalski A, Dabrowski M, Misztal K, Kuznicki J. Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability. BMC Genomics 2012; 13:635. [PMID: 23157480 PMCID: PMC3532193 DOI: 10.1186/1471-2164-13-635] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022] Open
Abstract
Background LEF1/TCF transcription factors and their activator β-catenin are effectors of the canonical Wnt pathway. Although Wnt/β-catenin signaling has been implicated in neurodegenerative and psychiatric disorders, its possible role in the adult brain remains enigmatic. To address this issue, we sought to identify the genetic program activated by β-catenin in neurons. We recently showed that β-catenin accumulates specifically in thalamic neurons where it activates Cacna1g gene expression. In the present study, we combined bioinformatics and experimental approaches to find new β-catenin targets in the adult thalamus. Results We first selected the genes with at least two conserved LEF/TCF motifs within the regulatory elements. The resulting list of 428 putative LEF1/TCF targets was significantly enriched in known Wnt targets, validating our approach. Functional annotation of the presumed targets also revealed a group of 41 genes, heretofore not associated with Wnt pathway activity, that encode proteins involved in neuronal signal transmission. Using custom polymerase chain reaction arrays, we profiled the expression of these genes in the rat forebrain. We found that nine of the analyzed genes were highly expressed in the thalamus compared with the cortex and hippocampus. Removal of nuclear β-catenin from thalamic neurons in vitro by introducing its negative regulator Axin2 reduced the expression of six of the nine genes. Immunoprecipitation of chromatin from the brain tissues confirmed the interaction between β-catenin and some of the predicted LEF1/TCF motifs. The results of these experiments validated four genes as authentic and direct targets of β-catenin: Gabra3 for the receptor of GABA neurotransmitter, Calb2 for the Ca2+-binding protein calretinin, and the Cacna1g and Kcna6 genes for voltage-gated ion channels. Two other genes from the latter cluster, Cacna2d2 and Kcnh8, appeared to be regulated by β-catenin, although the binding of β-catenin to the regulatory sequences of these genes could not be confirmed. Conclusions In the thalamus, β-catenin regulates the expression of a novel group of genes that encode proteins involved in neuronal excitation. This implies that the transcriptional activity of β-catenin is necessary for the proper excitability of thalamic neurons, may influence activity in the thalamocortical circuit, and may contribute to thalamic pathologies.
Collapse
Affiliation(s)
- Marta B Wisniewska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
23
|
MK-801 alters Na+, K+-ATPase activity and oxidative status in zebrafish brain: reversal by antipsychotic drugs. J Neural Transm (Vienna) 2011; 119:661-7. [DOI: 10.1007/s00702-011-0745-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/20/2011] [Indexed: 01/26/2023]
|