1
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
2
|
Zhou L, Jiang P, Zhao L, Fei X, Tang Y, Luo Y, Gong H, Wang X, Li X, Li S, Zhang C, Yang H, Fan X. Ligustilide inhibits Purkinje cell ferritinophagy via the ULK1/NCOA4 pathway to attenuate valproic acid-induced autistic features. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155443. [PMID: 38394737 DOI: 10.1016/j.phymed.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which social impairment is the core symptom. Presently, there are no definitive medications to cure core symptoms of ASD, and most therapeutic strategies ameliorate ASD symptoms. Treatments with proven efficacy in autism are imminent. Ligustilide (LIG), an herbal monomer extracted from Angelica Sinensis and Chuanxiong, is mainly distributed in the cerebellum and widely used in treating neurological disorders. However, there are no studies on its effect on autistic-like phenotypes and its mechanism of action. PURPOSE Investigate the efficacy and mechanism of LIG in treating ASD using two Valproic acid(VPA)-exposed and BTBR T + Itpr3tf/J (BTBR) mouse models of autism. METHODS VPA-exposed mice and BTBR mice were given LIG for treatment, and its effect on autistic-like phenotype was detected by behavioral experiments, which included a three-chamber social test. Subsequently, RNA-Sequence(RNA-Seq) of the cerebellum was performed to observe the biological changes to search target pathways. The autophagy and ferroptosis pathways screened were verified by WB(Western Blot) assay, and the cerebellum was stained by immunofluorescence and examined by electron microscopy. To further explore the therapeutic mechanism, ULK1 agonist BL-918 was used to block the therapeutic effect of LIG to verify its target effect. RESULTS Our work demonstrates that LIG administration from P12-P14 improved autism-related behaviors and motor dysfunction in VPA-exposed mice. Similarly, BTBR mice showed the same improvement. RNA-Seq data identified ULK1 as the target of LIG in regulating ferritinophagy in the cerebellum of VPA-exposed mice, as evidenced by activated autophagy, increased ferritin degradation, iron overload, and lipid peroxidation. We found that VPA exposure-induced ferritinophagy occurred in the Purkinje cells, with enhanced NCOA4 and Lc3B expressions. Notably, the therapeutic effect of LIG disappeared when ULK1 was activated. CONCLUSION LIG treatment inhibits ferritinophagy in Purkinje cells via the ULK1/NCOA4-dependent pathway. Our study reveals for the first time that LIG treatment ameliorates autism symptoms in VPA-exposed mice by reducing aberrant Purkinje ferritinophagy. At the same time, our study complements the pathogenic mechanisms of autism and introduces new possibilities for its therapeutic options.
Collapse
Affiliation(s)
- Lianyu Zhou
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Peiyan Jiang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yexi Tang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Xiaqing Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China; Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Chunqing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Zhang Q, Zhang X, Yang B, Li Y, Sun X, Li X, Sui P, Wang Y, Tian S, Wang C. Ligustilide-loaded liposome ameliorates mitochondrial impairments and improves cognitive function via the PKA/AKAP1 signaling pathway in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14460. [PMID: 37718506 PMCID: PMC10916432 DOI: 10.1111/cns.14460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Oxidative stress is an early event in the development of Alzheimer's disease (AD) and maybe a pivotal point of interaction governing AD pathogenesis; oxidative stress contributes to metabolism imbalance, protein misfolding, neuroinflammation and apoptosis. Excess reactive oxygen species (ROS) are a major contributor to oxidative stress. As vital sources of ROS, mitochondria are also the primary targets of ROS attack. Seeking effective avenues to reduce oxidative stress has attracted increasing attention for AD intervention. METHODS We developed liposome-packaged Ligustilide (LIG) and investigated its effects on mitochondrial function and AD-like pathology in the APPswe/PS1dE9 (APP/PS1) mouse model of AD, and analyzed possible mechanisms. RESULTS We observed that LIG-loaded liposome (LIG-LPs) treatment reduced oxidative stress and β-amyloid (Aβ) deposition and mitigated cognitive impairment in APP/PS1 mice. LIG management alleviated the destruction of the inner structure in the hippocampal mitochondria and ameliorated the imbalance between mitochondrial fission and fusion in the APP/PS1 mouse brain. We showed that the decline in cAMP-dependent protein kinase A (PKA) and A-kinase anchor protein 1 for PKA (AKAP1) was associated with oxidative stress and AD-like pathology. We confirmed that LIG-mediated antioxidant properties and neuroprotection were involved in upregulating the PKA/AKAP1 signaling in APPswe cells in vitro. CONCLUSION Liposome packaging for LIG is relatively biosafe and can overcome the instability of LIG. LIG alleviates mitochondrial dysfunctions and cognitive impairment via the PKA/AKAP1 signaling pathway. Our results provide experimental evidence that LIG-LPs may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiangxiang Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Bing Yang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yan Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xue‐Heng Sun
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiang Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Ping Sui
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yi‐Bin Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Shu‐Yu Tian
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Chun‐Yan Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
- Translational Medicine Laboratory, Basic College of MedicineJilin Medical UniversityJilinChina
| |
Collapse
|
4
|
Ren Q, Bakker W, de Haan L, Rietjens IMCM, Bouwmeester H. Induction of Nrf2-EpRE-mediated gene expression by hydroxyanthraquinones present in extracts from traditional Chinese medicine and herbs. Food Chem Toxicol 2023; 176:113802. [PMID: 37116774 DOI: 10.1016/j.fct.2023.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 μM, 1.1 μM, 23 μM and 2.3 μM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 μM, 15 μM, 9.8 μM and 3.8 μM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
5
|
The protection impact of tectoridin on PC12 cell preventing OGD/R-caused damage through PI3K/AKT signaling channel. Eur J Pharmacol 2023; 941:175491. [PMID: 36610685 DOI: 10.1016/j.ejphar.2023.175491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
The present work examined the effect exerted by tectoridin preventing oxygen glucose deprivation/reoxygenation (OGD/R) damage within PC12 cell. We incubated PC12 cells with Na2S2O4 (10 mM) for 2 h, and tectoridin at different concentrations was then added; based on methyl-thiazolyl-tetrazolium (MTT) and lactate dehydrogenase (LDH) tests, the protection impact was tested. 2',7'-dicholorofluorescein diacetate (DCFH-DA), Fluo-3AM, and 5, 5', 6, 6' -tetrachloro-1, 1', 3, 3' -tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting were used for determining reactive oxygen species (ROS) level, intracellular Ca2+ content, mitochondrial membrane potential (MMP) and the related proteins contents. As a result, tectoridin could improve the cell viability and inhibit the release of LDH. In-depth studies demonstrated that tectoridin limited the overproduction of ROS and intracellular Ca2+ content and increased MMP, which showed a close association with ROS-mediated mitochondrial function. Moreover, tectoridin hindered apoptosis based on the up-regulation of the expressions of p-AKT, Bcl-2/Bax and p-mTOR. Furthermore, the level of Nrf2 was also improved by treatment of tectoridin. In addition, the expression of Bcl-2/Bax, p-Akt, p-mTOR, Nrf2, HO-1, NQO1 and GCLM were reduced by LY294002 and the protective role of tectoridin was limited by LY294002. The results unambiguously suggested that tectoridin reduced OGD/R-caused damage to PC12 cells and might ensure neuroprotection by stimulating the PI3K/AKT signaling channel.
Collapse
|
6
|
Zheng T, Huang Z, Ling H, Li J, Cheng H, Chen D, Lu Q, Zhao J, Su W. The mechanism of the Nfe2l2/Hmox1 signaling pathway in ferroptosis regulation in acute compartment syndrome. J Biochem Mol Toxicol 2023; 37:e23228. [PMID: 36193742 PMCID: PMC10078270 DOI: 10.1002/jbt.23228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/30/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Acute compartment syndrome (ACS) is a life-threatening orthopedic emergency, which can even result in amputation. Ferroptosis is an iron-dependent form of nonapoptotic cell death. This study investigated the mechanism of ferroptosis in ACS, explored candidate markers, and determined effective treatments. This study identified pathways involved in the development of ACS through gene set enrichment analysis (GSEA), Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA of heme oxygenase 1 (Hmox1). Bioinformatics methods, combined with real-time quantitative polymerase chain reaction, western blot analysis, and iron staining, were applied to determine whether ferroptosis was involved in the progression of ACS and to explore the mechanism of nuclear factor erythroid-2-related factor 2 (Nfe2l2)/Hmox1 in ferroptosis regulation. Optimal drugs for the treatment of ACS were also investigated using Connectivity Map. The ferroptosis pathway was enriched in GSEA, KEGG of DEGs, and GSEA of Hmox1. After ACS, the reactive oxygen species content, tissue iron content, and oxidative stress level increased, whereas glutathione peroxidase 4 protein expression decreased. The skeletal muscle was swollen and necrotized; the number of mitochondrial cristae became fewer or even disappeared, and Nfe2l2/Hmox1 expression increased at the transcriptional and protein levels. Hmox1 was highly expressed in ACS, indicating that Hmox1 is a possible marker for ACS. we could predict 12 potential target drugs for the treatment of ACS. In conclusion, Hmox1 was a potential candidate marker for ACS diagnosis. Ferroptosis was involved in the progression of ACS. It was speculated that ferroptosis is inhibited by the Nfe2l2/Hmox1 signaling pathway.
Collapse
Affiliation(s)
- Tiejun Zheng
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Huang
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - He Ling
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Junfeng Li
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Dingquan Chen
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Qinzhen Lu
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Su
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Long Y, Li D, Yu S, Shi A, Deng J, Wen J, Li XQ, Ma Y, Zhang YL, Liu SY, Wan JY, Li N, Yang M, Han L. Medicine-food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer's disease and related complications. Food Funct 2022; 13:8783-8803. [PMID: 35983893 DOI: 10.1039/d2fo01287a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, which has brought a huge burden to the world. The current therapeutic approach of one-molecule-one-target strategy fails to address the issues of AD because of multiple pathological features of AD. Traditionally, the herb of Angelica sinensis (AS) comes from the root of an umbrella plant Angelica sinensis (Oliv.) Diels. As a typical medicine-food herb, studies have shown that AS can alleviate AD and AD-complications by multiple targets through the various foundations of pharmaceutical material and dietary supply basis. Therefore, this review summarizes the pharmacological effects of AS for the treatment of AD and AD-complications for the first time. AS contains many effective components, such as ligustilide, z-ligustilide, n-butylidenephthalide, α-pinene, p-cymene, myrcene, ferulic acid, vanillic acid and coniferyl ferulate. It is found that AS, AS-active compounds and AS-compound recipes mainly treat AD through neuroprotective, anti-inflammation, and anti-oxidant effects, improving mitochondrial dysfunction, anti-neuronal apoptosis, regulating autophagy, regulating intestinal flora and enhancing the central cholinergic system, which shows the multi-component and multi-target effect of AS. The role of dietary supplement components in AS for AD intervention is summarized, including vitamin B12, folic acid, arginine, and oleic acid, which can improve the symptoms of AD. Besides, this review focuses on the safety and toxicity evaluation of AS, which provides a basis for its application. This review will provide further support for the research on AD and the application of medicine-food herb AS in a healthy lifestyle in the future.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu-Lu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Song-Yu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jin-Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Luo P, Huang Q, Chen S, Wang Y, Dou H. Asiaticoside ameliorates osteoarthritis progression through activation of Nrf2/HO-1 and inhibition of the NF-κB pathway. Int Immunopharmacol 2022; 108:108864. [PMID: 35623293 DOI: 10.1016/j.intimp.2022.108864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Osteoarthritis has become the fourth cause of disability in the world and its occurrence and development are caused by apoptosis and extracellular matrix (ECM) degradation of chondrocytes. Asiaticoside (ASI) is a triterpene saponin compound obtained from Centella Asiatica and has anti-inflammatory and anti-apoptotic effects in various diseases. However, its effects on OA are not clear. In this study, we reported that ASI has a protective effect on the occurrence and progression of OA in vivo and in vitro, and demonstrated its potential molecular mechanism. In vitro, ASI treatment inhibited the release of pro-apoptotic factors induced by TBHP and promoted the release of the anti-apoptotic proteins. In addition, ASI promotes the expression of Aggrecan and Collagen II, while inhibiting the expression of thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinase-13 (MMP-13), which causes extracellular matrix (ECM) degradation. Mechanistically, ASI exerts its anti-apoptotic effect by activating the Nrf2/HO-1 pathway and preventing p65 from binding to DNA. Similarly, in vivo, ASI has been shown to have a protective effect in a mouse OA model. The conclusion is that our research shows that ASI can be used as a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qishan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Suo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinghui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Liu JX, Zheng XY, Zhang YH, Song WT, Chang D. Research progress on the pharmacological mechanisms of chinese medicines that tonify Qi and activate blood against cerebral ischemia/reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_21_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Zhang HT, Wang XZ, Zhang QM, Zhao H. Neuroprotection of chromobox 7 knockout in the mouse after cerebral ischemia-reperfusion injury via nuclear factor E2-related factor 2/hemeoxygenase-1 signaling pathway. Hum Exp Toxicol 2022; 41:9603271221094660. [PMID: 35435747 DOI: 10.1177/09603271221094660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. METHODS The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress-related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. RESULTS At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. CONCLUSION Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xi-Zeng Wang
- The Third Department of Surgery, Xintai Hospital of Traditional Chinese Medicine, Xintai, China
| | - Qing-Mei Zhang
- Department of Nursing, Shandong Liaocheng Veteran Hospital, Liaocheng City, China
| | - Han Zhao
- Department of Neurosurgery, 230965Taian Central Hospital, Taian, China
| |
Collapse
|
11
|
Han Y, Chen Y, Zhang Q, Liu BW, Yang L, Xu YH, Zhao YH. Overview of therapeutic potentiality of Angelica sinensis for ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153652. [PMID: 34362631 DOI: 10.1016/j.phymed.2021.153652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ischemic stroke is a common cerebrovascular disease. Due to sudden interruption of blood flow by arterial thrombus, amounts of neurons in ischemic central and penumbral regions occur necrosis and apoptosis resulting in serious injury of neurological function. Chinese medicines have a great advantage in ischemic stroke treatment and recovery, especially Angelica sinensis. PURPOSE There are a large number of studies reported that Angelica injection and A. sinensis active compounds. We systematically reviewed the effects and mechanisms of A. sinensis in recent years according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements, and excavated its therapeutic potentiality for exploring more effective and safe compounds for ischemic stroke precision treatment. RESULTS A. sinensis extracts and active compounds, such as Z-ligustilide, 3-n-Butylphthalide, and ferulic acid have significant effects of anti-inflammation, anti-oxidative stress, angiogenesis, neurogenesis, anti-platelet aggregation, anti-atherosclerosis, protection of vessels, which contributes to improvement of neurological function on ischemic stroke. CONCLUSION A. sinensis is a key agent for ischemic stroke treatment, and worth deeply excavating its therapeutic potentiality with the aid of pharmacological network, computer-aided drug design, artificial intelligence, big data and multi-scale modelling techniques.
Collapse
Affiliation(s)
- Yan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa SRA 999078, Macao, China
| | - Ying Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Qian Zhang
- Department of Neurology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518001, Guangdong, China
| | - Bo-Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa SRA 999078, Macao, China
| | - Li Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa SRA 999078, Macao, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, , Taipa SRA 999078, Macao, China
| | - Yong-Hua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa SRA 999078, Macao, China
| |
Collapse
|
12
|
Upadhayay S, Mehan S. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Zhang HT, Wang XZ, Zhang QM, Zhao H. Neuroprotection of chromobox 7 knockout in the mouse after cerebral ischemia-reperfusion injury via nuclear factor E2-related factor 2/hemeoxygenase-1 signaling pathway. Hum Exp Toxicol 2021; 40:S178-S186. [PMID: 34353139 DOI: 10.1177/09603271211036122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the mechanism of chromobox 7 (CBX7)-mediated nuclear factor E2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway in the cerebral ischemia/reperfusion (I/R) injury. METHODS The experimental wild-type (WT) and CBX7-/- mice were used to establish cerebral I/R models using the middle cerebral artery occlusion (MCAO) surgery to determine CBX7 levels at different time points after MCAO injury. For all mice, neurological behavior, infarct size, water content, and oxidative stress-related indicators were determined, and transferase (TdT)-mediated dUTP-biotin nick-end labeling (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)) staining method was employed to observe cell apoptosis, while Western blot to measure the expression of CBX7 and Nrf/HO-1 pathway-related proteins. RESULTS At 6 h, 12 h, 24 h, 3 days, and 7 days after mice with MCAO, CBX7 expression was gradually up-regulated and the peak level was reached at 24 h. Mice in the WT + MCAO group had increased infarct size, with significant increases in the modified neurological severity scores and water content in the brain, as well as the quantity of TUNEL-positive cells. For the oxidative stress-indicators, an increase was seen in the content of MDA (malondial dehyde), but the activity of SOD (superoxide dismutase) and content of GSH-PX (glutathione peroxidase) and CAT (catalase) were decreased; meanwhile, the protein expression of CBX7, HO-1, and nuclear Nrf2 was up-regulated, while the cytoplasmic Nrf2 was down-regulated. Moreover, CBX7 knockout attenuated I/R injury in mice. CONCLUSION Knockout of CBX7 may protect mice from cerebral I/R injury by reducing cell apoptosis and oxidative stress, possibly via activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xi-Zeng Wang
- The Third Department of Surgery, Xintai Hospital of Traditional Chinese Medicine, Xintai, China
| | - Qing-Mei Zhang
- Department of Nursing, Shandong Liaocheng Veteran Hospital, Liaocheng City, China
| | - Han Zhao
- Department of Neurosurgery, 230965Taian Central Hospital, Taian, China
| |
Collapse
|
15
|
Jawad A, Yoo YJ, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Ahn D, Park BY, Tae HJ, Kim IS. Changes of renal histopathology and the role of Nrf2/HO-1 in asphyxial cardiac arrest model in rats. Acta Cir Bras 2021; 36:e360607. [PMID: 34287609 PMCID: PMC8291904 DOI: 10.1590/acb360607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.
Collapse
Affiliation(s)
- Ali Jawad
- Jeonbuk National University, South Korea
| | | | | | | | | | | | | | - So Eun Kim
- Jeonbuk National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
16
|
Pharmacological Protection against Ischemia-Reperfusion Injury by Regulating the Nrf2-Keap1-ARE Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060823. [PMID: 34063933 PMCID: PMC8224095 DOI: 10.3390/antiox10060823] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is associated with substantial clinical implications, including a wide range of organs such as the brain, kidneys, lungs, heart, and many others. I/R injury (IRI) occurs due to the tissue injury following the reestablishment of blood supply to ischemic tissues, leading to enhanced aseptic inflammation and stimulation of oxidative stress via reactive oxygen and nitrogen species (ROS/RNS). Since ROS causes membrane lipids’ peroxidation, triggers loss of membrane integrity, denaturation of proteins, DNA damage, and cell death, oxidative stress plays a critical part in I/R pathogenesis. Therefore, ROS regulation could be a promising therapeutic strategy for IRI. In this context, Nrf2 (NF-E2-related factor 2) is a transcription factor that regulates the expression of several factors involved in the cellular defense against oxidative stress and inflammation, including heme oxygenase-1 (HO-1). Numerous studies have shown the potential role of the Nrf2/HO-1 pathway in IRI; thus, we will review the molecular aspects of Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response element (ARE) signaling pathway in I/R, and we will also highlight the recent insights into targeting this pathway as a promising therapeutic strategy for preventing IRI.
Collapse
|
17
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
18
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
19
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
20
|
Deng K, Li Y, Xiao M, Wang F, Zhou P, Zhang W, Heep A, Li X. Lycium ruthenicum Murr polysaccharide protects cortical neurons against oxygen-glucose deprivation/reperfusion in neonatal hypoxic-ischemic encephalopathy. Int J Biol Macromol 2020; 158:562-568. [PMID: 32380112 DOI: 10.1016/j.ijbiomac.2020.04.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a complex condition that remains the leading cause of mortality and morbidity among infants. Polysaccharide has been reported to possess diverse biological activities, however, the neuro-protective activity of polysaccharide isolated from Lycium ruthenicum remains unknown so far. However, the role of Lycium ruthenicum polysaccharide 3 (LRP3) in HIE has not been evaluated. Herein, we investigated the effect of LRP3 on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced primary cortical neurons. Our results demonstrated that LRP3 significantly improved the cell viability of OGD/R-induced cortical neurons. The OGD/R-caused increase in ROS production and decrease in the activities of anti-oxidative enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were mitigated by LRP3. Besides, the caspase-3 activity in OGD/R-induced cortical neurons was markedly decreased after LRP3 treatment. The increased bax expression and decreased bcl-2 expression caused by OGD/R stimulation were alleviated by pretreatment with LRP3. In addition, LRP3 significantly induced the expressions of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) in OGD/R-induced cortical neurons. However, inhibition of Nrf2/HO-1 signaling pathway through transfection with siRNA targeting Nrf2 reversed the protective effects of LRP3. In conclusion, LRP3 exerts a neuroprotective effect against OGD/R-induced neuronal injury in rat primary cortical neurons.
Collapse
Affiliation(s)
- Kewei Deng
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an 710061, PR China
| | - Yanling Li
- Department of Neonatology, Qujiang Maternity Hospital, Xi'an 710060, PR China
| | - Mi Xiao
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fanghui Wang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Ping Zhou
- Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wei Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Axel Heep
- Neonatal Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Xiaoquan Li
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
21
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
22
|
Park CW, Ahn JH, Lee TK, Park YE, Kim B, Lee JC, Kim DW, Shin MC, Park Y, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Post-treatment with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating Nrf2 defense pathway. Biomed Pharmacother 2020; 124:109850. [PMID: 31981945 DOI: 10.1016/j.biopha.2020.109850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/12/2020] [Indexed: 01/27/2023] Open
Abstract
Oxcarbazepine (OXC), a voltage-gated sodium channel blocker, is an antiepileptic medication and used for the bipolar disorders treatment. Some voltage-gated sodium channel blockers have been demonstrated to display strong neuroprotective properties in models of cerebral ischemia. However, neuroprotective effects and mechanisms of OXC have not yet been reported. Here, we investigated the protective effect of OXC and its mechanisms in the cornu ammonis 1 subfield (CA1) of gerbils subjected to 5 min of transient global cerebral ischemia (tGCI). tGCI led to death of most pyramidal neurons in CA1 at 5 days after ischemia. OXC (100 and 200 mg/kg) was intraperitoneally administered once at 30 min after tGCI. Treatment with 200 mg/kg, not 100 mg/kg OXC, significantly protected CA1 pyramidal neurons from tGCI-induced injury. OXC treatment significantly decreased superoxide anion production, 4-hydroxy-2-nonenal and 8-hydroxyguanine levels in ischemic CA1 pyramidal neurons. In addition, the treatment restored levels of superoxide dismutases, catalase, and glutathione peroxidase. Furthermore, the treatment distinctly inhibited tGCI-induced microglia activation and significantly reduced levels of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). In particular, OXC treatment significantly enhanced expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream protein heme oxygenase-1 in ischemic CA1. The neuroprotective effects of OXC were abolished by brusatol (an inhibitor of Nrf2). Taken together, these results indicate that post-treatment of OXC can display neuroprotection against brain injuries following ischemic insults. This neuroprotection may be displayed by attenuation of oxidative stress and neuroinflammation, which can be mediated by activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea.
| |
Collapse
|
23
|
Inhibition of PRMT5 Attenuates Oxidative Stress-Induced Pyroptosis via Activation of the Nrf2/HO-1 Signal Pathway in a Mouse Model of Renal Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2345658. [PMID: 31885778 PMCID: PMC6899313 DOI: 10.1155/2019/2345658] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Background Extensive evidence has demonstrated that oxidative stress, pyroptosis, and proinflammatory programmed cell death are related to renal ischemia/reperfusion (I/R) injury. However, the underlying mechanism remains to be illustrated. Protein arginine methylation transferase 5 (PRMT5), which mediates arginine methylation involved in the regulation of epigenetics, exhibits a variety of biological functions and essential roles in diseases. The present study investigated the role of PRMT5 in oxidative stress and pyroptosis induced by I/R injury in a mouse model and in a hypoxia/reoxygenation (H/R) model of HK-2 cells. Methods C57 mice were used as an animal model. All mice underwent right nephrectomy, and the left renal pedicles were either clamped or not. Renal I/R injury was induced by ligating the left renal pedicle for 30 min followed by reperfusion for 24 h. HK-2 cells were exposed to normal conditions or stimulation through H/R. EPZ015666(EPZ)—a selective potent chemical inhibitor—and small interfering RNA (siRNA) were administered to suppress the function and expression of PRMT5. The levels of urea nitrogen and creatinine in the serum and renal tissue injury were assessed. Immunohistochemistry, western blotting, and reverse transcription-polymerase chain reaction were used to evaluate pyroptosis-related proteins including nod-like receptor protein-3, ASC, caspase-1, caspase-11, GSDMD-N, and interleukin-1β. Cell apoptosis and cell viability were detected through flow cytometry, and the levels of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) were measured. Ki-67 was used to assess the proliferation of renal tubular epithelium. In addition, the activity of malondialdehyde and superoxide dismutase was determined. Results I/R or H/R induced an increase in the expression of PRMT5. Inhibition of PRMT5 by EPZ alleviated oxidative stress and I/R- or H/R-induced pyroptosis. In renal tissue, the application of EPZ promoted the proliferation of tubular epithelium. In addition, H/R-induced pyroptosis in HK-2 cells was dependent on oxidative stress in vitro. Administration of either EPZ or siRNA led to decreased expression of pyroptosis-related proteins. Inhibition of PRMT5 also attenuated the I/R- or H/R-induced oxidative stress in vivo and in HK-2 cells, respectively. It also resulted in a distinct decrease in the levels of malondialdehyde and H2O2, and an apparent increase in superoxide dismutase activity in mouse renal tissue. Moreover, it led to a significant decrease in the levels of ROS and H2O2 in HK-2 cells. When activated, NF-E2-related factor/heme oxygenase-1 (Nrf2/HO-1)—a key regulator of various cytoprotective proteins that withstand oxidative damage—can decrease the generation of ROS. Nrf2/HO-1 was downregulated during I/R in tissues and H/R in HK-2 cells, and this effect was reversed by the PRMT5 inhibitor. Furthermore, the expressions of Nrf2 and HO-1 proteins were markedly upregulated by EPZ or siRNA against PRMT5. Conclusion PRMT5 is involved in ischemia- and hypoxia-induced oxidative stress and pyroptosis in vitro and in vivo. Inhibition of PRMT5 may ameliorate renal I/R injury by suppressing oxidative stress and pyroptosis via the activation of the Nrf2/HO-1 pathway, as well as promoting the proliferation of tubular epithelium. Therefore, PRMT5 may be a promising therapeutic target.
Collapse
|
24
|
Wang Q, Yan T, Jiang W, Hu N, Zhang S, Yang P, Zhang W, Shi L, Liu L. Simultaneous quantification of ligustilide, dl-3-n-butylphthalide and senkyunolide A in rat plasma by GC-MS and its application to comparative pharmacokinetic studies of Rhizoma Chuanxiong extract alone and Baizhi Chuanxiong Decoction. Biomed Chromatogr 2019; 33:e4625. [PMID: 31222844 DOI: 10.1002/bmc.4625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/08/2022]
Abstract
The herb couple has special clinical significance in reducing the toxicity and increasing the efficacy of drugs. The combination of Radix Angelicae Dahuricae (Baizhi, BZ) and Rhizoma Chuanxiong (ChuanXiong, CX) is a traditional herb couple. The combination performs better than the CX extract alone in the treatment of migraine and has been used for thousands of years. However, the specific compatibility mechanisms are still unclear. Ligustilide, dl-3-n-butylphthalide and senkyunolide A are the major active ingredients in CX and BZ-CX decoction. However, a comprehensive study of the pharmacokinetics of CX has not been carried out. A gas chromatography-mass spectroscopy (GC-MS) method with high selectivity, sensitivity and accuracy was developed. An SH-Rxi-5Sil (30 m × 0.25 mm i.d., and 0.25 μm film thickness) column was employed in the GC separation. Selectivity, linearity, precision, accuracy, recovery, matrix effect and stability were used to validate the current GC-MS method. Using the validated method, this is the first time to study on the comparative pharmacokinetics of ligustilide, dl-3-n-butylphthalide and senkyunolide A from CX alone and BZ-CX decoction in rat plasma. The pharmacokinetic parameters (Cmax , Tmax , T1/2 , AUC0-t , AUC0-∞ and CLz/F) of all of the detected ingredients showed significant differences between the two groups (P < 0.05). The results are helpful for further investigation of the compatibility mechanism of BZ-CX decoction.
Collapse
Affiliation(s)
- Qinhui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tao Yan
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Na Hu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Peng Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wenjuan Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
25
|
Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019; 10:153. [PMID: 30890934 PMCID: PMC6411824 DOI: 10.3389/fphar.2019.00153] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Logan M Locascio
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, Gu N, Jiang W. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis 2019; 284:110-120. [PMID: 30897380 DOI: 10.1016/j.atherosclerosis.2019.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress-induced endothelial dysfunction is considered to exert a vital role in the development of atherosclerotic coronary heart disease (CHD). NRF2 is a key transcriptional factor against oxidative stress through activation of multiple ARE-mediated genes. Z-Lig is derived from the Ligusticum species with antitumor, anti-inflammation and neuroprotection activities. However, the antioxidant potentials of Z-Lig on endothelial dysfunction and atherosclerosis have not been well elucidated. Therefore, in the present work, we appraise the cytoprotective property and anti-atherosclerosis effect of Z-Lig. METHODS Potential NRF2 activators were screened and verified by luciferase reporter gene assay. The protein and mRNA levels of NRF2 and ARE-mediated genes, and GSH/GSSG level in EA.hy926 cells treated with Z-Lig were detected. The cytoprotective property of Z-Lig was assessed in the tert-butyl hydroperoxide (t-BHP)-evoked oxidative stress model. Cell viability and reactive oxygen species (ROS) levels in EA.hy926 cells were determined. An atherosclerosis model induced by HFD was used to determine the anti-atherosclerosis effect of Z-Lig in HFD-fed Ldlr-deficient mice. RESULTS In vitro, 100 μM Z-Lig upregulated expressions of NRF2 and ARE-driven genes, promoted accumulation of nuclear NRF2 and unbound NRF2- KEAP1 complex in EA.hy926 cells. Furthermore, Z-Lig alleviated oxidative stress and cell injury caused by t-BHP via stimulation of the NRF2/ARE pathway. In vivo, intervention with 20 mg/kg Z-Lig markedly restrained atherosclerosis progression, including attenuation of HFD-induced atherosclerotic plaque formation, alleviation of lipid peroxidation and increase in antioxidant enzyme activity in aortas of HFD-fed Ldlr-/- mice. The chemopreventive effects of Z-Lig might be associated with the activation of NRF2 and ARE-driven genes. CONCLUSIONS The present study suggested that Z-Lig is an effective NRF2 activator, which can protect vascular endothelial cells from oxidative stress and rescue HFD-induced atherosclerosis.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yajie Zhang
- Department of Central Laboratory, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Clinical Biobank, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xia Huang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yong Xie
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yuan Qu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Hongyan Long
- Department of Central Laboratory, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Clinical Biobank, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Ning Gu
- Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Weimin Jiang
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
27
|
Gao Y, Fu R, Wang J, Yang X, Wen L, Feng J. Resveratrol mitigates the oxidative stress mediated by hypoxic-ischemic brain injury in neonatal rats via Nrf2/HO-1 pathway. PHARMACEUTICAL BIOLOGY 2018; 56:440-449. [PMID: 30460866 PMCID: PMC6249550 DOI: 10.1080/13880209.2018.1502326] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 07/15/2018] [Indexed: 06/01/2023]
Abstract
CONTEXT Hypoxic-ischemic encephalopathy (HIE) has a high morbidity and mortality rate. Resveratrol possesses numerous biological properties including antioxidant, anti-inflammatory and neuroprotective activities. OBJECTIVE The current experiment investigates the neuroprotective efficacy of resveratrol (RESV) against HIE by modulating Nrf2/HO-1 pathway in neonatal rats. MATERIALS AND METHODS Seven-day-old pups (n = 48) were divided into four groups. Group-I rats receiving 2% DMSO saline (sham), group-II rats underwent unilateral carotid artery ligation and hypoxia (92% N2 and 8% O2) for 2.5 h (hypoxia-ischemia; HI), group-III and IV rats received 20 (RESV 20 + HI) or 40 mg/kg (RESV 40 + HI; group-IV) of RESV via intraperitoneal injection (ip), respectively, for 7 days prior to HI induction. RESULTS Pre-treatment with RESV (20 or 40) markedly reduced (p < 0.01) the cerebral oedema (86.23-71.26 or 65.24%), infarct area (33.85-19.81 or 14.30%), lipid peroxidation products, inflammatory markers [IL-1β 186-110 or 82; IL-6 255-146 or 103; TNF-α 310-204 or 137; NF-κB 205-115 or 91) p65 subunit] and significantly restored (p < 0.01) the antioxidative status by enhancing the activities of glutathione peroxidase (GPx) 5.22-6.49 or 7.78; catalase (CAT) 51-55 or 59, superoxide dismutase (SOD) 2.5-3.05 or 3.25; through marked upregulation (p < 0.01) of heme oxygenase 1 (HO-1) 0.65-0.69 or 0.73; and nuclear factor erythroid 2 related factor 2 (Nrf2) 0.73-0.86 or 0.91. DISCUSSION AND CONCLUSIONS RESV displays its neurotherapeutic potential via upregulating the protein expression of Nrf2 and HO-1 signalling pathway and thereby attenuates oxidative stress and inflammatory response in HI-induced neonatal rats.
Collapse
Affiliation(s)
- Yan Gao
- Department of Neurology, Shengjing Hospital Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rongrong Fu
- Department of Neurology, Shengjing Hospital Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
The neuroprotective effects and probable mechanisms of Ligustilide and its degradative products on intracerebral hemorrhage in mice. Int Immunopharmacol 2018; 63:43-57. [DOI: 10.1016/j.intimp.2018.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
|
29
|
Liu S, Chen Q, Liu J, Yang X, Zhang Y, Huang F. Sinomenine protects against E.coli-induced acute lung injury in mice through Nrf2-NF-κB pathway. Biomed Pharmacother 2018; 107:696-702. [PMID: 30138891 DOI: 10.1016/j.biopha.2018.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is a common disease characterized by pulmonary inflammation and oxidative stress. Sinomenine (SIN) is an alkaloid originally extracted from the Chinese medicinal plant Sinomenium acutum. It has been shown to have anti-inflammatory and anti-oxidative effect. However, it's unclear whether SIN can alleviate ALI. In this study, we assessed the effect of SIN on Escherichia coli (E.coli)-induced ALI mouse model. Mice were conditioned with SIN or placebo 1 h before intratracheally instilled with E.coli. Lung water content, malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, Myeloperoxidase (MPO) levels and inflammatory cytokines production were measured. Immunohistochemistry and western blot were performed to measure target protein expression. E.coli induced histological changes indicating tissues damage and increased W/D ratio, MPO activity, MDA content, and inflammatory cytokines production in the Lung. Whereas in mice pretreated with SIN, these changes were absent. E.coli-induced NF-κB activation was also inhibited by SIN. In addition, SIN increased the expression of HO-1, NQO1 and Nrf2 in lung tissues. Our results suggest that SIN attenuates ALI through the inhibition of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Suzi Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiuhua Chen
- Intensive Care Unit, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Junjun Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoting Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
30
|
Zhang W, Song JK, Yan R, Li L, Xiao ZY, Zhou WX, Wang ZZ, Xiao W, Du GH. Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling. Acta Pharmacol Sin 2018. [PMID: 29542683 DOI: 10.1038/aps.2017.149] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diterpene ginkgolides meglumine injection (DGMI) is a therapeutic extract of Ginkgo biloba L, which has been used for the treatment of cerebral ischemic stroke in China. Ginkgolides A, B and C are the main components of DGMI. This study was designed to investigate the neuroprotective effects of DGMI components against ischemic stroke in vivo and in vitro. Acute cerebral ischemic injury was induced in rats by occlusion of the middle cerebral artery (MCA) for 1.5 h followed by 24 h reperfusion. The rats were treated with DGMI (1, 3 and 10 mg/kg, iv) at the onset of reperfusion and 12 h after reperfusion. Administration of DGMI significantly decreased rat neurological deficit scores, reduced brain infarct volume, and induced protein kinase B (Akt) phosphorylation, which prompted the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and phosphorylation of the survival regulatory protein cyclic AMP-responsive element binding protein (CREB). Nrf2 activation led to expression of the downstream protein heme oxygenase-1 (HO-1). In addition, PC12 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) in vitro, treatment with DGMI (1, 10 and 20 μg/mL) or ginkgolides A, B or C (10 μmol/L for each) significantly reduced PC12 cell death and increased phosphorylation of Akt, nuclear translocation of Nrf2 and activation of CREB. Activation of Nrf2 and CREB could be reversed by co-treatment with a phosphoinositide-3-kinase (PI3K) inhibitor LY294002. These observations suggest that ginkgolides act as novel extrinsic regulators activating both Akt/Nrf2 and Akt/CREB signaling pathways, protecting against cerebral ischemia/reperfusion (I/R) damage in vivo and in vitro.
Collapse
|
31
|
Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018; 112:239-254. [DOI: 10.1016/j.neuint.2017.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
|
32
|
Tong F, Zhou X. The Nrf2/HO-1 Pathway Mediates the Antagonist Effect of L-Arginine On Renal Ischemia/Reperfusion Injury in Rats. Kidney Blood Press Res 2017; 42:519-529. [PMID: 28854440 DOI: 10.1159/000480362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced oxidative stress is involved in the development of acute renal injury, which can be reversed by supplementation with L-arginine, a precursor of nitric oxide (NO). This study was conducted to evaluate alterations in the expression of transcription factors [nuclear factor kappa B (NF-κB), nuclear factor-E2-related factor-2 (Nrf2), and heme oxygenase 1 (HO-1)] and heat shock protein 70 (HSP70) in the kidney of I/R-induced injury rats. METHODS Sprague-Dawley (SD) rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for 24 h. Group 1, Sham; group 2, I/R; group 3, L-arginine; and group 4, L-arginine+zinc protoporphyrin (ZnPP). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum nitric oxide (NO), histic malondialdehyde (MDA) and reactive oxygen species (ROS) and superoxide dismutase (SOD) activity were determined, and the expression levels of Nrf2, HO-1, NF-κB, and HSP70 were evaluated. RESULTS The treatment of rats with L-arginine produced a significant reduction in the levels of BUN, Scr, MDA and a significant enhancement in the level of NO and in the activity of SOD compared to renal I/R groups. The expression levels of Nrf2, HO-1, and HSP70 were strongly increased, and the expression of NF-κB and production of ROS were significantly decreased in the L-arginine group compared to that of the I/R group. ZnPP increased renal damage and displayed effects opposite to those of L-arginine. CONCLUSION These findings suggested that L-arginine/NO reduces renal dysfunction associated with I/R of the kidney and may act as a trigger to regulate the NF-κB, HSP70 and Nrf2/HO-1 signaling cascades.
Collapse
|
33
|
Analysis of NaoMaiTong Metabolites Using High-Performance Liquid Chromatography/High-Resolution Mass Spectrometry in Rat Urine. Chromatographia 2017. [DOI: 10.1007/s10337-017-3363-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
35
|
Li J, Yu J, Ma H, Yang N, Li L, Zheng DD, Wu MX, Zhao ZL, Qi HY. Intranasal Pretreatment with Z-Ligustilide, the Main Volatile Component of Rhizoma Chuanxiong, Confers Prophylaxis against Cerebral Ischemia via Nrf2 and HSP70 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1533-1542. [PMID: 28169530 DOI: 10.1021/acs.jafc.6b04979] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Z-Ligustilide (Z-LIG) is a major component in Rhizoma Chuanxiong, which has been traditionally used as a health food supplement for the prevention of cerebrovascular disease in China. This study investigates the ability of intranasal Z-LIG pretreatment to enhance protection against neuronal damage in rats with middle cerebral artery occlusion (MCAO) and the role of cellular stress response mechanisms Nrf2 and HSP70. Z-LIG significantly mitigated infarct volume, neurological dysfunction, blood-brain barrier disruption, and brain edema (p < 0.01). Moreover, Z-LIG prevented the loss of collagen IV, occludin, and ZO-1 (p < 0.05) and decreased MMP-2 and -9 levels (p < 0.01). Meanwhile, Z-LIG up-regulated NQO1 and HSP70. Notably, blockage of Nrf2-driven transcription or down-regulation of HSP70 remarkably attenuated the preventive effect of Z-LIG (p < 0.05). Together, intranasal delivery of Z-LIG enhanced protection against ischemic injury via Nrf2 and HSP70 signaling pathways and has prophylactic potential in the population at high risk of stroke.
Collapse
Affiliation(s)
- Juan Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Jie Yu
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui Ma
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Na Yang
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu 610212, Sichuan, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Ding-Ding Zheng
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Ming-Xia Wu
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zhi-Long Zhao
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu 610212, Sichuan, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|
36
|
Rong Y, Feng S, Wu C, Wang S, Liang S, Liu D. LC-high-resolution-MS/MS analysis of chemical compounds in rat plasma after oral administration of Nao-Mai-Tong and its individual herbs. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yueying Rong
- School of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM; Guangzhou People's Republic of China
- Engineering Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province; Guangzhou People's Republic of China
| | - Suxiang Feng
- Henan University of Traditional Chinese Medicine; Henan Provincial Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment, and Chinese Medicine Research and Development; Zhengzhou People's Republic of China
| | - Chunwei Wu
- School of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM; Guangzhou People's Republic of China
- Engineering Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province; Guangzhou People's Republic of China
| | - Shumei Wang
- School of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM; Guangzhou People's Republic of China
- Engineering Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province; Guangzhou People's Republic of China
| | - Shengwang Liang
- School of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM; Guangzhou People's Republic of China
- Engineering Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province; Guangzhou People's Republic of China
| | - Dongyun Liu
- School of Traditional Chinese Medicine; Guangdong Pharmaceutical University; Guangzhou People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM; Guangzhou People's Republic of China
- Engineering Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province; Guangzhou People's Republic of China
| |
Collapse
|
37
|
Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:127-246. [DOI: 10.1007/978-3-319-45618-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
39
|
Farrell-Dillon K, Fraser PA. Pro-oxidant Nrf2 inducers: Promiscuity and protection. Vascul Pharmacol 2016; 87:26-29. [PMID: 27810525 DOI: 10.1016/j.vph.2016.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Keith Farrell-Dillon
- King's College London, BHF Centre of Research Excellence, Cardiovascular Division, London SE1 9NH, UK
| | - Paul A Fraser
- King's College London, BHF Centre of Research Excellence, Cardiovascular Division, London SE1 9NH, UK
| |
Collapse
|
40
|
Gong W, Zhou Y, Li X, Gao X, Tian J, Qin X, Du G. Neuroprotective and Cytotoxic Phthalides from Angelicae Sinensis Radix. Molecules 2016; 21:E549. [PMID: 27128890 PMCID: PMC6273808 DOI: 10.3390/molecules21050549] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
Seven phthalides, including a new dimeric one named tokinolide C (7), were isolated from Angelicae Sinensis Radix and characterized. The structures of these compounds were elucidated on the basis of comprehensive analysis of spectroscopic data and comparison with literature data. All of the compounds were evaluated for their cytotoxic activities against the A549, HCT-8, and HepG2 cancer cell lines. Riligustilide (4) showed cytotoxicity against three cancer cell lines, with IC50 values of 13.82, 6.79, and 7.92 μM, respectively. Tokinolide A (6) and tokinolide C (6) exerted low cytotoxicity in these cancer cell lines, while the remaining compounds were inactive. Flow cytometry analysis was employed to evaluate the possible mechanism of cytotoxic action of riligustilide (4). We observed that compound 4 was able to arrest the cell cycle in the G1, S phases and induce apoptosis in a time-dependent manner in HCT-8 cell lines. In addition, these compounds were evaluated for neuroprotective effect against SH-SY5Y cells injured by glutamate. The result showed that ligustilide (1), Z-butylidenephthalide (3) and tokinolide A (6) exhibited significant neuroprotective effects.
Collapse
Affiliation(s)
- Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, China.
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
41
|
An Analysis of the Combination Frequencies of Constituent Medicinal Herbs in Prescriptions for the Treatment of Stroke in Korean Medicine: Determination of a Group of Candidate Prescriptions for Universal Use. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2674014. [PMID: 27087820 PMCID: PMC4818814 DOI: 10.1155/2016/2674014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
In contrast to Western medicine, which typically prescribes one medicine to treat a specific disease, traditional East Asian medicine uses any one of a large number of different prescriptions (mixtures of medicinal herbs), according to the patient's characteristics. Although this can be considered an advantage, the lack of a universal prescription for a specific disease is considered a drawback of traditional East Asian medicine. The establishment of universally applicable prescriptions for specific diseases is therefore required. As a basic first step in this process, this study aimed to select prescriptions used in the treatment of stroke and, through the analysis of medicinal herb combination frequencies, select a high-frequency medicinal herb combination group for further experimental and clinical research. As a result, we selected some candidates of a medicinal herb combination and 13 candidates of a medicinal herb for the treatment of stroke.
Collapse
|
42
|
Inhibition of Ectodermal-Neural Cortex 1 Protects Neural Cells from Apoptosis Induced by Hypoxia and Hypoglycemia. J Mol Neurosci 2016; 59:126-34. [DOI: 10.1007/s12031-016-0742-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
43
|
β-Caryophyllene Attenuates Focal Cerebral Ischemia-Reperfusion Injury by Nrf2/HO-1 Pathway in Rats. Neurochem Res 2016; 41:1291-304. [DOI: 10.1007/s11064-016-1826-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
44
|
Chi K, Fu RH, Huang YC, Chen SY, Lin SZ, Huang PC, Lin PC, Chang FK, Liu SP. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model. Cell Transplant 2016; 25:899-912. [PMID: 26787228 DOI: 10.3727/096368916x690539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stroke is a result of cerebral ischemia that triggers a cascade of both physiological and biochemical events. No effective treatment is available for stroke; however, stem cells have the potential to rescue tissue from the effects of stroke. Adipose-derived stem cells (ADSCs) are an abundant source of adult stem cells; therefore, ADSC therapy can be considered as a future strategy for regenerative medicine. However, more research is required to improve the effectiveness of transplanted ADSCs as a treatment for stroke in the mouse stroke model. Ligustilide, isolated from the herb Angelica sinensis, exhibits a protective effect on neurons and inhibits inflammation. We also demonstrated that ligustilide treatment increases the expression levels of homing factors such as SDF-1 and CXCR4. In the present study, we evaluated the therapeutic effects of ADSC transplantation and ligustilide treatment in a mouse thromboembolic stroke model by behavioral tests, including beam walking, locomotor activity, and rotarod analysis. ADSCs pretreated with ligustilide were transplanted into the brains of stroke mice. The results showed that the therapeutic effect of ADSCs pretreated with ligustilide was better than that of ADSCs without ligustilide pretreatment. There was no difference between the recovery of mice treated by ADSC transplantation combined with subcutaneous ligustilide injection and that of mice treated only with ADSCs. The TUNEL assay showed fewer apoptotic cells in the brains of mice transplanted with ADSCs pretreated with ligustilide as well as in those without pretreatment. In summary, pretreatment of ADSCs with ligustilide improves the therapeutic efficacy of ADSC transplantation. The results of this study will help improve stem cell therapies being developed for future clinical applications.
Collapse
Affiliation(s)
- Kang Chi
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guo C, Wang S, Duan J, Jia N, Zhu Y, Ding Y, Guan Y, Wei G, Yin Y, Xi M, Wen A. Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway. Mol Neurobiol 2016; 54:833-845. [PMID: 26780453 DOI: 10.1007/s12035-016-9690-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 11/24/2022]
Abstract
Oxidative stress is closely related to the pathogenesis of ischemic stroke. Protocatechualdehyde (PCA) is a phenolic acid compound that has the putative antioxidant activities. The present study was aimed to investigate the molecular mechanisms involved in the antioxidative effect of PCA against cerebral ischemia/reperfusion (I/R) injury. The experiment stroke model was produced in Sprague-Dawley rats via middle cerebral artery occlusion (MCAO). To model ischemia-like conditions in vitro, differentiated SH-SY5Y cells were exposed to transient oxygen and glucose deprivation (OGD). Treatment with PCA significantly improved neurologic score, reduced infarct volume and necrotic neurons, and also decreased reactive oxygen species (ROS) production, 4-hydroxynonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents at 24 h after reperfusion. Meanwhile, PCA significantly increased the transcription nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in the ischemic cerebral cortex as shown by immunofluorescence staining and Western blot analysis. In vitro experiment showed that PCA protected differentiated SH-SY5Y cells against OGD-induced injury. Likewise, PCA also increased markedly the Nrf2 and HO-1 expressions in a dose-dependent manner. The neuroprotection effect of PCA was abolished by knockdown of Nrf2 and HO-1. Moreover, knockdown of protein kinase Cε (PKCε) also blocked PCA-induced Nfr2 nuclear translocation, HO-1 expression, and neuroprotection. Taken together, these results provide evidences that PCA can protect against cerebral ischemia-reperfusion-induced oxidative injury, and the neuroprotective effect involves the PKCε/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Na Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Miaomaio Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
46
|
Qian B, Li F, Zhao LX, Dong YL, Gao YJ, Zhang ZJ. Ligustilide Ameliorates Inflammatory Pain and Inhibits TLR4 Upregulation in Spinal Astrocytes Following Complete Freund's Adjuvant Peripheral Injection. Cell Mol Neurobiol 2016; 36:143-9. [PMID: 26115624 DOI: 10.1007/s10571-015-0228-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/13/2015] [Indexed: 12/13/2022]
Abstract
Ligustilide is a major component of Radix Angelica Sinensis and reported to have anti-inflammatory and anti-nociceptive effects. Toll-like receptor 4 (TLR4) has been shown to be expressed in the spinal cord and be involved in inflammatory pain and neuropathic pain. Whether ligustilide can inhibit spinal TLR4 expression in inflammatory pain is still unknown. In the present study, we intravenously injected ligustilide daily for 4 days, with the first injection given at 1 h before complete Freund's adjuvant (CFA) injection. We tested the analgesic effect of ligustilide by behavioral test and checked the expression and distribution of TLR4 in the spinal cord by real-time quantitative PCR, Western blot, and immunofluorescence. Our data showed that repeated daily intravenous treatment with ligustilide alleviated CFA-induced heat hyperalgesia and mechanical allodynia. The same treatment also inhibited CFA-induced TLR4 mRNA and protein increase in the spinal cord. Immunofluorescence double staining showed that TLR4 was predominantly expressed in spinal astrocytes. In primary cultured astrocytes, ligustilide dose-dependently reduced lipopolysaccharide-induced upregulation of TLR4 mRNA expression. These data indicate that ligustilide treatment reduces TLR4 expression in spinal astrocytes and is an effective therapy for inflammatory pain.
Collapse
Affiliation(s)
- Bin Qian
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng, 224005, Jiangsu, China
| | - Feng Li
- Department of Anesthesiology, The First People's Hospital of Yancheng, Yancheng, 224005, Jiangsu, China
| | - Lin-Xia Zhao
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Lin Dong
- Department of Anatomy, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Anatomy, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
47
|
Fu X, Wang Q, Wang Z, Kuang H, Jiang P. Danggui-Shaoyao-San: New Hope for Alzheimer's Disease. Aging Dis 2015; 7:502-13. [PMID: 27493835 DOI: 10.14336/ad.2015.1220] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/20/2015] [Indexed: 11/01/2022] Open
Abstract
Danggui-Shaoyao-San (DSS), also called Toki-shakuyaku-san (TJ-23) or Dangguijakyak-san (DJS), is a well-known herbal formula (Angelica sinensis (Oliv.) Diels., Ligusticum chuanxiong Hort., Paeonia lactiflora pall., Poria cocos (Schw.) Wolf, Alisma orientalis (Sam.) Juzep., Atractylodes macrocephala Koidz.), which has been widely used in oriental countries for the treatment of various gynecological diseases. Recent studies show that DSS has an effect on free radical-mediated neurological diseases and exhibits anti-inflammatory and antioxidant activities and reduces cell apoptosis in the hippocampus. In addition, DSS mediates the modulation of central monoamine neurotransmitter systems and ameliorates dysfunction of the central cholinergic nervous system and scopolamine-induced decrease in ACh levels. DSS improves the function of the dopaminergic, adrenergic, and serotonergic nervous systems. Interestingly, DSS can alleviate cognitive dysfunction of Alzheimer's disease (AD) patients, suggesting that it is a useful therapeutic agent for AD. This paper reviews the mechanism of DSS for the treatment of AD.
Collapse
Affiliation(s)
- Xin Fu
- 1School of Pharmacy, Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - QiuHong Wang
- 1School of Pharmacy, Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - ZhiBin Wang
- 1School of Pharmacy, Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - HaiXue Kuang
- 1School of Pharmacy, Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Pinghui Jiang
- 2College of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| |
Collapse
|
48
|
Khademi S, Frye MA, Jeckel KM, Schroeder T, Monnet E, Irwin DC, Cole PA, Bell C, Miller BF, Hamilton KL. Hypoxia mediated pulmonary edema: potential influence of oxidative stress, sympathetic activation and cerebral blood flow. BMC PHYSIOLOGY 2015; 15:4. [PMID: 26449218 PMCID: PMC4599206 DOI: 10.1186/s12899-015-0018-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/02/2015] [Indexed: 10/25/2022]
Abstract
BACKGROUND Neurogenic pulmonary edema (NPE) is a non-cardiogenic form of pulmonary edema that can occur consequent to central neurologic insults including stroke, traumatic brain injury, and seizure. NPE is a public health concern due to high morbidity and mortality, yet the mechanism(s) are unknown. We hypothesized that NPE, evoked by cerebral hypoxia in the presence of systemic normoxia, would be accompanied by sympathetic activation, oxidative stress, and compensatory antioxidant mechanisms. METHODS Thirteen Walker hounds were assigned to cerebral hypoxia (SaO2 ~ 55 %) with systemic normoxia (SaO2 ~ 90 %) (CH; n = 6), cerebral and systemic (global) hypoxia (SaO2 ~ 60 %) (GH; n = 4), or cerebral and systemic normoxia (SaO2 ~ 90 %) (CON; n = 3). Femoral venous (CH and CON) perfusate was delivered via cardiopulmonary bypass to the brain and GH was induced by FiO2 = 10 % to maintain the SaO2 at ~60 %. Lung wet to lung dry weight ratios (LWW/LDW) were assessed as an index of pulmonary edema in addition to hemodynamic measurements. Plasma catecholamines were measured as markers of sympathetic nervous system (SNS) activity. Total glutathione, protein carbonyls, and malondialdehyde were assessed as indicators of oxidative stress. Brain and lung compensatory antioxidants were measured with immunoblotting. RESULTS Compared to CON, LWW/LDW and pulmonary artery pressure were greater in CH and GH. Expression of hemeoxygenase-1 in brain was higher in CH compared to GH and CON, despite no group differences in oxidative damage in any tissue. Catecholamines tended to be higher in CH and GH. CONCLUSION Cerebral hypoxia, with systemic normoxia, is not systematically associated with an increase in oxidative stress and compensatory antioxidant enzymes in lung, suggesting oxidative stress did not contribute to NPE in lung. However, increased SNS activity may play a role in the induction of NPE during hypoxia.
Collapse
Affiliation(s)
- Shadi Khademi
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA. .,, 3333 Burnet Avenue, Building R, Room 3503, Cincinnati, 45229, OH, USA.
| | - Melinda A Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kimberly M Jeckel
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Thies Schroeder
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
| | - Eric Monnet
- Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Dave C Irwin
- Cardiovascular Pulmonary Research, University of Colorado Denver, Anschutz Medical Campus, Denver, CO, 80045, USA.
| | - Patricia A Cole
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
49
|
Fetoni AR, Paciello F, Rolesi R, Eramo SLM, Mancuso C, Troiani D, Paludetti G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic Biol Med 2015; 85:269-81. [PMID: 25936352 DOI: 10.1016/j.freeradbiomed.2015.04.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Abstract
Noise-induced hearing loss depends on progressive increase of reactive oxygen species and lipoperoxidative damage in conjunction with the imbalance of antioxidant defenses. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in the regulation of cellular defenses against oxidative stress, including heme oxygenase-1 (HO-1) activation. In this work we describe a link between cochlear oxidative stress damage, induced by noise exposure, and the activation of the Nrf2/HO-1 pathway. In our model, noise induces superoxide production and overexpression of the lipid peroxidation marker 4-hydroxy-nonenals (4-HNE). To face the oxidative stress, the endogenous defense system is activated as well, as shown by the slight activation of superoxide dismutases (SODs). In addition, we observed the activation of the Nrf2/HO-1 pathway after noise exposure. Nrf2 appears to promote the maintenance of cellular homeostasis under stress conditions. However, in this model the endogenous antioxidant system fails to counteract noise-induced cell damage and its activation is not effective enough in preventing cochlear damage. The herb-derived phenol rosmarinic acid (RA) attenuates noise-induced hearing loss, reducing threshold shift, and promotes hair cell survival. In fact, RA enhances the endogenous antioxidant defenses, as shown by decreased superoxide production, reduced expression of 4-HNE, and up-regulation of SODs. Interestingly, RA potentiates the Nrf2/HO-1 signaling pathway, as shown by immunohistochemical and Western blot analyses. Thus, protective effects of RA are associated with the induction/activation of the Nrf2-ARE signaling pathway in addition to RA direct scavenging capability.
Collapse
Affiliation(s)
- A R Fetoni
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - F Paciello
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - R Rolesi
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - S L M Eramo
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - C Mancuso
- Institute of Pharmacology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - D Troiani
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
50
|
Wu Z, Uchi H, Morino-Koga S, Shi W, Furue M. Z-ligustilide ameliorated ultraviolet B-induced oxidative stress and inflammatory cytokine production in human keratinocytes through upregulation of Nrf2/HO-1 and suppression of NF-κB pathway. Exp Dermatol 2015; 24:703-8. [DOI: 10.1111/exd.12758] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology; Shanghai First People's Hospital; Shanghai Jiaotong University; Shanghai China
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Hiroshi Uchi
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Saori Morino-Koga
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Weimin Shi
- Department of Dermatology; Shanghai First People's Hospital; Shanghai Jiaotong University; Shanghai China
| | - Masutaka Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|