1
|
Shariat Razavi SA, Vafaei F, Ebrahimi SM, Abbasinezhad-Moud F, Shahini A, Qoorchi Moheb Seraj F, Alavi MS, Fadavieslam A, Ferns GA, Bahrami A. The protective effect of parthenolide in an in vitro model of Parkinson's disease through its regulation of nuclear factor-kappa B and oxidative stress. Mol Biol Rep 2024; 51:819. [PMID: 39017801 DOI: 10.1007/s11033-024-09779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, and is due to the degeneration of dopaminergic neurons. It is multifactorial, caused by genetic and environmental factors and currently has no definitive cure. We have investigated the protective effects of parthenolide (PTN), a compound with known anti-inflammatory and antioxidant properties, in an in vitro model of PD, that is induced by 6-OHDA, and that causes neurotoxicity in SH-SY5Y human neuroblastoma cells. METHODS AND RESULTS SH-SY5Y cells were pretreated with PTN to assess its protective effects in 6-OHDA-induced cellular damage. Cell viability was measured using Alamar blue. Apoptosis was evaluated using an Annexin V-FITC/PI kit. Reactive oxygen species (ROS) levels were quantified, and expression levels of apoptotic markers (Bax, Bcl-2, p53) and NF-κB were analyzed via Western blotting and Quantitative real-time- (qRT-) PCR. We found that 6-OHDA reduced cell viability, that was inhibited significantly by pre-treatment with PTN (p < 0.05). Flow cytometry revealed that PTN reduced apoptosis induced by 6-OHDA. PTN also reduced the ROS levels raised by 6-OHDA (p < 0.05). Moreover, PTN decreased the expression of Bax, p53, NF-κB, and p-NF-κB that were increased by treatment with 6-OHDA. CONCLUSION These findings indicate the potential beneficial effects of PTN in an in vitro model of PD via mitigating oxidative stress and inflammation, suggested PTN as a promising agent to be used for PD therapy, warranting further investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Farzane Vafaei
- Department of Pharmacy, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, PO 311-86145, Iran
| | - Seyyed Moein Ebrahimi
- Department of Biochemistry, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farzaneh Abbasinezhad-Moud
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Qoorchi Moheb Seraj
- Endovascular Section, Neurosurgical Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Fadavieslam
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yang Y, Che Y, Fang M, Yao X, Zhou D, Wang F, Chen G, Liang D, Li N, Hou Y. Reynosin protects neuronal cells from microglial neuroinflammation by suppressing NLRP3 inflammasome activation mediated by NADPH oxidase. Chin J Nat Med 2024; 22:486-500. [PMID: 38906597 DOI: 10.1016/s1875-5364(24)60652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/23/2024]
Abstract
Neuroinflammation, mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome, is a significant contributor to the pathogenesis of neurodegenerative diseases (NDDs). Reynosin, a natural sesquiterpene lactone (SL), exhibits a broad spectrum of pharmacological effects, suggesting its potential therapeutic value. However, the effects and mechanism of reynosin on neuroinflammation remain elusive. The current study explores the effects and mechanisms of reynosin on neuroinflammation using mice and BV-2 microglial cells treated with lipopolysaccharide (LPS). Our findings reveal that reynosin effectively reduces microglial inflammation in vitro, as demonstrated by decreased CD11b expression and lowered interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) mRNA and protein levels. Correspondingly, in vivo, results showed a reduction in the number of Iba-1 positive cells and alleviation of morphological alterations, alongside decreased expressions of IL-1β and IL-18. Further analysis indicates that reynosin inhibits NLRP3 inflammasome activation, evidenced by reduced transcription of NLRP3 and caspase-1, diminished NLRP3 protein expression, inhibited apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization, and decreased caspase-1 self-cleavage. Additionally, reynosin curtailed the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, demonstrated by reduced NADP+ and NADPH levels, downregulation of gp91phox mRNA, protein expression, suppression of p47phox expression and translocation to the membrane. Moreover, reynosin exhibited a neuroprotective effect against microglial inflammation in vivo and in vitro. These collective findings underscore reynosin's capacity to mitigate microglial inflammation by inhibiting the NLRP3 inflammasome, thus highlighting its potential as a therapeutic agent for managing neuroinflammation.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110000, China
| | - Yue Che
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110000, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110000, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110000, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Feng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541000, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110000, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110000, China.
| |
Collapse
|
3
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
4
|
Enhancement of bioactives, functional and nutraceutical attributes of banana peels and de-oiled groundnut cake through submerged fermentation employing Calocybe indica. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
6
|
Pilipović K, Jurišić Grubešić R, Dolenec P, Kučić N, Juretić L, Mršić-Pelčić J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus nobilis, Aronia melanocarpa, and Celastrol. Antioxidants (Basel) 2023; 12:antiox12030746. [PMID: 36978994 PMCID: PMC10045087 DOI: 10.3390/antiox12030746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
With the progress of medicine, especially in the last century, life expectancy increased considerably. As a result, age-related diseases also increased, especially malignancies and degenerative diseases of the central nervous system. The incidence and prevalence of neurodegenerative diseases steadily increased over the years, but despite efforts to uncover the pathophysiological processes behind these conditions, they remain elusive. Among the many theories, oxidative stress was proposed to be involved in neurodegenerative processes and to play an important role in the morbidity and progression of various neurodegenerative disorders. Accordingly, a number of studies discovered the potential of natural plant constituents to have significant antioxidant activity. This review focused on several plant-based antioxidants that showed promising results in the prevention and treatment of neurodegenerative diseases. Laurus nobilis, Aronia melanocarpa, and celastrol, a chemical compound isolated from the root extracts of Tripterygium wilfordii and T. regelii, are all known to be rich in antioxidant polyphenols.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Renata Jurišić Grubešić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| |
Collapse
|
7
|
Nano-MgO composites containing plasmid DNA to silence SNCA gene displays neuroprotective effects in Parkinson's rats induced by 6-hydroxydopamine. Eur J Pharmacol 2022; 922:174904. [DOI: 10.1016/j.ejphar.2022.174904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
8
|
Kaur L, Malhi DS, Cooper R, Kaur M, Sohal HS, Mutreja V, Sharma A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114525. [PMID: 34411657 DOI: 10.1016/j.jep.2021.114525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Parthenium hysterophorus L. is a noxious weed and a species of flowering plant in the Asteraceae family. It is regarded as the seventh most deadly weed in the world: harmful to both humans and livestock. It is widely known as Congress Grass or Feverfew. Despite its pitfalls, P. hysterophorus bestows medicinal effects. Although prolific in nature and difficult to control, many novel applications of this controversial herb have been discovered as an approach to manage the weed. AIM The current review aims to compile all the ethnobotanical, phytochemistry, biological activities and utilities, clinical studies and toxicity data available on P. hysterophorus and its major chemical constituent parthenin. MATERIALS AND METHODS Extensive literature surveyed Google search, Google scholar, Wiley online library, Elsevier, Springer, Science direct, American Chemical Society, Royal Society of Chemistry and Research Gate. RESULT According to the study, P. hysterophorus is utilized as a traditional medicine throughout Central America and the Caribbean. It can be used to treat skin infections, dermatitis, amoebic dysentery, and as an analgesic in the treatment of muscular rheumatism. The extracts obtained from P. hysterophorus have anti-inflammatory, antioxidant, larvicidal, anti-microbial, insecticidal, hypoglycaemic and anti-cancer activity. CONCLUSION The earlier investigations confirmed that P. hysterophorus has numerous traditional and biological applications. However, the scientific data are limited in clinical and toxicological studies. Therefore, further research is required on clinical and toxicological aspects to understand the complete potential and effects of P. hysterophorus.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Raymond Cooper
- Dept Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
9
|
Huang Z, Wei C, Yang K, Yu Z, Wang Z, Hu H. Aucklandiae Radix and Vladimiriae Radix: A systematic review in ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114372. [PMID: 34186101 DOI: 10.1016/j.jep.2021.114372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandiae Radix (AR) and Vladimiriae Radix (VR), as commonly used traditional Chinese herbal medicine, were widely used in the treatment of gastrointestinal diseases. The two herbal medicines were warm, pungent and bitter. They entered the spleen, stomach, large intestine and gallbladder meridians, and had the effect of promoting qi circulation to relieve pain. It is usually used for chest and hypochondrium, abdominal fullness and pain, tenesmus, indigestion, and warming the middle to harmonize the stomach in clinically. AIM OF THIS REVIEW To provide a reference for the identification of traditional use, the material basis of efficacy and preclinical research between AR and VR, this review systematically summarized the similarities and differences in ethnopharmacology, phytochemistry and modern pharmacology. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine, master's thesis, doctoral thesis. RESULTS In the plateau areas of Sichuan Province, VR used to be regarded as substitute or local habit for AR, which is regularly used for chest, abdominal fullness and pain, diarrhea, and other related diseases. In Chinese Pharmacopoeia (ChP) 2020 edition, 145 prescription preparations with AR were collected, such as Xianglian Wan, Muxiang Shunqi Wan, Liuwei Muxiang San. However, only one prescription preparation (Jiuxiang Zhitong Wan) contained VR. Additionally, 237 and 254 chemical components were separately isolated and identified from AR and VR, 69 kinds of compounds were common among them, and the significant differences were presented in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids. Moreover, Costunolide (COS) and Dehydrocostus lactone (DEH), two main research objects of modern pharmacology, showed multiple pharmacological activities. Not only could they inhibit the activity of some cancer cells (such as breast cancer and leukemia cells), but they regulated the levels of various inflammatory factors (including TNF-α, NF-κB, IL-1β, IL-6) and repressed the growth and reproduction of various microorganisms (like Helicobacter pylori, Staphylococcus aureus). CONCLUSION COS and DEH as the common active components, provide a certain basis for local medicine about the substitution of VR for AR in Sichuan province of China in the past. In addition, the sesquiterpenoids are the main common compounds in AR and VR by collecting and collating a large number of literature and various data websites. Furthermore, AR and VR have significant differences in ethnopharmacology and phytochemistry, especially in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids, and are probably viewed as reference of a separate list of AR and VR in Chinese Pharmacopoeia.
Collapse
Affiliation(s)
- Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Chunlei Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu, 610106, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
10
|
Borgo J, Laurella LC, Martini F, Catalán CAN, Sülsen VP. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021; 26:2733. [PMID: 34066562 PMCID: PMC8125113 DOI: 10.3390/molecules26092733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cesar A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina;
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
11
|
Mejías FJR, Durán AG, Zorrilla JG, Varela RM, Molinillo JMG, Valdivia MM, Macías FA. Acyl Derivatives of Eudesmanolides To Boost their Bioactivity: An Explanation of Behavior in the Cell Membrane Using a Molecular Dynamics Approach. ChemMedChem 2021; 16:1297-1307. [PMID: 33300672 DOI: 10.1002/cmdc.202000783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Semisynthetic analogs of natural products provide an important approach to obtain safer and more active drugs and they can also have enhanced physicochemical properties such as persistence, cross-membrane processes and bioactivity. Acyl derivatives of different natural product families, from sesquiterpene lactones to benzoxazinoids, have been synthesized and tested in our laboratories. These compounds were evaluated against tumoral and nontumoral cell lines to identify selective derivatives with a reduced negative impact upon application. The mode of action of these compounds was analyzed by anti-caspase-3 assays and molecular dynamics simulations with cell membrane re-creation were also carried out. Aryl derivatives of eudesmanolide stand out from the other compounds and are better than current anticancer drugs such as etoposide in terms of selectivity and activity. Computational studies provide evidence that lipophilicity plays a key role and the 4-fluorobenzoyl derivative can pass easily through the cell membrane.
Collapse
Affiliation(s)
- Francisco J R Mejías
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Alexandra G Durán
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Jesús G Zorrilla
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Rosa M Varela
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - José M G Molinillo
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Manuel M Valdivia
- Department of Biomedicine, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| | - Francisco A Macías
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
12
|
Montenegro I, Moreira J, Ramírez I, Dorta F, Sánchez E, Alfaro JF, Valenzuela M, Jara-Gutiérrez C, Muñoz O, Alvear M, Werner E, Madrid A, Villena J, Seeger M. Chemical Composition, Antioxidant and Anticancer Activities of Leptocarpha rivularis DC Flower Extracts. Molecules 2020; 26:molecules26010067. [PMID: 33375633 PMCID: PMC7795695 DOI: 10.3390/molecules26010067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
An evaluation of antioxidant and anticancer activity was screened in Leptocarpha rivularis DC flower extracts using four solvents (n-hexane (Hex), dichloromethane (DCM), ethyl acetate (AcOEt), and ethanol (EtOH)). Extracts were compared for total extract flavonoids and phenol contents, antioxidant activity (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), ferric reducing antioxidant potential (FRAP), total reactive antioxidant properties (TRAP) and oxygen radical absorbance capacity (ORAC)) across a determined value of reduced/oxidized glutathione (GSH/GSSG), and cell viability (the sulforhodamine B (SRB) assay). The most active extracts were analyzed by chromatographic analysis (GC/MS) and tested for apoptotic pathways. Extracts from Hex, DCM and AcOEt reduced cell viability, caused changes in cell morphology, affected mitochondrial membrane permeability, and induced caspase activation in tumor cell lines HT-29, PC-3, and MCF-7. These effects were generally less pronounced in the HEK-293 cell line (nontumor cells), indicating clear selectivity towards tumor cell lines. We attribute likely extract activity to the presence of sesquiterpene lactones, in combination with other components like steroids and flavonoids.
Collapse
Affiliation(s)
- Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Jorge Moreira
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Ingrid Ramírez
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Fernando Dorta
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Elizabeth Sánchez
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Juan Felipe Alfaro
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Manuel Valenzuela
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro de Investigaciones Biomédicas (CIB), Laboratorio de Estrés Oxidativo, Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile;
| | - Ociel Muñoz
- Institute of Food Science and Technology, University Austral of Chile, Valdivia 5090000, Chile;
| | - Matias Alvear
- Laboratory of Industrial Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland;
| | - Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío, Avda. Andrés Bello 720, Casilla 447, Chillán 3780000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Michael Seeger
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| |
Collapse
|
13
|
Kłeczek N, Malarz J, Gierlikowska B, Kiss AK, Stojakowska A. Constituents of Xerolekia speciosissima (L.) Anderb. (Inuleae), and Anti-Inflammatory Activity of 7,10-Diisobutyryloxy-8,9-epoxythymyl Isobutyrate. Molecules 2020; 25:E4913. [PMID: 33114240 PMCID: PMC7660698 DOI: 10.3390/molecules25214913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
Xerolekia speciosissima (L.) Anderb., a rare plant from the north of Italy, is a member of the Inuleae-Inulinae subtribe of the Asteraceae. Despite its close taxonomic relationship with many species possessing medicinal properties, the chemical composition of the plant has remained unknown until now. A hydroalcoholic extract from the aerial parts of X. speciosissima was analyzed by HPLC-DAD-MSn, revealing the presence of caffeic acid derivatives and flavonoids. In all, 19 compounds, including commonly found chlorogenic acids and less frequently occurring butyryl and methylbutyryl conjugates of dicaffeoylquinic and tricaffeoylhexaric acids, plus two flavonoids, were tentatively identified. Chromatographic separation of a hydroalcoholic extract from the capitula of the plant led to the isolation of (+)-dehydrodiconiferyl alcohol 4-O-β-glucopyranoside, quercimeritrin, astragalin, isoquercitrin, 6-hydroxykaempferol-7-O-β-glucoside, quercetagitrin, methyl caffeate, caffeic acid, protocatechuic acid, chlorogenic acid and 1,5-dicaffeoylquinic acid. Composition of a nonpolar extract from the aerial parts of the plant was analyzed by chromatographic methods supported with 1H-NMR spectroscopy. The analysis revealed the presence of loliolide, reynosin, samtamarine, 2,3-dihydroaromaticin, 2-deoxy-4-epi-pulchellin and thymol derivatives as terpenoid constituents of the plant. One of the latter compounds-7,10-diisobutyryloxy-8,9-epoxythymyl isobutyrate-at concentrations 0.5, 1.0 and 2.5 μM, significantly reduced IL-8, IL-1β and CCL2 excretion by LPS-stimulated human neutrophils.
Collapse
Affiliation(s)
- Natalia Kłeczek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| | - Barbara Gierlikowska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (B.G.); (A.K.K.)
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Anna K. Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (B.G.); (A.K.K.)
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| |
Collapse
|
14
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary ( Rosmarinus officinalis L.) and its active constituents on nervous system disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1100-1112. [PMID: 32963731 PMCID: PMC7491497 DOI: 10.22038/ijbms.2020.45269.10541] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Rosemary (Rosmarinus officinalis L.) is an evergreen bushy shrub which grows along the Mediterranean Sea, and sub-Himalayan areas. In folk medicine, it has been used as an antispasmodic, mild analgesic, to cure intercostal neuralgia, headaches, migraine, insomnia emotional upset, and depression. Different investigations have highlighted rosemary neuropharmacological properties as their main topics. Rosemary has significant antimicrobial, anti-inflammatory, anti-oxidant, anti-apoptotic, anti-tumorigenic, antinociceptive, and neuroprotective properties. Furthermore, it shows important clinical effects on mood, learning, memory, pain, anxiety, and sleep. The aim of the current work is to review the potential neuropharmacological effects of different rosemary extracts and its active constituents on nervous system disorders, their relevant mechanisms and its preclinical application to recall the therapeutic potential of this herb and more directions of future research projects. The data were gathered by searching the English articles in PubMed, Scopus, Google Scholar, and Web of Science. The keywords used as search terms were 'Rosmarinus officinalis', 'rosemary', 'nervous system', 'depression', 'memory', 'Alzheimer's disease' 'epilepsy', 'addiction', 'neuropathic pain', and 'disorders'. All kinds of related articles, abstracts and books were included. No time limitation was considered. Both in vitro and in vivo studies were subjected to this investigation. This review authenticates that rosemary has appeared as a worthy source for curing inflammation, analgesic, anti-anxiety, and memory boosting. It also arranges new perception for further investigations on isolated constituents, especially carnosic acid, rosmarinic acid, and essential oil to find exquisite therapeutics and support drug discovery with fewer side effects to help people suffering from nervous system disorders.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Sun Y, He L, Wang T, Hua W, Qin H, Wang J, Wang L, Gu W, Li T, Li N, Liu X, Chen F, Tang L. Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells. Mol Neurobiol 2020; 57:4628-4641. [PMID: 32770451 DOI: 10.1007/s12035-020-02049-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). However, the manner of death of dopaminergic neurons remains indistinct. Ferroptosis is a form of cell death involving in the iron-dependent accumulation of glutathione depletion and lipid peroxide. Besides, previous studies indicated that ferroptosis might be involved in the death of dopaminergic neurons. In this study, we aim to explore the protective effect of the p62-Keap1-Nrf2 pathway against 6-hydroxydopamine (6-OHDA)-induced ferroptosis in dopaminergic cells. Firstly, our results demonstrated that 6-OHDA-induced ferroptosis could be observed in vivo zebrafish and in vitro human dopaminergic cell line (SH-SY5Y cells) model. Moreover, ferroptosis induced by 6-OHDA mitigates in SH-SY5Y cells upon ferrostatin-1 (Fer, an inhibitor of ferroptosis) treatment via upregulating the protein expression of glutathione peroxidase 4 (GPX4). Then, we found that high p62/SQSTM1 (p62) expression could protect SH-SY5Y cells against ferroptosis through promoting Nrf2 nuclear transfer and upregulating the expression of the antioxidant protein heme oxygenase-1 (HO-1). Ultimately, high p62 expression activates the Nrf2/HO-1 signaling pathway through binding to Kelch-like ECH-associated protein 1 (Keap1). Collectively, the activation of the p62-Keap1-Nrf2 pathway prevents 6-OHDA-induced ferroptosis in SH-SY5Y cells, targeting this pathway in combination with a pharmacological inhibitor of ferroptosis can be a potential approach for PD therapy.
Collapse
Affiliation(s)
- Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Taoyu Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Jingjin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Li Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Wanqin Gu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Na Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Xinanbei Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China. .,National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
16
|
Tiwari S, Singh S. Reciprocal Upshot of Nitric Oxide, Endoplasmic Reticulum Stress, and Ubiquitin Proteasome System in Parkinson's Disease Pathology. Neuroscientist 2020; 27:340-354. [PMID: 32713286 DOI: 10.1177/1073858420942211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) pathology involves degeneration of nigrostriatal pathway, postulating symptoms associated with age, environment, and genetic anomalies, including nonlinear disease progression. Hallmark characteristics of PD include dopaminergic neuronal degeneration and death, which may also be exhibited by other neurological diseases, making the diagnosis of the disease intricate at early stage. Such obscure diagnosis of the disease, limited symptomatic improvements with available therapeutics, and their inability to modify the disease status instigate us to appraise the past research and formulate the colligating comprehensive insights. This review is accentuating on the role of nitric oxide, endoplasmic reticulum stress, and their association with the ubiquitin proteasome system (UPS) during PD pathology involving focus on ubiquitin ligases due to their regulatory functions. Meticulous understanding of these major disease-related pathological events and their functional alliance may render novel dimensions for better understanding of disease etiology, related mechanisms, as well as direction toward witnessing of new therapeutic targets for the management of Parkinson's patients.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sarika Singh
- Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2019; 9:1555. [PMID: 30941047 PMCID: PMC6433754 DOI: 10.3389/fphar.2018.01555] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Kumar Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Burette AC, Judson MC, Li AN, Chang EF, Seeley WW, Philpot BD, Weinberg RJ. Subcellular organization of UBE3A in human cerebral cortex. Mol Autism 2018; 9:54. [PMID: 30364390 PMCID: PMC6194692 DOI: 10.1186/s13229-018-0238-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/04/2022] Open
Abstract
Background Loss of UBE3A causes Angelman syndrome, whereas excess UBE3A activity appears to increase the risk for autism. Despite this powerful association with neurodevelopmental disorders, there is still much to be learned about UBE3A, including its cellular and subcellular organization in the human brain. The issue is important, since UBE3A’s localization is integral to its function. Methods We used light and electron microscopic immunohistochemistry to study the cellular and subcellular distribution of UBE3A in the adult human cerebral cortex. Experiments were performed on multiple tissue sources, but our results focused on optimally preserved material, using surgically resected human temporal cortex of high ultrastructural quality from nine individuals. Results We demonstrate that UBE3A is expressed in both glutamatergic and GABAergic neurons, and to a lesser extent in glial cells. We find that UBE3A in neurons has a non-uniform subcellular distribution. In somata, UBE3A preferentially concentrates in euchromatin-rich domains within the nucleus. Electron microscopy reveals that labeling concentrates in the head and neck of dendritic spines and is excluded from the PSD. Strongest labeling within the neuropil was found in axon terminals. Conclusions By highlighting the subcellular compartments in which UBE3A is likely to function in the human neocortex, our data provide insight into the diverse functional capacities of this E3 ligase. These anatomical data may help to elucidate the role of UBE3A in Angelman syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Alain C Burette
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 314 Taylor Hall, Campus, Box 7545, Chapel Hill, NC 27599-7545 USA
| | - Matthew C Judson
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Alissa N Li
- 3Department of Neurology, University of California, San Francisco, CA USA.,4Department of Pathology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA USA
| | - Edward F Chang
- 5Department of Neurological Surgery, University of California, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112 USA
| | - William W Seeley
- 3Department of Neurology, University of California, San Francisco, CA USA.,4Department of Pathology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA USA
| | - Benjamin D Philpot
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA.,6Neuroscience Curriculum, Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Richard J Weinberg
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
19
|
Lee JA, Son HJ, Choi JW, Kim J, Han SH, Shin N, Kim JH, Kim SJ, Heo JY, Kim DJ, Park KD, Hwang O. Activation of the Nrf2 signaling pathway and neuroprotection of nigral dopaminergic neurons by a novel synthetic compound KMS99220. Neurochem Int 2017; 112:96-107. [PMID: 29158022 DOI: 10.1016/j.neuint.2017.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
The transcription factor Nrf2 is known to induce gene expression of antioxidant enzymes and proteasome subunits. Because both oxidative stress and protein aggregation have damaging effects on neurons, activation of the Nrf2 signaling should be beneficial against neurodegeneration. In this study, we report a novel synthetic morpholine-containing chalcone KMS99220 that confers neuroprotection. It showed high binding affinity to the Nrf2 inhibitory protein Keap-1 and increased nuclear translocation of Nrf2 and gene expression of the antioxidant enzymes heme oxygenase-1, NAD(P)H:quinone oxidoreductase-1, and the catalytic and modifier subunits of glutamate-cysteine ligase in dopaminergic CATH.a cells. KMS99220 also increased expression of the proteasome subunits PSMB5, PSMB7, PSMB8 and PSMA1, and the respective chymotrypsin and trypsin-like proteasomal enzyme activities, and reduced α-synuclein aggregate in GFP-α-syn A53T-overexpressing cells. KMS99220 exhibited a favorable pharmacokinetic profile with excellent bioavailability and metabolic stability, did not interfere with activities of the cytochrome p450 isotypes, and showed no apparent in vivo toxicity when administered up to 2000 mg/kg. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 prevented degeneration of the nigral dopaminergic neurons, induced the Nrf2 target genes, and effectively prevented the associated motor deficits. These results suggest KMS99220 as a potential candidate for therapy against Parkinson's disease.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jinwoo Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Se Hee Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Nari Shin
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ji Hyun Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Dong Jin Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, South Korea; Division of Bio-Med, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02792, South Korea.
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
20
|
Kim DW, Kwon J, Sim SJ, Lee D, Mar W. Orobol derivatives and extracts from Cudrania tricuspidata fruits protect against 6-hydroxydomamine-induced neuronal cell death by enhancing proteasome activity and the ubiquitin/proteasome-dependent degradation of α-synuclein and synphilin-1. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
21
|
Hong S, Kwon J, Kim DW, Lee HJ, Lee D, Mar W. Mulberrofuran G Protects Ischemic Injury-induced Cell Death via Inhibition of NOX4-mediated ROS Generation and ER Stress. Phytother Res 2016; 31:321-329. [DOI: 10.1002/ptr.5754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/19/2016] [Accepted: 11/07/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Sungeun Hong
- Natural Products Research Institute, College of Pharmacy; Seoul National University; Seoul 08826 Korea
| | - Jaeyoung Kwon
- Department of Biosystems and Biotechnology; Korea University; Seoul 02841 Korea
| | - Dong-Woo Kim
- Natural Products Research Institute, College of Pharmacy; Seoul National University; Seoul 08826 Korea
| | - Hak Ju Lee
- Division of Wood Chemistry and Microbiology, Department of Forest Products; Korea Forest Research Institute; Seoul 02455 Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology; Korea University; Seoul 02841 Korea
| | - Woongchon Mar
- Natural Products Research Institute, College of Pharmacy; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
22
|
Gray level co-occurrence matrix algorithm as pattern recognition biosensor for oxidopamine-induced changes in lymphocyte chromatin architecture. J Theor Biol 2016; 406:124-8. [DOI: 10.1016/j.jtbi.2016.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
|
23
|
Burette AC, Judson MC, Burette S, Phend KD, Philpot BD, Weinberg RJ. Subcellular organization of UBE3A in neurons. J Comp Neurol 2016; 525:233-251. [PMID: 27339004 DOI: 10.1002/cne.24063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/13/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
Ubiquitination regulates a broad array of cellular processes, and defective ubiquitination is implicated in several neurological disorders. Loss of the E3 ubiquitin-protein ligase UBE3A causes Angelman syndrome. Despite its clinical importance, the normal role of UBE3A in neurons is still unclear. As a step toward deciphering its possible functions, we performed high-resolution light and electron microscopic immunocytochemistry. We report a broad distribution of UBE3A in neurons, highlighted by concentrations in axon terminals and euchromatin-rich nuclear domains. Our findings suggest that UBE3A may act locally to regulate individual synapses while also mediating global, neuronwide influences through the regulation of gene transcription. J. Comp. Neurol. 525:233-251, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Matthew C Judson
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Susan Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kristen D Phend
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neurobiology Curriculum, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Richard J Weinberg
- Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
24
|
3,4-seco-28-Nor-oleanane triterpenes from Camellia japonica protect from neurotoxicity in a rotenone model of Parkinson's disease. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Islam MT, da Silva CB, de Alencar MVOB, Paz MFCJ, Almeida FRDC, Melo-Cavalcante AADC. Diterpenes: Advances in Neurobiological Drug Research. Phytother Res 2016; 30:915-28. [DOI: 10.1002/ptr.5609] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/10/2016] [Accepted: 02/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Md. Torequl Islam
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Pharmacy; Southern University Bangladesh; 22-Shahid Mirza Lane (E), Academic building-II, 1st floor, 739/A, Mehedibag Road, Mehedibag-4000 Chittagong Bangladesh
| | - Claucenira Bandeira da Silva
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Márcia Fernanda Correia Jardim Paz
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Fernanda Regina de Castro Almeida
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
| |
Collapse
|
26
|
Kim DW, Lee KT, Kwon J, Lee HJ, Lee D, Mar W. Neuroprotection against 6-OHDA-induced oxidative stress and apoptosis in SH-SY5Y cells by 5,7-Dihydroxychromone: Activation of the Nrf2/ARE pathway. Life Sci 2015; 130:25-30. [DOI: 10.1016/j.lfs.2015.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/28/2015] [Indexed: 01/31/2023]
|
27
|
Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC, Tsai CW. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction. Chem Biol Interact 2015; 225:40-6. [DOI: 10.1016/j.cbi.2014.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/25/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023]
|
28
|
Johnson WM, Yao C, Siedlak SL, Wang W, Zhu X, Caldwell GA, Wilson-Delfosse AL, Mieyal JJ, Chen SG. Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson's disease. Hum Mol Genet 2014; 24:1322-35. [PMID: 25355420 DOI: 10.1093/hmg/ddu542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic neurons. Although the etiology of PD remains incompletely understood, oxidative stress has been implicated as an important contributor in the development of PD. Oxidative stress can lead to oxidation and functional perturbation of proteins critical to neuronal survival. Glutaredoxin 1 (Grx1) is an evolutionally conserved antioxidant enzyme that repairs protein oxidation by reversing the oxidative modification of cysteine known as S-glutathionylation. We aimed to explore the regulatory role of Grx1 in PD. We first examined the levels of Grx1 in postmortem midbrain samples from PD patients, and observed that Grx1 content is decreased in PD, specifically within the dopaminergic neurons. We subsequently investigated the potential role of Grx1 deficiency in PD pathogenesis by examining the consequences of loss of the Caenorhabditis elegans Grx1 homolog in well-established worm models of familial PD caused by overexpression of pathogenic human LRRK2 mutants G2019S or R1441C. We found that loss of the Grx1 homolog led to significant exacerbation of the neurodegenerative phenotype in C. elegans overexpressing the human LRRK2 mutants. Re-expression in the dopaminergic neurons of the active, but not a catalytically inactive form of the Grx1 homolog rescued the exacerbated phenotype. Loss of the Grx1 homolog also exacerbated the neurodegenerative phenotype in other C. elegans models, including overexpression of human α-synuclein and overexpression of tyrosine hydroxylase (a model of sporadic PD). Therefore, our results reveal a novel neuroprotective role of glutaredoxin against dopaminergic neurodegeneration in models of familial and sporadic PD.
Collapse
Affiliation(s)
| | - Chen Yao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | | | - John J Mieyal
- Department of Pharmacology and Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, OH 44106, USA
| | - Shu G Chen
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA,
| |
Collapse
|
29
|
Virtualizing the p-ANAPL library: a step towards drug discovery from African medicinal plants. PLoS One 2014; 9:e90655. [PMID: 24599120 PMCID: PMC3944075 DOI: 10.1371/journal.pone.0090655] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Background Natural products play a key role in drug discovery programs, both serving as drugs and as templates for the synthesis of drugs, even though the quantities and availabilities of samples for screening are often limitted. Experimental approach A current collection of physical samples of > 500 compound derived from African medicinal plants aimed at screening for drug discovery has been made by donations from several researchers from across the continent to be directly available for drug discovery programs. A virtual library of 3D structures of compounds has been generated and Lipinski’s “Rule of Five” has been used to evaluate likely oral availability of the samples. Results A majority of the compound samples are made of flavonoids and about two thirds (2/3) are compliant to the “Rule of Five”. The pharmacological profiles of thirty six (36) selected compounds in the collection have been discussed. Conclusions and implications The p-ANAPL library is the largest physical collection of natural products derived from African medicinal plants directly available for screening purposes. The virtual library is also available and could be employed in virtual screening campaigns.
Collapse
|
30
|
EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson's disease. J Mol Neurosci 2014; 53:117-24. [PMID: 24390959 DOI: 10.1007/s12031-013-0208-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD.
Collapse
|