1
|
Cao G, Guo J, Yang K, Xu R, Jia X, Wang X. DCPIB Attenuates Ischemia-Reperfusion Injury by Regulating Microglial M1/M2 Polarization and Oxidative Stress. Neuroscience 2024; 551:119-131. [PMID: 38734301 DOI: 10.1016/j.neuroscience.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The inflammatory response plays an indispensable role in ischemia-reperfusion injury, the most significant of which is the inflammatory response caused by microglial polarization. Anti-inflammatory therapy is also an important remedial measure after failed vascular reconstruction. Maintaining the internal homeostasis of the brain is a crucial measure for suppressing the inflammatory response. The mechanism underlying the relationship between DCPIB, a selective blocker of volume-regulated anion channels (VRAC), and inflammation induced by cerebral ischemia-reperfusion injury is currently unclear. The purpose of this study was to investigate the relationship between DCPIB and microglial M1/M2 polarization-mediated inflammation after cerebral ischemia-reperfusion injury. C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO). DCPIB was administered by a lateral ventricular injection within 5 min after reperfusion. Behavioral assessments were conducted at 1, 3, and 7 days after tMCAO/R. Pathological injuries were evaluated using TTC assay, HE and Nissl staining, brain water content measurement, and immunofluorescence staining. The levels of inflammatory cytokines were analyzed using qPCR and ELISA. Additionally, the phenotypic variations of microglia were examined using immunofluorescence staining. In mouse tMCAO/R model, DCPIB administration markably reduced mortality, improved behavioral performance, and alleviated pathological injury. DCPIB treatment significantly inhibited the inflammatory response, promoted the conversion of M1 microglia to M2 microglia via the MAPK signaling pathway, and ultimately protected neurons from the microglia-mediated inflammatory response. In addition, DCPIB inhibited oxidative stress induced by cerebral ischemia-reperfusion injury. In conclusion, DCPIB attenuates cerebral ischemia-reperfusion injury by regulating microglial M1/M2 polarization and oxidative stress.
Collapse
Affiliation(s)
- Guihua Cao
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Guo
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Jadhav P, Karande M, Sarkar A, Sahu S, Sarmah D, Datta A, Chaudhary A, Kalia K, Sharma A, Wang X, Bhattacharya P. Glial Cells Response in Stroke. Cell Mol Neurobiol 2023; 43:99-113. [PMID: 35066715 DOI: 10.1007/s10571-021-01183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023]
Abstract
As the second-leading cause of death, stroke faces several challenges in terms of treatment because of the limited therapeutic interventions available. Previous studies primarily focused on metabolic and blood flow properties as a target for treating stroke, including recombinant tissue plasminogen activator and mechanical thrombectomy, which are the only USFDA approved therapies. These interventions have the limitation of a narrow therapeutic time window, the possibility of hemorrhagic complications, and the expertise required for performing these interventions. Thus, it is important to identify the contributing factors that exacerbate the ischemic outcome and to develop therapies targeting them for regulating cellular homeostasis, mainly neuronal survival and regeneration. Glial cells, primarily microglia, astrocytes, and oligodendrocytes, have been shown to have a crucial role in the prognosis of ischemic brain injury, contributing to inflammatory responses. They play a dual role in both the onset as well as resolution of the inflammatory responses. Understanding the different mechanisms driving these effects can aid in the development of therapeutic targets and further mitigate the damage caused. In this review, we summarize the functions of various glial cells and their contribution to stroke pathology. The review highlights the therapeutic options currently being explored and developed that primarily target glial cells and can be used as neuroprotective agents for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Poonam Jadhav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Mayuri Karande
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Abhishek Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Shubhrakanta Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Antra Chaudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Arvind Sharma
- Department of Neurology, Zydus Hospital, Ahmedabad, 380054, Gujarat, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Zhi Y, Liu J, Kuang P, Zhang X, Xu Z, Chen Y, Lin X, Wu X, Zhou P, Chen J. Novel DCPIB analogs as dual inhibitors of VRAC/TREK1 channels reduced cGAS-STING mediated interferon responses. Biochem Pharmacol 2022; 199:114988. [DOI: 10.1016/j.bcp.2022.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
|
5
|
Luo C, Zhou S, Yin S, Jian L, Luo P, Dong J, Liu E. Lipocalin-2 and Cerebral Stroke. Front Mol Neurosci 2022; 15:850849. [PMID: 35493318 PMCID: PMC9039332 DOI: 10.3389/fnmol.2022.850849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Stroke is a common and devastating disease with an escalating prevalence worldwide. The known secondary injuries after stroke include cell death, neuroinflammation, blood-brain barrier disruption, oxidative stress, iron dysregulation, and neurovascular unit dysfunction. Lipocalin-2 (LCN-2) is a neutrophil gelatinase-associated protein that influences diverse cellular processes during a stroke. The role of LCN-2 has been widely recognized in the peripheral system; however, recent findings have revealed that there are links between LCN-2 and secondary injury and diseases in the central nervous system. Novel roles of LCN-2 in neurons, microglia, astrocytes, and endothelial cells have also been demonstrated. Here, we review the evidence on the regulatory roles of LCN-2 in secondary injuries following a stroke from various perspectives and the pathological mechanisms involved in the modulation of stroke. Overall, our review suggests that LCN-2 is a promising target to promote a better understanding of the neuropathology of stroke.
Collapse
Affiliation(s)
- Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shi Yin
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lipeng Jian
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Pengren Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jigeng Dong
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Erheng Liu
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Wang Z, Li Y, Zeng Z, Guo S, Chen W, Luo Y. Leucine-rich repeat containing 8A contributes to the expansion of The potential role of leucine-rich repeat-containing protein 8A in central nervous system: current situation and prospect. Neuroscience 2022; 488:122-131. [PMID: 35276302 DOI: 10.1016/j.neuroscience.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Cell swelling usually initiates the regulatory volume decrease (RVD) process mediated mainly by volume-regulated anion channels (VRACs), which are formed by multiple different leucine-rich repeat-containing protein 8 (LRRC8) family members. VRAC currents have been widely recorded in astrocytes, neurons and microglia in the brain, and VRACs have been suggested to be involved in the important pathogenesis of cell swelling-related central nervous system (CNS) diseases, such as ischemic stroke, epilepsy and epileptogenesis, glioblastoma (GBM), and so on. Recently, the increasing studies started to focus on LRRC8A (SWELL1), an obligatory subunit of VRAC indentified in 2014, which may be the key target to regulate the VRAC functions. After cerebral ischemia, the swollen astrocytes, neurons and microglia can activate LRRC8A-dependent VRACs, which may respectively promote the release of excitatory amino acids (EAA), interaction with ionotropic glutamate receptors, and regulating inflammation, suggesting the pleiotropic roles of LRRC8A in swollen brain cells. For the treatment of cell swelling-related CNS diseases, specific targeting LRRC8A may be a superior strategy to inhibit swollen-induced VRAC hyperactivity without blocking the normal VRAC function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
7
|
Zuccolini P, Ferrera L, Remigante A, Picco C, Barbieri R, Bertelli S, Moran O, Gavazzo P, Pusch M. The VRAC blocker DCPIB directly gates the BK channels and increases intracellular Ca 2+ in Melanoma and Pancreatic Duct Adenocarcinoma (PDAC) cell lines. Br J Pharmacol 2022; 179:3452-3469. [PMID: 35102550 DOI: 10.1111/bph.15810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The Volume Regulated Anion Channel (VRAC) is known to be involved in different aspects of cancer cell behavior and response to therapies. For this reason, we investigated the effect of DCPIB, a presumably specific blocker of VRAC, in two types of cancer: pancreatic duct adenocarcinoma (PDAC) and melanoma. EXPERIMENTAL APPROACH For this investigation, we used patch-clamp electrophysiology, supported by Ca2+ imaging, gene expression analysis, docking simulation and mutagenesis. We employed two PDAC lines (Panc-1 and MiaPaCa-2), as well as a primary (IGR39) and a metastatic (IGR37) melanoma line. KEY RESULTS Surprisingly, DCPIB induced a dramatic increase of whole-cell currents in Panc-1, MiaPaca2 and IGR39, but not in IGR37 cells. The currents were mostly mediated by the KCa1.1 channel, commonly known as BK. We verified DCPIB activation of BK also in HEK293 cells transfected with the α subunit of the channel. Further experiments showed that in IGR39, and to a smaller degree also in Panc-1 cells, DCPIB induces a rapid Ca2+ influx. This, in turn, indirectly potentiates BK and, in IGR39 cells, additionally activates other Ca2+ -dependent channels. However, the Ca2+ influx is not required for BK activation by DCPIB: indeed, we found that the activation of BK by DCPIB involves the extracellular part of the protein and identified two residues crucial for binding. CONCLUSION AND IMPLICATIONS DCPIB directly targets BK channels and, in addition, can acutely increase intracellular Ca2+ . Our findings elongate the list of DCPIB effects that have to be taken into consideration for future development of DCPIB-based modulators of ion channels and other membrane proteins.
Collapse
Affiliation(s)
- Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Loretta Ferrera
- Institute of Biophysics, National Research Council, Genova, Italy.,U.O.C. Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | | | - Cristiana Picco
- Institute of Biophysics, National Research Council, Genova, Italy
| | | | - Sara Bertelli
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Oscar Moran
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| |
Collapse
|
8
|
Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's. Front Physiol 2022; 12:805148. [PMID: 35002778 PMCID: PMC8733619 DOI: 10.3389/fphys.2021.805148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this review article, we summarize their biophysical and structural properties as well as their physiological roles by comparing with each other on the basis of their molecular insights. We also point out unsolved important issues to be elucidated soon in the future.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan.,Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
9
|
GABAergic signaling by cells of the immune system: more the rule than the exception. Cell Mol Life Sci 2021; 78:5667-5679. [PMID: 34152447 PMCID: PMC8316187 DOI: 10.1007/s00018-021-03881-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.
Collapse
|
10
|
Choi H, Rohrbough JC, Nguyen HN, Dikalova A, Lamb FS. Oxidant-resistant LRRC8A/C anion channels support superoxide production by NADPH oxidase 1. J Physiol 2021; 599:3013-3036. [PMID: 33932953 DOI: 10.1113/jp281577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS LRRC8A-containing anion channels associate with NADPH oxidase 1 (Nox1) and regulate superoxide production and tumour necrosis factor-α (TNFα) signalling. Here we show that LRRC8C and 8D also co-immunoprecipitate with Nox1 in vascular smooth muscle cells. LRRC8C knockdown inhibited TNFα-induced O2 •- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation while LRRC8D knockdown enhanced NF-κB activation. Significant changes in LRRC8 isoform expression in human atherosclerosis and psoriasis suggest compensation for increased inflammation. The oxidant chloramine-T (ChlorT, 1 mM) weakly (∼25%) inhibited LRRC8C currents but potently (∼80%) inhibited LRRC8D currents. Substitution of the extracellular loop (EL1, EL2) domains of 8D into 8C conferred significantly stronger (69%) ChlorT-dependent inhibition. ChlorT exposure impaired subsequent current block by DCPIB, which occurs through interaction with EL1, further implicating external oxidation sites. LRRC8A/C channels most effectively sustain Nox1 activity at the plasma membrane. This may result from their ability to remain active in an oxidized microenvironment. ABSTRACT Tumour necrosis factor-α (TNFα) activates NADPH oxidase 1 (Nox1) in vascular smooth muscle cells (VSMCs), producing superoxide (O2 •- ) required for subsequent signalling. LRRC8 family proteins A-E comprise volume-regulated anion channels (VRACs). The required subunit LRRC8A physically associates with Nox1, and VRAC activity is required for Nox activity and the inflammatory response to TNFα. VRAC currents are modulated by oxidants, suggesting that channel oxidant sensitivity and proximity to Nox1 may play a physiologically relevant role. In VSMCs, LRRC8C knockdown (siRNA) recapitulated the effects of siLRRC8A, inhibiting TNFα-induced extracellular and endosomal O2 •- production, receptor endocytosis, nuclear factor-κB (NF-κB) activation and proliferation. In contrast, siLRRC8D potentiated NF-κB activation. Nox1 co-immunoprecipitated with 8C and 8D, and colocalized with 8D at the plasma membrane and in vesicles. We compared VRAC currents mediated by homomeric and heteromeric LRRC8C and LRRC8D channels expressed in HEK293 cells. The oxidant chloramine T (ChlorT, 1 mM) weakly inhibited 8C, but potently inhibited 8D currents. ChlorT exposure also impaired subsequent current block by the VRAC blocker DCPIB, implicating external sites of oxidation. Substitution of the 8D extracellular loop domains (EL1, EL2) into 8C conferred significantly stronger ChlorT-mediated inhibition of 8C currents. Our results suggest that LRRC8A/C channel activity can be effectively maintained in the oxidized microenvironment expected to result from Nox1 activation at the plasma membrane. Increased ratios of 8D:8C expression may potentially depress inflammatory responses to TNFα. LRRC8A/C channel downregulation represents a novel strategy to reduce TNFα-induced inflammation.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Davoli-Ferreira M, Thomson CA, McCoy KD. Microbiota and Microglia Interactions in ASD. Front Immunol 2021; 12:676255. [PMID: 34113350 PMCID: PMC8185464 DOI: 10.3389/fimmu.2021.676255] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental disorders, commonly characterized by the manifestation of specific behavioral abnormalities, such as stereotypic behaviors and deficits in social skills, including communication. Although the neurobiological basis for ASD has attracted attention in recent decades, the role of microglial cells, which are the main resident myeloid cell population in the brain, is still controversial and underexplored. Microglia play several fundamental roles in orchestrating brain development and homeostasis. As such, alterations in the intrinsic functions of these cells could be one of the driving forces responsible for the development of various neurodevelopmental disorders, including ASD. Microglia are highly sensitive to environmental cues. Amongst the environmental factors known to influence their intrinsic functions, the gut microbiota has emerged as a central player, controlling both microglial maturation and activation. Strikingly, there is now compelling data suggesting that the intestinal microbiota can play a causative role in driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis commonly reported in ASD patients, but therapies targeting the microbiome can markedly alleviate behavioral symptoms. Here we explore the emerging mechanisms by which altered microglial functions could contribute to several major etiological factors of ASD. We then demonstrate how pre- and postnatal environmental stimuli can modulate microglial cell phenotype and function, underpinning the notion that reciprocal interactions between microglia and intestinal microbes could play a crucial role in ASD aetiology.
Collapse
Affiliation(s)
- Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
LRRC8A-dependent volume-regulated anion channels contribute to ischemia-induced brain injury and glutamatergic input to hippocampal neurons. Exp Neurol 2020; 332:113391. [PMID: 32598930 DOI: 10.1016/j.expneurol.2020.113391] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Abstract
Volume-regulated anion channels (VRACs) are critically involved in regulating cell volume, and leucine-rich repeat-containing protein 8A (LRRC8A, SWELL1) is an obligatory subunit of VRACs. Cell swelling occurs early after brain ischemia, but it is unclear whether neuronal LRRC8a contributes to ischemia-induced glutamate release and brain injury. We found that Lrrc8a conditional knockout (Lrrc8a-cKO) mice produced by crossing NestinCre+/- with Lrrc8aflox+/+ mice died 7-8 weeks of age, indicating an essential role of neuronal LRRC8A for survival. Middle cerebral artery occlusion (MCAO) caused an early increase in LRRC8A protein levels in the hippocampus in wild-type (WT) mice. Whole-cell patch-clamp recording in brain slices revealed that oxygen-glucose deprivation significantly increased the amplitude of VRAC currents in hippocampal CA1 neurons in WT but not in Lrrc8a-cKO mice. Hypotonicity increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in hippocampal CA1 neurons in WT mice, and this was abolished by DCPIB, a VRAC blocker. But in Lrrc8a-cKO mice, hypotonic solution had no effect on the frequency of sEPSCs in these neurons. Furthermore, the brain infarct volume and neurological severity score induced by MCAO were significantly lower in Lrrc8a-cKO mice than in WT mice. In addition, MCAO-induced increases in cleaved caspase-3 and calpain activity, two biochemical markers of neuronal apoptosis and death, in brain tissues were significantly attenuated in Lrrc8a-cKO mice compared with WT mice. These new findings indicate that cerebral ischemia increases neuronal LRRC8A-dependent VRAC activity and that VRACs contribute to increased glutamatergic input to hippocampal neurons and brain injury caused by ischemic stroke.
Collapse
|
13
|
Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway. J Mol Neurosci 2020; 71:101-111. [PMID: 32557145 DOI: 10.1007/s12031-020-01630-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the effect of naringin in oxygen-glucose deprivation/reoxygenation (OGD/R) model and its mechanism. The target gene of naringin and the enriched pathways of the gene were searched and identified using bioinformatics analysis. Then OGD/R model was built using PC12 cells, after which the cells were treated with different concentrations of naringin. Subsequently, cell proliferation and apoptosis were evaluated by cell counting kit-8 (CCK-8) and flow cytometry assays, respectively. Meanwhile, the expression of NFKB1 in PC12 cells underwent OGD/R-induced injury was detected by qRT-PCR, while apoptosis-related and pathway-related proteins were checked by Western blot. DCF-DA kit was utilized to measure the level of ROS. Our results revealed that NFKB1, which was upregulated in MACO rats and OGD/R-treated PC12 cells, was a target gene of naringin. Naringin could alleviate OGD/R-induced injury via promoting the proliferation, and repressing the apoptosis of PC12 cells through regulating the expression of NFKB1 and apoptosis-associated proteins and ROS level. Besides, the depletion of NFKB1 was positive to cell proliferation but negative to cell apoptosis. Moreover, the depletion of NFKB1 enhanced the influences of naringin on cell proliferation and apoptosis as well as the expression of apoptosis-related proteins and ROS level. Western blotting indicated that both naringin treatment and depletion of NFKB1 could increase the expression of HIF-1α, p-AKT, and p-mTOR compared with OGD/R group. What's more, treatment by naringin and si-NFKB1 together could significantly increase these effects. Nevertheless, the expression of AKT and mTOR among each group was almost not changed. In conclusion, naringin could prevent the OGD/R-induced injury in PC12 cells in vitro by targeting NFKB1 and regulating HIF-1α/AKT/mTOR-signaling pathway, which might provide novel ideas for the therapy of cerebral ischemia-reperfusion (I/R) injury.
Collapse
|
14
|
LRRC8/VRAC channels exhibit a noncanonical permeability to glutathione, which modulates epithelial-to-mesenchymal transition (EMT). Cell Death Dis 2019; 10:925. [PMID: 31804464 PMCID: PMC6895240 DOI: 10.1038/s41419-019-2167-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
Volume-regulated anion channels (VRAC) are chloride channels activated in response to osmotic stress to regulate cellular volume and also participate in other cellular processes, including cell division and cell death. Recently, members of the LRRC8 family have been identified as the main contributors of VRAC conductance. LRRC8/VRAC is permeable to chloride ions but also exhibits significant permeability to various substrates that vary strongly in charge and size. In this study, we explored the intriguing ability of LRRC8/VRAC to transport glutathione (GSH), the major cellular reactive oxygen species (ROS) scavenger, and its involvement in epithelial-to-mesenchymal transition (EMT), a cellular process in which cellular oxidative status is a crucial step. First, in HEK293-WT cells, we showed that a hypotonic condition induced LRRC8/VRAC-dependent GSH conductance (PGSH/PCl of ~0.1) and a marked decrease in intracellular GSH content. GSH currents and GSH intracellular decrease were both inhibited by DCPIB, an inhibitor of LRRC8/VRAC, and were not observed in HEK293-LRRC8A KO cells. Then, we induced EMT by exposing renal proximal tubule epithelial cells to the pleiotropic growth factor TGFβ1, and we measured the contribution of LRRC8/VRAC in this process by measuring (i) EMT marker expression (assessed both at the gene and protein levels), (ii) cell morphology and (iii) the increase in migration ability. Interestingly, pharmacologic targeting of LRRC8/VRAC (DCPIB) or RNA interference-mediated inhibition (LRRC8A siRNA) attenuated the TGFβ1-induced EMT response by controlling GSH and ROS levels. Interestingly, TGFβ1 exposure triggered DCPIB-sensitive chloride conductance. These results suggest that LRRC8/VRAC, due to its native permeability to GSH and thus its ability to modulate ROS levels, plays a critical role in EMT and might contribute to other physiological and pathophysiological processes associated with oxidative stress.
Collapse
|
15
|
Tannins, novel inhibitors of the volume regulation and the volume-sensitive anion channel. EUROPEAN PHARMACEUTICAL JOURNAL 2019. [DOI: 10.2478/afpuc-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
The volume-sensitive outwardly rectifying anion channel (VSOR) is a key component of volume regulation system critical for cell survival in non-isosmotic conditions. The aim of the present study was to test the effects of four tannin extracts with defined compositions on cell volume regulation and VSOR. Preparation I (98% of hydrolysable tannins isolated from leaves of sumac Rhus typhina L.) and Preparation II (100% of hydrolysable tannins isolated from leaves of broadleaf plantain Plantago major L) completely and irreversibly abolished swelling-activated VSOR currents in HCT116 cells. Both preparations profoundly suppressed the volume regulation in thymocytes with half-maximal effects of 40.9 μg/ml and 12.3 μg/ml, respectively. The inhibition was more efficient at lower concentrations but reverted at higher doses due to possible non-specific membrane-permeabilizing activity. Preparations III and IV (54,7% and 54.3% of hydrolysable tannins isolated, respectively, from roots and aboveground parts of Fergana spurge Euphorbia ferganensis B.Fedtch) inhibited VSOR activity in a partially reversible manner and suppressed the volume regulation with substantially higher half-maximal doses of 270 and 278 μg/ml, respectively, with no secondary reversion at higher doses. Hydrolysable tannins represent a novel class of VSOR channel inhibitors with the capacity to suppress the cell volume regulation machinery.
Collapse
|
16
|
Jia X, Liu Y, Li X, Huo C, Li D, Xu R, Hou L, Wang X. Norcepharadione B attenuates H 2O 2-induced neuronal injury by upregulating cellular antioxidants and inhibiting volume-sensitive Cl - channel. Exp Biol Med (Maywood) 2019; 244:1463-1474. [PMID: 31583895 DOI: 10.1177/1535370219881358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress acts as an essential culprit factor in the development of stroke and Alzheimer’s disease. Norcepharadione B possesses various pharmacologic features as an extract obtained from Houttuynia cordata. Nevertheless, the anti-apoptotic and neuroprotective characteristics of norcepharadione B remain unclear. In this study, the neuronal protection effect provided by norcepharadione B against injury caused by hydrogen peroxide (H2O2) in HT22 cell as well as the fundamental mechanism was systematically explored. The neurotoxicity assays of hippocampal cells, which were co-cultured with H2O2, showed that norcepharadione B had the ability to insulate the toxicity induced by H2O2 with significant reduced cell apoptosis. Besides, norcepharadione B potentiated the activity of superoxide dismutase (SOD), increased the level of glutathione (GSH), and decreased malondialdehyde content. The H2O2-induced apoptotic protein Bax was suppressed, and the anti-apoptotic protein Bcl-2 was boosted by norcepharadione B. Norcepharadione B promoted Akt phosphorylation and further upregulated heme oxygenase (HO-1) in cells exposed to oxidative stress. However, the inductive effect of HO-1 by norcepharadione B was shut off via the PI3K/Akt inhibitor LY294002. Furthermore, 2-h incubation with H2O2 substantially increased cell volume in HT22 cells, while norcepharadione B effectively alleviated such effect by interrupting the activation of VSOR Cl− channel. Collectively, our data revealed protective properties of norcepharadione B in resisting oxidative stress induced by H2O2 through elevation of HO-1 in the dependence of PI3K/Akt and in inhibiting H2O2-induced cell swelling by VSOR Cl− channel obstruction in HT22 cells. Impact statement Norcepharadione B is an aporphine alkaloid compound extracted from Chinese herb Houttuynia cordata. It was well known for its anti-inflammatory, anti-cancer, and anti-platelet aggregation outcomes. Our study demonstrated that Norcepharadione B protected hippocampal neurons against oxidative stress and the resultant cell apoptosis upon H2O2 exposure. Meanwhile, Norcepharadione B also substantially reduced cell swelling induced by H2O2 via inhibiting VSOR Cl− channel in neurons. These findings uncovered the potential mechanisms of Norcepharadione B in protecting neuron apoptosis under oxidative stress and propose that Norcepharadione B may serve as a favorable herb medicine for restoring neuronal injury in the pathogenesis of stroke together with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Jia
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Dongtao Li
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
17
|
Binding of the protein ICln to α-integrin contributes to the activation of ICl swell current. Sci Rep 2019; 9:12195. [PMID: 31434921 PMCID: PMC6704128 DOI: 10.1038/s41598-019-48496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
IClswell is the chloride current induced by cell swelling, and plays a fundamental role in several biological processes, including the regulatory volume decrease (RVD). ICln is a highly conserved, ubiquitously expressed and multifunctional protein involved in the activation of IClswell. In platelets, ICln binds to the intracellular domain of the integrin αIIb chain, however, whether the ICln/integrin interaction plays a role in RVD is not known. Here we show that a direct molecular interaction between ICln and the integrin α-chain is not restricted to platelets and involves highly conserved amino acid motifs. Integrin α recruits ICln to the plasma membrane, thereby facilitating the activation of IClswell during hypotonicity. Perturbation of the ICln/integrin interaction prevents the transposition of ICln towards the cell surface and, in parallel, impedes the activation of IClswell. We suggest that the ICln/integrin interaction interface may represent a new molecular target enabling specific IClswell suppression in pathological conditions when this current is deregulated or plays a detrimental role.
Collapse
|
18
|
Huang S, Gong T, Zhang T, Wang X, Cheng Q, Li Y. Zhongfenggao Protects Brain Microvascular Endothelial Cells from Oxygen–Glucose Deprivation/Reoxygenation-Induced Injury by Angiogenesis. Biol Pharm Bull 2019; 42:222-230. [DOI: 10.1248/bpb.b18-00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shenghui Huang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine
- Department of Neurology, Affiliated Hospital of Gansu University of Chinese Medicine
- Institute of Integrative Medicine, Gansu University of Chinese Medicine
| | - Ting Gong
- Department of Encephalopathy, Gansu Provincial Hospital of Traditional Chinese Medicine
| | - Tengfei Zhang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine
| | - Xinfeng Wang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine
| | - Qianqian Cheng
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine
| | - Yanyi Li
- Department of Encephalopathy, Gansu Provincial Hospital of Traditional Chinese Medicine
| |
Collapse
|
19
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Jackson TC, Kotermanski SE, Kochanek PM, Jackson EK. Oxidative stress induces release of 2'-AMP from microglia. Brain Res 2018; 1706:101-109. [PMID: 30395838 DOI: 10.1016/j.brainres.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Microglia metabolize exogenous 2'-AMP and 3'-AMP (non-canonical nucleotides) to adenosine and exogenous 2'-AMP and 3'-AMP (via conversion to adenosine) inhibit the production of inflammatory cytokines by microglia. This suggests that if microglia release endogenous 2'-AMP and/or 3'-AMP in response to injurious stimuli, this would complete an autocrine/paracrine mechanism that attenuates the over-activation of microglia during brain injury. Here we investigated in microglia (and for comparison astrocytes and neurons) the effects of injurious stimuli on extracellular and intracellular levels of 2',3'-cAMP (2'-AMP and 3'-AMP precursor), 2'-AMP, and 3'-AMP. METHODS Experiments were conducted in primary cultures of rat microglia, astrocytes, and neurons. Cells were exposed to oxygen/glucose deprivation, iodoacetate plus 2,4-dinitrophenol (metabolic inhibitors), glutamate, or H2O2 for one hour, and extracellular and intracellular 2',3'-cAMP, 2'-AMP, and 3'-AMP were measured by UPLC-MS/MS. KEY RESULTS In microglia, H2O2 increased extracellular levels of 2'-AMP, but not 3'-AMP, by ∼16-fold (from 0.17 ± 0.11 to 2.78 ± 0.27 ng/106 cells; n = 13; mean ± SEM; P < 0.000005). H2O2 also induced oxidative changes in cellular proteins as detected by an increased number of carbonyl groups in protein side chains. In contrast, oxygen/glucose deprivation, metabolic inhibitors, or glutamate had no effect on either extracellular 2'-AMP or 3'-AMP levels. In astrocytes and neurons, none of the injurious stimuli increased extracellular 2'-AMP or 3'-AMP. CONCLUSIONS Oxidative stress (but not oxygen/glucose deprivation, energy deprivation, or excitotoxicity) induces microglia (but not astrocytes or neurons) to release 2'-AMP, but not 3'-AMP. The 2',3'-cAMP/2'-AMP/adenosine pathway mechanism may serve to prevent over-activation of microglia in response to oxidative stress.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Shawn E Kotermanski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Fujii Y, Maekawa S, Morita M. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels. Sci Rep 2017; 7:13115. [PMID: 29030562 PMCID: PMC5640625 DOI: 10.1038/s41598-017-13243-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/21/2017] [Indexed: 11/09/2022] Open
Abstract
Wave-like propagation of [Ca2+]i increases is a remarkable intercellular communication characteristic in astrocyte networks, intercalating neural circuits and vasculature. Mechanically-induced [Ca2+]i increases and their subsequent propagation to neighboring astrocytes in culture is a classical model of astrocyte calcium wave and is known to be mediated by gap junction and extracellular ATP, but the role of each pathway remains unclear. Pharmacologic analysis of time-dependent distribution of [Ca2+]i revealed three distinct [Ca2+]i increases, the largest being in stimulated cells independent of extracellular Ca2+ and inositol 1,4,5-trisphosphate-induced Ca2+ release. In addition, persistent [Ca2+]i increases were found to propagate rapidly via gap junctions in the proximal region, and transient [Ca2+]i increases were found to propagate slowly via extracellular ATP in the distal region. Simultaneous imaging of astrocyte [Ca2+]i and extracellular ATP, the latter of which was measured by an ATP sniffing cell, revealed that ATP was released within the proximal region by volume-regulated anion channel in a [Ca2+]i independent manner. This detailed analysis of a classical model is the first to address the different contributions of two major pathways of calcium waves, gap junctions and extracellular ATP.
Collapse
Affiliation(s)
- Yuki Fujii
- Kobe University Graduate School of Science, Department of Biology, Kobe, 657-8501, Japan
| | - Shohei Maekawa
- Kobe University Graduate School of Science, Department of Biology, Kobe, 657-8501, Japan
| | - Mitsuhiro Morita
- Kobe University Graduate School of Science, Department of Biology, Kobe, 657-8501, Japan.
| |
Collapse
|
22
|
Vilhardt F, Haslund‐Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol 2017; 174:1719-1732. [PMID: 26754582 PMCID: PMC5446583 DOI: 10.1111/bph.13426] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022] Open
Abstract
For many years, microglia, the resident CNS macrophages, have been considered only in the context of pathology, but microglia are also glial cells with important physiological functions. Microglia-derived oxidant production by NADPH oxidase (NOX2) is implicated in many CNS disorders. Oxidants do not stand alone, however, and are not always pernicious. We discuss in general terms, and where available in microglia, GSH synthesis and relation to cystine import and glutamate export, and the thioredoxin system as the most important antioxidative defence mechanism, and further, we discuss in the context of protein thiolation of target redox proteins the necessity for tightly localized, timed and confined oxidant production to work in concert with antioxidant proteins to promote redox signalling. NOX2-mediated redox signalling modulates the acquisition of the classical or alternative microglia activation phenotypes by regulating major transcriptional programs mediated through NF-κB and Nrf2, major regulators of the inflammatory and antioxidant response respectively. As both antioxidants and NOX-derived oxidants are co-secreted, in some instances redox signalling may extend to neighboring cells through modification of surface or cytosolic target proteins. We consider a role for microglia NOX-derived oxidants in paracrine modification of synaptic function through long term depression and in the communication with the adaptive immune system. There is little doubt that a continued foray into the functions of the antioxidant response in microglia will reveal antioxidant proteins as dynamic players in redox signalling, which in concert with NOX-derived oxidants fulfil important roles in the autocrine or paracrine regulation of essential enzymes or transcriptional programs. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
| | - J Haslund‐Vinding
- Institute of Cellular and Molecular MedicineCopenhagen UniversityCopenhagenDenmark
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - V Jaquet
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
23
|
Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin 2017; 38:445-458. [PMID: 28260801 DOI: 10.1038/aps.2016.162] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
When ischemic stroke occurs, oxygen and energy depletion triggers a cascade of events, including inflammatory responses, glutamate excitotoxicity, oxidative stress, and apoptosis that result in a profound brain injury. The inflammatory response contributes to secondary neuronal damage, which exerts a substantial impact on both acute ischemic injury and the chronic recovery of the brain function. Microglia are the resident immune cells in the brain that constantly monitor brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce both detrimental and neuroprotective mediators, and the balance of the two counteracting mediators determines the fate of injured neurons. The activation of microglia is defined as either classic (M1) or alternative (M2): M1 microglia secrete pro-inflammatory cytokines (TNFα, IL-23, IL-1β, IL-12, etc) and exacerbate neuronal injury, whereas the M2 phenotype promotes anti-inflammatory responses that are reparative. It has important translational value to regulate M1/M2 microglial activation to minimize the detrimental effects and/or maximize the protective role. Here, we discuss various regulators of microglia/macrophage activation and the interaction between microglia and neurons in the context of ischemic stroke.
Collapse
|
24
|
Choi H, Ettinger N, Rohrbough J, Dikalova A, Nguyen HN, Lamb FS. LRRC8A channels support TNFα-induced superoxide production by Nox1 which is required for receptor endocytosis. Free Radic Biol Med 2016; 101:413-423. [PMID: 27838438 PMCID: PMC5206799 DOI: 10.1016/j.freeradbiomed.2016.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022]
Abstract
Leucine Rich Repeat Containing 8A (LRRC8A) is a required component of volume-regulated anion channels (VRACs). In vascular smooth muscle cells, tumor necrosis factor-α (TNFα) activates VRAC via type 1 TNFα receptors (TNFR1), and this requires superoxide (O2•-) production by NADPH oxidase 1 (Nox1). VRAC inhibitors suppress the inflammatory response to TNFα by an unknown mechanism. We hypothesized that LRRC8A directly supports Nox1 activity, providing a link between VRAC current and inflammatory signaling. VRAC inhibition by 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) impaired NF-κB activation by TNFα. LRRC8A siRNA reduced the magnitude of VRAC and inhibited TNFα-induced NF-κB activation, iNOS and VCAM expression, and proliferation of VSMCs. Signaling steps disrupted by both siLRRC8A and DCPIB included; extracellular O2•- production by Nox1, c-Jun N-terminal kinase (JNK) phosphorylation and endocytosis of TNFR1. Extracellular superoxide dismutase, but not catalase, selectively inhibited TNFR1 endocytosis and JNK phosphorylation. Thus, O2•- is the critical extracellular oxidant for TNFR signal transduction. Reducing JNK expression (siJNK) increased extracellular O2•- suggesting that JNK provides important negative feedback regulation to Nox1 at the plasma membrane. LRRC8A co-localized by immunostaining, and co-immunoprecipitated with, both Nox1 and its p22phox subunit. LRRC8A is a component of the Nox1 signaling complex. It is required for extracellular O2•- production, which is in turn essential for TNFR1 endocytosis. These data are the first to provide a molecular mechanism for the potent anti-proliferative and anti-inflammatory effects of VRAC inhibition.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Nicholas Ettinger
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jeffrey Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Anna Dikalova
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
25
|
Zhu Q, Zhang Y, Liu Y, Cheng H, Wang J, Zhang Y, Rui Y, Li T. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2. PLoS One 2016; 11:e0149965. [PMID: 26918757 PMCID: PMC4769291 DOI: 10.1371/journal.pone.0149965] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/08/2016] [Indexed: 01/16/2023] Open
Abstract
Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury.
Collapse
Affiliation(s)
- Qiuzhen Zhu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yuefan Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yulan Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hao Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yue Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yaocheng Rui
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (TL); (YR)
| | - Tiejun Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (TL); (YR)
| |
Collapse
|
26
|
Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B. GABAergic signalling in the immune system. Acta Physiol (Oxf) 2015; 213:819-27. [PMID: 25677654 DOI: 10.1111/apha.12467] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter γ-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research.
Collapse
Affiliation(s)
- A. Barragan
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - J. M. Weidner
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - Z. Jin
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - E. R. Korpi
- Department of Pharmacology; Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Neurobiology and Ageing Programme; Life Sciences Institute; National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology; Singapore
| | - B. Birnir
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
27
|
Dang Y, Xu Y, Wu W, Li W, Sun Y, Yang J, Zhu Y, Zhang C. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB and ERK signaling pathways in BV2 cells. PLoS One 2014; 9:e102522. [PMID: 25115855 PMCID: PMC4130469 DOI: 10.1371/journal.pone.0102522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background and Objective Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra Moore. Recent studies have suggested that TET can reduce the inflammatory response in microglia, but the mechanisms remain unclear. The aim of this study is to investigate whether TET can inhibit lipopolysaccharide (LPS)-induced microglial activation and clarify its possible mechanisms. Study Design/Materials and Methods Cell viability assays and cell apoptosis assays were used to determine the working concentrations of TET. Then, BV2 cells were seeded and pretreated with TET for 2 h. LPS was then added and incubated for an additional 24 hours. qRT-PCR and ELISA were used to measure the mRNA or protein levels of IL1β and TNFα. Western blotting was utilized to quantify the expression of CD11b and cell signaling proteins. Results TET at optimal concentrations (0.1 µM, 0.5 µM or 1 µM) did not affect the cell viability. After TET pretreatment, the levels of IL1β and TNFα (both in transcription and translation) were significantly inhibited in a dose-dependent manner. Further studies indicated that phospho-p65, phospho-IKK, and phospho-ERK 1/2 expression were also suppressed by TET. Conclusions Our results indicate that TET can effectively suppress microglial activation and inhibit the production of IL1β and TNFα by regulating the NF-kB and ERK signaling pathways. Together with our previous studies, we suggest that TET would be a promising candidate to effectively suppress overactivated microglia and alleviate neurodegeneration in glaucoma.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yongsheng Xu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wentao Wu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weiyi Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yanran Sun
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- * E-mail: (YZ); (CZ)
| | - Chun Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
- * E-mail: (YZ); (CZ)
| |
Collapse
|
28
|
Burow P, Klapperstück M, Markwardt F. Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages. Pflugers Arch 2014; 467:1215-26. [PMID: 24965069 DOI: 10.1007/s00424-014-1561-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
We report the activation of outwardly rectifying anion currents by sphingosine-1-phosphate (S1P) in the murine macrophage cell line RAW 264.7. The S1P-induced current is mainly carried by anions, because the reversal potential of the current was shifted by replacement of extracellular Cl(-) by glutamate(-) but not when extracellular Na(+) was substituted by Tris(+). The inhibition of the current by hypertonic extracellular or hypotonic intracellular solution as well as the inhibitory effects of NPPB, tamoxifen, and glibenclamide indicates that the anion current is mediated by volume-regulated anion channels (VRAC). The S1P effect was blocked by intracellular GDPβS and W123, which points to signaling via the S1P receptor 1 (S1PR1) and G proteins. As cytochalasin D diminished the action of S1P, we conclude that the actin cytoskeleton is involved in the stimulation of VRAC. S1P and hypotonic extracellular solution induced secretion of ATP from the macrophages, which in both cases was blocked in a similar way by typical VRAC blockers. We suppose that the S1P-induced ATP secretion in macrophages via activation of VRAC constitutes a functional link between sphingolipid and purinergic signaling in essential processes such as inflammation and migration of leukocytes as well as phagocytosis and the killing of intracellular bacteria.
Collapse
Affiliation(s)
- Philipp Burow
- Julius Bernstein Institute for Physiology, Martin Luther University Halle, Magdeburger Str. 6, 06097, Halle/Saale, Germany
| | | | | |
Collapse
|
29
|
Yan K, Zhang R, Chen L, Chen F, Liu Y, Peng L, Sun H, Huang W, Sun C, Lv B, Li F, Cai Y, Tang Y, Zou Y, Du M, Qin L, Zhang H, Jiang X. Nitric oxide-mediated immunosuppressive effect of human amniotic membrane-derived mesenchymal stem cells on the viability and migration of microglia. Brain Res 2014; 1590:1-9. [PMID: 24909791 DOI: 10.1016/j.brainres.2014.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
Human amniotic membrane-derived mesenchymal stem cells (AMSCs) are considered a novel and promising source of stem cells for cell replacement-based therapy. Current research is mostly limited to investigating the cellular differentiation potential of AMSCs, while few have focused on their immunosuppressive properties. This study is aimed at exploring and evaluating the immunosuppressive effect of human AMSCs on the viability and migratory properties of microglia. We found, from results of cell viability assays, that AMSCs can reduce the activity of inflammatory cells by secreting nitric oxide (NO). Also, based on results from wound healing and transwell migration assays, we show that AMSCs can inhibit the migration of human microglia as well as the mouse microglial cell line BV2, suggesting that they have the ability to inhibit the recruitment of certain immune cells to injury sites. Furthermore, we found that NO contributes significantly to this inhibitory effect. Our study provides evidence that human AMSCs can have detrimental effects on the viability and migration of microglia, through secretion of NO. This mechanism may contribute to anti-inflammatory processes in the central nervous system.
Collapse
Affiliation(s)
- Ke Yan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China; Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lei Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Fanfan Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yi Liu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lingmei Peng
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Haitao Sun
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Weiyi Huang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Chengmei Sun
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Bingke Lv
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Feng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yingqian Cai
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yanping Tang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yuxi Zou
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Mouxuan Du
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lingsha Qin
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Xiaodan Jiang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|