1
|
Fuller JA, Burrell MH, Yee AG, Liyanagama K, Lipski J, Wickens JR, Hyland BI. Role of homeostatic feedback mechanisms in modulating methylphenidate actions on phasic dopamine signaling in the striatum of awake behaving rats. Prog Neurobiol 2019; 182:101681. [DOI: 10.1016/j.pneurobio.2019.101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
|
2
|
Harun R, Grassi CM, Munoz MJ, Wagner AK. Modeling Fast-scan Cyclic Voltammetry Data from Electrically Stimulated Dopamine Neurotransmission Data Using QNsim1.0. J Vis Exp 2017. [PMID: 28605373 DOI: 10.3791/55595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest. In vivo fast-scan cyclic voltammetry (FSCV) is a method that allows for selectively monitoring DA concentration changes with fine temporal and spatial resolution. This technique is commonly used in conjunction with electrical stimulations of ascending DAergic pathways to control the impulse flow of dopamine neurotransmission. Although the stimulated DA neurotransmission paradigm can produce robust DA responses with clear morphologies, making them amenable for kinetic analysis, there is still much debate on how to interpret the responses in terms of their DA release and clearance components. To address this concern, a quantitative neurobiological (QN) framework of stimulated DA neurotransmission was recently developed to realistically model the dynamics of DA release and reuptake over the course of a stimulated DA response. The foundations of this model are based on experimental data from stimulated DA neurotransmission and on principles of neurotransmission adopted from various lines of research. The QN model implements 12 parameters related to stimulated DA release and reuptake dynamics to model DA responses. This work describes how to simulate DA responses using QNsim1.0 and also details principles that have been implemented to systematically discern alterations in the stimulated dopamine release and reuptake dynamics.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Safar Center for Resuscitation Research, University of Pittsburgh;
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Safar Center for Resuscitation Research, University of Pittsburgh
| |
Collapse
|
3
|
Nora GJ, Harun R, Fine DF, Hutchison D, Grobart AC, Stezoski JP, Munoz MJ, Kochanek PM, Leak RK, Drabek T, Wagner AK. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment. J Neurochem 2017; 142:305-322. [PMID: 28445595 DOI: 10.1111/jnc.14058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/21/2023]
Abstract
Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (Vmax ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str Vmax in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions.
Collapse
Affiliation(s)
- Gerald J Nora
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rashed Harun
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David F Fine
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Hutchison
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Adam C Grobart
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason P Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Schwerdt HN, Kim MJ, Amemori S, Homma D, Yoshida T, Shimazu H, Yerramreddy H, Karasan E, Langer R, Graybiel AM, Cima MJ. Subcellular probes for neurochemical recording from multiple brain sites. LAB ON A CHIP 2017; 17:1104-1115. [PMID: 28233001 PMCID: PMC5572650 DOI: 10.1039/c6lc01398h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dysregulation of neurochemicals, in particular, dopamine, is epitomized in numerous debilitating disorders that impair normal movement and mood aspects of our everyday behavior. Neurochemical transmission is a neuron-specific process, and further exhibits region-specific signaling in the brain. Tools are needed to monitor the heterogeneous spatiotemporal dynamics of dopamine neurotransmission without compromising the physiological processes of the neuronal environment. We developed neurochemical probes that are ten times smaller than any existing dopamine sensor, based on the size of the entire implanted shaft and its sensing tip. The microfabricated probe occupies a spatial footprint (9 μm) coordinate with the average size of individual neuronal cells (∼10 μm). These cellular-scale probes were shown to reduce inflammatory response of the implanted brain tissue environment. The probes are further configured in the form of a microarray to permit electrochemical sampling of dopamine and other neurotransmitters at unprecedented spatial densities and distributions. Dopamine recording was performed concurrently from up to 16 sites in the striatum of rats, revealing a remarkable spatiotemporal contrast in dopamine transmission as well as site-specific pharmacological modulation. Collectively, the reported platform endeavors to enable high density mapping of the chemical messengers fundamentally involved in neuronal communication through the use of minimally invasive probes that help preserve the neuronal viability of the implant environment.
Collapse
Affiliation(s)
- Helen N Schwerdt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 76 Room 653G, Cambridge, MA 02139, USA. and McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Min Jung Kim
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daigo Homma
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hideki Shimazu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Harshita Yerramreddy
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ekin Karasan
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 76 Room 653G, Cambridge, MA 02139, USA. and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 76 Room 653G, Cambridge, MA 02139, USA. and Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Walters SH, Robbins EM, Michael AC. Kinetic Diversity of Striatal Dopamine: Evidence from a Novel Protocol for Voltammetry. ACS Chem Neurosci 2016; 7:662-7. [PMID: 26886408 DOI: 10.1021/acschemneuro.6b00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In vivo voltammetry reveals substantial diversity of dopamine kinetics in the rat striatum. To substantiate this kinetic diversity, we evaluate the temporal distortion of dopamine measurements arising from the diffusion-limited adsorption of dopamine to voltammetric microelectrodes. We validate two mathematical procedures for correcting adsorptive distortion, both of which substantiate that dopamine's apparent kinetic diversity is not an adsorption artifact.
Collapse
Affiliation(s)
- Seth H. Walters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Harun R, Hare KM, Brough EM, Munoz MJ, Grassi CM, Torres GE, Grace AA, Wagner AK. Fast-scan cyclic voltammetry demonstrates that L-DOPA produces dose-dependent, regionally selective bimodal effects on striatal dopamine kinetics in vivo. J Neurochem 2016; 136:1270-1283. [PMID: 26611352 PMCID: PMC4884169 DOI: 10.1111/jnc.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. L-DOPA was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-DOPA to augment striatal DA production are well known, little is actually known about how L-DOPA alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-DOPA administration (50 mg/kg carbidopa + 0, 100, and 250 mg/kg L-DOPA) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry in anesthetized rats. We demonstrate that L-DOPA enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR. In both regions, L-DOPA progressively attenuated reuptake kinetics, predominantly through a decrease in Vmax . These findings have important implications on understanding the pharmacodynamics of L-DOPA, which may be informative for understanding its therapeutic effects and also common side effects like L-DOPA-induced dyskinesias (LID). L-DOPA is commonly used to treat Parkinsonian symptoms, but little is known about how it affects presynaptic DA neurotransmission. Using in vivo fast-scan cyclic voltammetry, we show L-DOPA inhibits DA reuptake in a region-specific and dose-dependent manner, and L-DOPA has paradoxical effects on release. These findings may be important when considering mechanisms for L-DOPA's therapeutic benefits and adverse side-effects.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Kristin M Hare
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Brough
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biological Sciences, Carnegie Mellon University, Mellon College of Science, Pittsburgh, Pennsylvania, USA
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gonzalo E Torres
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|