1
|
Ball JD, Davies A, Gurung D, Mankoo A, Panerai R, Minhas JS, Robinson T, Beishon L. The effect of posture on the age dependence of neurovascular coupling. Physiol Rep 2024; 12:e70031. [PMID: 39218618 PMCID: PMC11366444 DOI: 10.14814/phy2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Previous studies report contradicting age-related neurovascular coupling (NVC). Few studies assess postural effects, but less investigate relationships between age and NVC within different postures. Therefore, this study investigated the effect of age on NVC in different postures with varying cognitive stimuli. Beat-to-beat blood pressure, heart rate and end-tidal carbon dioxide were assessed alongside middle and posterior cerebral artery velocities (MCAv and PCAv, respectively) using transcranial Doppler ultrasonography in 78 participants (31 young-, 23 middle- and 24 older-aged) with visuospatial (VST) and attention tasks (AT) in various postures at two timepoints (T2 and T3). Between-group significance testing utilized one-way analysis-of-variance (ANOVA) (Tukey post-hoc). Mixed three-way/one-way ANOVAs explored task, posture, and age interactions. Significant effects of posture on NVC were driven by a 3.8% increase from seated to supine. For AT, mean supine %MCAv increase was greatest in younger (5.44%) versus middle (0.12%) and older-age (0.09%) at T3 (p = 0.005). For VST, mean supine %PCAv increase was greatest at T2 and T3 in middle (10.99%/10.12%) and older-age (17.36%/17.26%) versus younger (9.44%/8.89%) (p = 0.004/p = 0.002). We identified significant age-related NVC effects with VST-induced hyperactivation. This may reflect age-related compensatory processes in supine. Further work is required, using complex stimuli while standing/walking, examining NVC, aging and falls.
Collapse
Affiliation(s)
- James D. Ball
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Aaron Davies
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Dewakar Gurung
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Alex Mankoo
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Ronney Panerai
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Jatinder S. Minhas
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Thompson Robinson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Lucy Beishon
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
2
|
Mendonça-Dos-Santos M, Gonçalves TCT, Falconi-Sobrinho LL, Dos Anjos-Garcia T, Matias I, de Oliveira RC, Dos Santos Sampaio MDF, Dos Santos Cardoso F, Dos Santos WF, Machado HR, Coimbra NC. GABAergic and glutamatergic inputs to the medulla oblongata and locus coeruleus noradrenergic pathways are critical for seizures and postictal antinociception neuromodulation. Sci Rep 2024; 14:4069. [PMID: 38374419 PMCID: PMC10876930 DOI: 10.1038/s41598-024-53744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.
Collapse
Affiliation(s)
- Marcelo Mendonça-Dos-Santos
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Paediatric Neurosurgery and Developmental Neuropathology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Thaís Cristina Teixeira Gonçalves
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Paediatric Neurosurgery and Developmental Neuropathology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ivair Matias
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Paediatric Neurosurgery and Developmental Neuropathology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern, Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Fabrízio Dos Santos Cardoso
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Wagner Ferreira Dos Santos
- Neurobiology and Venoms Laboratory, Department of Biology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Helio Rubens Machado
- Laboratory of Paediatric Neurosurgery and Developmental Neuropathology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Department of Surgery and Anatomy, Multiuser Centre of Neuroelectrophysiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Department of Surgery and Anatomy, Multiuser Centre of Neuroelectrophysiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
3
|
Tseng CT, Welch HF, Gi AL, Kang EM, Mamidi T, Pydimarri S, Ramesh K, Sandoval A, Ploski JE, Thorn CA. Frequency Specific Optogenetic Stimulation of the Locus Coeruleus Induces Task-Relevant Plasticity in the Motor Cortex. J Neurosci 2024; 44:e1528232023. [PMID: 38124020 PMCID: PMC10869157 DOI: 10.1523/jneurosci.1528-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Hailey F Welch
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Ashley L Gi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Erica Mina Kang
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Tanushree Mamidi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Sahiti Pydimarri
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Kritika Ramesh
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Alfredo Sandoval
- Department of Neurobiology, The University of Texas Medical Branch, Galveston 77555, Texas
| | - Jonathan E Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey 17033-0850, Pennsylvania
| | - Catherine A Thorn
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas,
| |
Collapse
|
4
|
Quintas C, Gonçalves J, Queiroz G. Involvement of P2Y 1, P2Y 6, A 1 and A 2A Receptors in the Purinergic Inhibition of NMDA-Evoked Noradrenaline Release in the Rat Brain Cortex. Cells 2023; 12:1690. [PMID: 37443726 PMCID: PMC10341078 DOI: 10.3390/cells12131690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.
Collapse
Affiliation(s)
| | - Jorge Gonçalves
- Mechanistic Pharmacology and Pharmacotherapy Unit, UCIBIO-i4HB, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.Q.); (G.Q.)
| | | |
Collapse
|
5
|
Luckey AM, Adcock K, Vanneste S. Peripheral nerve stimulation: A neuromodulation-based approach. Neurosci Biobehav Rev 2023; 149:105180. [PMID: 37059406 DOI: 10.1016/j.neubiorev.2023.105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Recent technological improvements have positioned us at the threshold of innovative discoveries that will assist in new perspectives and avenues of research. Increased attention has been directed towards peripheral nerve stimulation, particularly of the vagus, trigeminal, or greater occipital nerve, due to their unique pathway that engages neural circuits within networks involved in higher cognitive processes. Here, we question whether the effects of transcutaneous electrical stimulation are mediated by synergistic interactions of multiple neuromodulatory networks, considering this pathway is shared by more than one neuromodulatory system. By spotlighting this attractive transcutaneous pathway, this opinion piece aims to acknowledge the contributions of four vital neuromodulators and prompt researchers to consider them in future investigations or explanations.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Katherine Adcock
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Mercan D, Heneka MT. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer's Disease. BIOLOGY 2022; 11:1822. [PMID: 36552331 PMCID: PMC9775634 DOI: 10.3390/biology11121822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), which is characterized by extracellular accumulation of amyloid-beta peptide and intracellular aggregation of hyperphosphorylated tau, is the most common form of dementia. Memory loss, cognitive decline and disorientation are the ultimate consequences of neuronal death, synapse loss and neuroinflammation in AD. In general, there are many brain regions affected but neuronal loss in the locus coeruleus (LC) is one of the earliest indicators of neurodegeneration in AD. Since the LC is the main source of noradrenaline (NA) in the brain, degeneration of the LC in AD leads to decreased NA levels, causing increased neuroinflammation, enhanced amyloid and tau burden, decreased phagocytosis and impairment in cognition and long-term synaptic plasticity. In this review, we summarized current findings on the locus coeruleus-noradrenaline system and consequences of its dysfunction which is now recognized as an important contributor to AD progression.
Collapse
Affiliation(s)
- Dilek Mercan
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Thomas Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
8
|
Treviño M, Medina-Coss Y León R, Lezama E. Response Time Distributions and the Accumulation of Visual Evidence in Freely Moving Mice. Neuroscience 2022; 501:25-41. [PMID: 35995337 DOI: 10.1016/j.neuroscience.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Response time (RT) distributions are histograms of the observed RTs for discriminative choices, comprising a rich source of empirical information to study perceptual processes. The drift-diffusion model (DDM), a mathematical formulation predicting decision tasks, reproduces the RT distributions, contributing to our understanding of these processes from a theoretical perspective. Notably, although the mouse is a popular model system for studying brain function and behavior, little is known about mouse perceptual RT distributions, and their description from an information-accumulation perspective. We combined an automated visual discrimination task with pharmacological micro-infusions of targeted brain regions to acquire thousands of responses from freely-moving adult mice. Both choices and escape latencies showed a strong dependency on stimulus discriminability. By applying a DDM fit to our experimental data, we found that the rate of incoming evidence (drift rate) increased with stimulus contrast but was reversibly impaired when inactivating the primary visual cortex (V1). Other brain regions involved in the decision-making process, the posterior parietal cortex (PPC) and the frontal orienting fields (FOF), also influenced relevant parameters from the DDM. The large number of empirical observations that we collected for this study allowed us to achieve accurate convergence for the model fit. Therefore, changes in the experimental conditions were mirrored by changes in model parameters, suggesting the participation of relevant brain areas in the decision-making process. This approach could help interpret future studies involving attention, discrimination, and learning in adult mice.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Ricardo Medina-Coss Y León
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Simmons Cancer Institute at Southern Illinois University, USA
| | - Elí Lezama
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
9
|
Konjusha A, Colzato L, Ghin F, Stock A, Beste C. Auricular transcutaneous vagus nerve stimulation for alcohol use disorder: A chance to improve treatment? Addict Biol 2022; 27:e13202. [DOI: 10.1111/adb.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
- Biopsychology, Faculty of Psychology TU Dresden Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| |
Collapse
|
10
|
Gilbert JR, Wusinich C, Zarate CA. A Predictive Coding Framework for Understanding Major Depression. Front Hum Neurosci 2022; 16:787495. [PMID: 35308621 PMCID: PMC8927302 DOI: 10.3389/fnhum.2022.787495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Predictive coding models of brain processing propose that top-down cortical signals promote efficient neural signaling by carrying predictions about incoming sensory information. These "priors" serve to constrain bottom-up signal propagation where prediction errors are carried via feedforward mechanisms. Depression, traditionally viewed as a disorder characterized by negative cognitive biases, is associated with disrupted reward prediction error encoding and signaling. Accumulating evidence also suggests that depression is characterized by impaired local and long-range prediction signaling across multiple sensory domains. This review highlights the electrophysiological and neuroimaging evidence for disrupted predictive processing in depression. The discussion is framed around the manner in which disrupted generative predictions about the sensorium could lead to depressive symptomatology, including anhedonia and negative bias. In particular, the review focuses on studies of sensory deviance detection and reward processing, highlighting research evidence for both disrupted generative predictions and prediction error signaling in depression. The role of the monoaminergic and glutamatergic systems in predictive coding processes is also discussed. This review provides a novel framework for understanding depression using predictive coding principles and establishes a foundational roadmap for potential future research.
Collapse
Affiliation(s)
- Jessica R. Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
11
|
Balanced expression of G protein-coupled receptor subtypes in the mouse, macaque, and human cerebral cortex. Neuroscience 2022; 487:107-119. [DOI: 10.1016/j.neuroscience.2022.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
|
12
|
Joshi S, Gold JI. Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex. eLife 2022; 11:63490. [PMID: 34994344 PMCID: PMC8765756 DOI: 10.7554/elife.63490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2021] [Indexed: 01/30/2023] Open
Abstract
Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here, we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when ongoing (baseline) LC activity increases but enhanced when external events evoke transient LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
13
|
Foucault C, Meyniel F. Gated recurrence enables simple and accurate sequence prediction in stochastic, changing, and structured environments. eLife 2021; 10:71801. [PMID: 34854377 PMCID: PMC8735865 DOI: 10.7554/elife.71801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
From decision making to perception to language, predicting what is coming next is crucial. It is also challenging in stochastic, changing, and structured environments; yet the brain makes accurate predictions in many situations. What computational architecture could enable this feat? Bayesian inference makes optimal predictions but is prohibitively difficult to compute. Here, we show that a specific recurrent neural network architecture enables simple and accurate solutions in several environments. This architecture relies on three mechanisms: gating, lateral connections, and recurrent weight training. Like the optimal solution and the human brain, such networks develop internal representations of their changing environment (including estimates of the environment’s latent variables and the precision of these estimates), leverage multiple levels of latent structure, and adapt their effective learning rate to changes without changing their connection weights. Being ubiquitous in the brain, gated recurrence could therefore serve as a generic building block to predict in real-life environments.
Collapse
Affiliation(s)
- Cédric Foucault
- INSERM, CEA, Université Paris-Saclay, Gif sur Yvette, France
| | | |
Collapse
|
14
|
Tseng CT, Gaulding SJ, Dancel CLE, Thorn CA. Local activation of α2 adrenergic receptors is required for vagus nerve stimulation induced motor cortical plasticity. Sci Rep 2021; 11:21645. [PMID: 34737352 PMCID: PMC8568982 DOI: 10.1038/s41598-021-00976-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Solomon J Gaulding
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Canice Lei E Dancel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
15
|
Transcutaneous vagus nerve stimulation in patients with attention-deficit/hyperactivity disorder: A viable option? PROGRESS IN BRAIN RESEARCH 2021; 264:171-190. [PMID: 34167655 DOI: 10.1016/bs.pbr.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals with attention-deficit/hyperactivity disorder (ADHD) suffer from a range of cognitive and behavioral problems that severely impair their educational and occupational attainment. ADHD symptoms have been linked to structural and functional changes within and between different brain regions, particularly the prefrontal cortex. At the system level, reduced availability of the neurotransmitters dopamine (DA) and norepinephrine (NE) but also γ-aminobutyric acid (GABA) have been repeatedly demonstrated. Recently, non-invasive brain stimulation (NIBS) techniques have been explored as treatment alternatives to alter dysfunctional activation patterns in specified brain areas or networks. In the current paper, we introduce transcutaneous vagus nerve stimulation (tVNS) as a systemic approach to directly affect NE and GABA neurotransmission. TVNS is a non-drug intervention with low risk and proven efficacy in improving cognitive particularly executive functions. It is easy to apply and therefore well-suited to provide home-based or mobile treatment options allowing a significant increase in treatment intensity and providing easier access to medical care for individuals who are unable to regularly visit a clinician. We describe in detail the underlying mechanisms of tVNS and current fields of application and discuss its potential as an adjuvant treatment for ADHD.
Collapse
|
16
|
Mather M. How Do Cognitively Stimulating Activities Affect Cognition and the Brain Throughout Life? Psychol Sci Public Interest 2021; 21:1-5. [PMID: 32772802 DOI: 10.1177/1529100620941808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology and Department of Psychology, University of Southern California
| |
Collapse
|
17
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
18
|
Durán E, Yang M, Neves R, Logothetis NK, Eschenko O. Modulation of Prefrontal Cortex Slow Oscillations by Phasic Activation of the Locus Coeruleus. Neuroscience 2021; 453:268-279. [PMID: 33419514 DOI: 10.1016/j.neuroscience.2020.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Cortical slow rhythmic activity, a hallmark of deep sleep, is observed under urethane anesthesia. Synchronized fluctuations of the membrane excitability of a large neuronal population are reflected in the extracellular Local Field Potential (LFP), as high-amplitude slow (∼1 Hz) oscillations (SO). The SO-phase indicates the presence (Up) or absence (Down) of neuronal spiking. The cortical state is controlled by the input from thalamic and neuromodulatory centers, including the brainstem noradrenergic nucleus Locus Coeruleus (LC). The bidirectional modulation of neuronal excitability by noradrenaline (NA) is well known. We have previously shown that LC phasic activation caused transient excitability increase in the medial prefrontal cortex (mPFC). In the present study, we characterized the effect of LC phasic activation on the prefrontal population dynamics at a temporal scale of a single SO cycle. We applied short (0.2 s) trains of electric pulses (0.02-0.05 mA at 20-50 Hz) to the LC cell bodies and monitored a broadband (0.1 Hz-8 kHz) mPFC LFP in urethane-anesthetized rats. The direct electrical stimulation of LC (LC-DES), applied during the Up-phase, enhanced the firing probability in the mPFC by ∼20% and substantially prolonged Up-states in 56% of trials. The LC-DES applied during Down-phase caused a rapid Down-to-Up transition in 81.5% of trials. The LC-DES was more effective at a higher frequency, but not at a higher current. Our results suggest that transient NA release, coupled to SO, may promote synaptic plasticity and memory consolidation by sustaining a depolarized state in the mPFC neurons.
Collapse
Affiliation(s)
- Ernesto Durán
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Mingyu Yang
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Ricardo Neves
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, M13 9PT Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| |
Collapse
|
19
|
Münchau A, Colzato LS, AghajaniAfjedi A, Beste C. A neural noise account of Gilles de la Tourette syndrome. NEUROIMAGE-CLINICAL 2021; 30:102654. [PMID: 33839644 PMCID: PMC8055711 DOI: 10.1016/j.nicl.2021.102654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
A neural noise account on Tourette syndrome is conceptualized. We outline how neurophysiological methods can be used to test this account. The neural noise account may lead to novel treatment options.
Tics, often preceded by premonitory urges, are the clinical hallmark of Tourette syndrome. They resemble spontaneous movements, but are exaggerated, repetitive and appear misplaced in a given communication context. Given that tics often go unnoticed, it has been suggested that they represent a surplus of action, or motor noise. In this conceptual position paper, we propose that tics and urges, but also patterns of the cognitive profile in Tourette syndrome might be explained by the principle of processing of neural noise and adaptation to it during information processing. We review evidence for this notion in the light of Tourette pathophysiology and outline why neurophysiological and imaging approaches are central to examine a possibly novel view on Tourette syndrome. We discuss how neurophysiological data at multiple levels of inspections, i.e., from local field potentials using intra-cranial recording to scalp-measured EEG data, in combination with imaging approaches, can be used to examine the neural noise account in Tourette syndrome. We outline what signal processing methods may be suitable for that. We argue that, as a starting point, the analysis of 1/f neural noise or scale-free activity may be suitable to investigate the role of neural noise and its adaptation during information processing in Tourette syndrome. We outline, how the neural noise perspective, if substantiated by further neurophysiological studies and re-analyses of existing data, may pave the way to novel interventions directly targeting neural noise levels and patterns in Tourette syndrome.
Collapse
Affiliation(s)
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany; Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Azam AghajaniAfjedi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021; 15:645691. [PMID: 33716677 PMCID: PMC7947346 DOI: 10.3389/fncel.2021.645691] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Noradrenaline is a major neuromodulator in the central nervous system (CNS). It is released from varicosities on neuronal efferents, which originate principally from the main noradrenergic nuclei of the brain - the locus coeruleus - and spread throughout the parenchyma. Noradrenaline is released in response to various stimuli and has complex physiological effects, in large part due to the wide diversity of noradrenergic receptors expressed in the brain, which trigger diverse signaling pathways. In general, however, its main effect on CNS function appears to be to increase arousal state. Although the effects of noradrenaline have been researched extensively, the majority of studies have assumed that noradrenaline exerts its effects by acting directly on neurons. However, neurons are not the only cells in the CNS expressing noradrenaline receptors. Astrocytes are responsive to a range of neuromodulators - including noradrenaline. In fact, noradrenaline evokes robust calcium transients in astrocytes across brain regions, through activation of α1-adrenoreceptors. Crucially, astrocytes ensheath neurons at synapses and are known to modulate synaptic activity. Hence, astrocytes are in a key position to relay, or amplify, the effects of noradrenaline on neurons, most notably by modulating inhibitory transmission. Based on a critical appraisal of the current literature, we use this review to argue that a better understanding of astrocyte-mediated noradrenaline signaling is therefore essential, if we are ever to fully understand CNS function. We discuss the emerging concept of astrocyte heterogeneity and speculate on how this might impact the noradrenergic modulation of neuronal circuits. Finally, we outline possible experimental strategies to clearly delineate the role(s) of astrocytes in noradrenergic signaling, and neuromodulation in general, highlighting the urgent need for more specific and flexible experimental tools.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
21
|
de Lafuente V. Memory Consolidation during Sleep Might be Regulated by the Locus Coeruleus. Neuroscience 2021; 453:266-267. [PMID: 33419513 DOI: 10.1016/j.neuroscience.2020.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO. 76230, México.
| |
Collapse
|
22
|
Dubois M, Habicht J, Michely J, Moran R, Dolan RJ, Hauser TU. Human complex exploration strategies are enriched by noradrenaline-modulated heuristics. eLife 2021; 10:e59907. [PMID: 33393461 PMCID: PMC7815309 DOI: 10.7554/elife.59907] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/03/2021] [Indexed: 01/15/2023] Open
Abstract
An exploration-exploitation trade-off, the arbitration between sampling a lesser-known against a known rich option, is thought to be solved using computationally demanding exploration algorithms. Given known limitations in human cognitive resources, we hypothesised the presence of additional cheaper strategies. We examined for such heuristics in choice behaviour where we show this involves a value-free random exploration, that ignores all prior knowledge, and a novelty exploration that targets novel options alone. In a double-blind, placebo-controlled drug study, assessing contributions of dopamine (400 mg amisulpride) and noradrenaline (40 mg propranolol), we show that value-free random exploration is attenuated under the influence of propranolol, but not under amisulpride. Our findings demonstrate that humans deploy distinct computationally cheap exploration strategies and that value-free random exploration is under noradrenergic control.
Collapse
Affiliation(s)
- Magda Dubois
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Johanna Habicht
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Jochen Michely
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Rani Moran
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Ray J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
23
|
Tsunoda K, Sato AY, Mizuyama R, Shimegi S. Noradrenaline modulates neuronal and perceptual visual detectability via β-adrenergic receptor. Psychopharmacology (Berl) 2021; 238:3615-3627. [PMID: 34546404 PMCID: PMC8629798 DOI: 10.1007/s00213-021-05980-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Noradrenaline (NA) is a neuromodulator secreted from noradrenergic neurons in the locus coeruleus to the whole brain depending on the physiological state and behavioral context. It regulates various brain functions including vision via three major adrenergic receptor (AR) subtypes. Previous studies investigating the noradrenergic modulations on vision reported different effects, including improvement and impairment of perceptual visual sensitivity in rodents via β-AR, an AR subtype. Therefore, it remains unknown how NA affects perceptual visual sensitivity via β-AR and what neuronal mechanisms underlie it. OBJECTIVES The current study investigated the noradrenergic modulation of perceptual and neuronal visual sensitivity via β-AR in the primary visual cortex (V1). METHODS We performed extracellular multi-point recordings from V1 of rats performing a go/no-go visual detection task under the head-fixed condition. A β-AR blocker, propranolol (10 mM), was topically administered onto the V1 surface, and the drug effect on behavioral and neuronal activities was quantified by comparing pre-and post-drug administration. RESULTS The topical administration of propranolol onto the V1 surface significantly improved the task performance. An analysis of the multi-unit activity in V1 showed that propranolol significantly suppressed spontaneous activity and facilitated the visual response of the recording sites in V1. We further calculated the signal-to-noise ratio (SNR), finding that the SNR was significantly improved after propranolol administration. CONCLUSIONS Pharmacological blockade of β-AR in V1 improves perceptual visual detectability by modifying the SNR of neuronal activity.
Collapse
Affiliation(s)
- Keisuke Tsunoda
- grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka Japan ,grid.258799.80000 0004 0372 2033Present Address: Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Y. Sato
- grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka Japan ,grid.27476.300000 0001 0943 978XPresent Address: Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ryo Mizuyama
- grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, Japan. .,Laboratory of Brain Information Science in Sports, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
24
|
Mattera A, Pagani M, Baldassarre G. A Computational Model Integrating Multiple Phenomena on Cued Fear Conditioning, Extinction, and Reinstatement. Front Syst Neurosci 2020; 14:569108. [PMID: 33132856 PMCID: PMC7550679 DOI: 10.3389/fnsys.2020.569108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Conditioning, extinction, and reinstatement are fundamental learning processes of animal adaptation, also strongly involved in human pathologies such as post-traumatic stress disorder, anxiety, depression, and dependencies. Cued fear conditioning, extinction, restatement, and systematic manipulations of the underlying brain amygdala and medial prefrontal cortex, represent key experimental paradigms to study such processes. Numerous empirical studies have revealed several aspects and the neural systems and plasticity underlying them, but at the moment we lack a comprehensive view. Here we propose a computational model based on firing rate leaky units that contributes to such integration by accounting for 25 different experiments on fear conditioning, extinction, and restatement, on the basis of a single neural architecture having a structure and plasticity grounded in known brain biology. This allows the model to furnish three novel contributions to understand these open issues: (a) the functioning of the central and lateral amygdala system supporting conditioning; (b) the role played by the endocannabinoids system in within- and between-session extinction; (c) the formation of three important types of neurons underlying fear processing, namely fear, extinction, and persistent neurons. The model integration of the results on fear conditioning goes substantially beyond what was done in previous models.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
25
|
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020; 14:581075. [PMID: 33192327 PMCID: PMC7554522 DOI: 10.3389/fncel.2020.581075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
27
|
Gaucher Q, Yger P, Edeline JM. Increasing excitation versus decreasing inhibition in auditory cortex: consequences on the discrimination performance between communication sounds. J Physiol 2020; 598:3765-3785. [PMID: 32538485 DOI: 10.1113/jp279902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Enhancing cortical excitability can be achieved by either reducing intracortical inhibition or by enhancing intracortical excitation. Here we compare the consequences of reducing intracortical inhibition and of enhancing intracortical excitation on the processing of communication sounds in the primary auditory cortex. Local application of gabazine and of AMPA enlarged the spectrotemporal receptive fields and increased the responses to communication to the same extent. The Mutual Information (an index of the cortical neurons' ability to discriminate between natural sounds) was increased in both cases, as were the noise and signal correlations. Spike-timing reliability was only increased after gabazine application and post-excitation suppression was affected in the opposite way: it was increased when reducing the intracortical inhibition but was eliminated by enhancing the excitation. A computational model suggests that these results can be explained by an additive effect vs. a multiplicative effect ABSTRACT: The level of excitability of cortical circuits is often viewed as one of the critical factors controlling perceptive performance. In theory, enhancing cortical excitability can be achieved either by reducing inhibitory currents or by increasing excitatory currents. Here, we evaluated whether reducing inhibitory currents or increasing excitatory currents in auditory cortex similarly affects the neurons' ability to discriminate between communication sounds. We attenuated the inhibitory currents by application of gabazine (GBZ), and increased the excitatory currents by applying AMPA in the auditory cortex while testing frequency receptive fields and responses to communication sounds. GBZ and AMPA enlarged the receptive fields and increased the responses to communication sounds to the same extent. The spike-timing reliability of neuronal responses was largely increased when attenuating the intracortical inhibition but not after increasing the excitation. The discriminative abilities of cortical cells increased in both cases but this increase was more pronounced after attenuating the inhibition. The shape of the response to communication sounds was modified in the opposite direction: reducing inhibition increased post-excitation suppression whereas this suppression tended to disappear when increasing the excitation. A computational model indicates that the additive effect promoted by AMPA vs. the multiplicative effect of GBZ on neuronal responses, together with the dynamics of spontaneous cortical activity, can explain these differences. Thus, although apparently equivalent for increasing cortical excitability, acting on inhibition vs. on excitation impacts differently the cortical ability to discriminate natural stimuli, and only modulating inhibition changed efficiently the cortical representation of communication sounds.
Collapse
Affiliation(s)
- Quentin Gaucher
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), Department Cognition and Behaviour, CNRS UMR 9197, Orsay Cedex, 91405, France.,Université Paris-Sud, Bâtiment 446, Orsay Cedex, 91405, France
| | - Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), Department Cognition and Behaviour, CNRS UMR 9197, Orsay Cedex, 91405, France.,Université Paris-Sud, Bâtiment 446, Orsay Cedex, 91405, France
| |
Collapse
|
28
|
Brain dynamics for confidence-weighted learning. PLoS Comput Biol 2020; 16:e1007935. [PMID: 32484806 PMCID: PMC7292419 DOI: 10.1371/journal.pcbi.1007935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/12/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Learning in a changing, uncertain environment is a difficult problem. A popular solution is to predict future observations and then use surprising outcomes to update those predictions. However, humans also have a sense of confidence that characterizes the precision of their predictions. Bayesian models use a confidence-weighting principle to regulate learning: for a given surprise, the update is smaller when the confidence about the prediction was higher. Prior behavioral evidence indicates that human learning adheres to this confidence-weighting principle. Here, we explored the human brain dynamics sub-tending the confidence-weighting of learning using magneto-encephalography (MEG). During our volatile probability learning task, subjects’ confidence reports conformed with Bayesian inference. MEG revealed several stimulus-evoked brain responses whose amplitude reflected surprise, and some of them were further shaped by confidence: surprise amplified the stimulus-evoked response whereas confidence dampened it. Confidence about predictions also modulated several aspects of the brain state: pupil-linked arousal and beta-range (15–30 Hz) oscillations. The brain state in turn modulated specific stimulus-evoked surprise responses following the confidence-weighting principle. Our results thus indicate that there exist, in the human brain, signals reflecting surprise that are dampened by confidence in a way that is appropriate for learning according to Bayesian inference. They also suggest a mechanism for confidence-weighted learning: confidence about predictions would modulate intrinsic properties of the brain state to amplify or dampen surprise responses evoked by discrepant observations. Learning in a changing and uncertain world is difficult. In this context, facing a discrepancy between my current belief and new observations may reflect random fluctuations (e.g. my commute train is unexpectedly late, but it happens sometimes), if so, I should ignore this discrepancy and not change erratically my belief. However, this discrepancy could also denote a profound change (e.g. the train company changed and is less reliable), in this case, I should promptly revise my current belief. Human learning is adaptive: we change how much we learn from new observations, in particular, we promote flexibility when facing profound changes. A mathematical analysis of the problem shows that we should increase flexibility when the confidence about our current belief is low, which occurs when a change is suspected. Here, I show that human learners entertain rational confidence levels during the learning of changing probabilities. This confidence modulates intrinsic properties of the brain state (oscillatory activity and neuromodulation) which in turn amplifies or reduces, depending on whether confidence is low or high, the neural responses to discrepant observations. This confidence-weighting mechanism could underpin adaptive learning.
Collapse
|
29
|
Saganuwan SA. Chemistry and Effects of Brainstem Acting Drugs. Cent Nerv Syst Agents Med Chem 2020; 19:180-186. [PMID: 31223094 DOI: 10.2174/1871524919666190620164355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Brain is the most sensitive organ, whereas brainstem is the most important part of Central Nervous System (CNS). It connects the brain and the spinal cord. However, a myriad of drugs and chemicals affects CNS with severe resultant effects on the brainstem. METHODS In view of this, a number of literature were assessed for information on the most sensitive part of brain, drugs and chemicals that act on the brainstem and clinical benefit and risk assessment of such drugs and chemicals. RESULTS Findings have shown that brainstem regulates heartbeat, respiration and because it connects the brain and spinal cord, all the drugs that act on the spinal cord may overall affect the systems controlled by the spinal cord and brain. The message is sent and received by temporal lobe, occipital lobe, frontal lobe, parietal lobe and cerebellum. CONCLUSION Hence, the chemical functional groups of the brainstem and drugs acting on brainstem are complementary, and may produce either stimulation or depression of CNS.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, P.M.B. 2373, Makurdi, Benue State, Nigeria
| |
Collapse
|
30
|
Colzato L, Beste C. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. J Neurophysiol 2020; 123:1739-1755. [PMID: 32208895 DOI: 10.1152/jn.00057.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain stimulation approaches are important to gain causal mechanistic insights into the relevance of functional brain regions and/or neurophysiological systems for human cognitive functions. In recent years, transcutaneous vagus nerve stimulation (tVNS) has attracted considerable popularity. It is a noninvasive brain stimulation technique based on the stimulation of the vagus nerve. The stimulation of this nerve activates subcortical nuclei, such as the locus coeruleus and the nucleus of the solitary tract, and from there, the activation propagates to the cortex. Since tVNS is a novel stimulation technique, this literature review outlines a brief historical background of tVNS, before detailing underlying neurophysiological mechanisms of action, stimulation parameters, cognitive effects of tVNS on healthy humans, and, lastly, current challenges and future directions of tVNS research in cognitive functions. Although more research is needed, we conclude that tVNS, by increasing norepineprine (NE) and gamma-aminobutyric acid (GABA) levels, affects NE- and GABA-related cognitive performance. The review provides detailed background information how to use tVNS as a neuromodulatory tool in cognitive neuroscience and outlines important future leads of research on tVNS.
Collapse
Affiliation(s)
- Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
31
|
Mathee K, Cickovski T, Deoraj A, Stollstorff M, Narasimhan G. The gut microbiome and neuropsychiatric disorders: implications for attention deficit hyperactivity disorder (ADHD). J Med Microbiol 2020; 69:14-24. [PMID: 31821133 PMCID: PMC7440676 DOI: 10.1099/jmm.0.001112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as depression, anxiety, bipolar disorder, autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) all relate to behavioural, cognitive and emotional disturbances that are ultimately rooted in disordered brain function. More specifically, these disorders are linked to various neuromodulators (i.e. serotonin and dopamine), as well as dysfunction in both cognitive and socio-affective brain networks. Increasing evidence suggests that the gut environment, and particularly the microbiome, plays a significant role in individual mental health. Although the presence of a gut-brain communication axis has long been established, recent studies argue that the development and regulation of this axis is dictated by the gut microbiome. Many studies involving both animals and humans have connected the gut microbiome with depression, anxiety and ASD. Microbiome-centred treatments for individuals with these same NPDs have yielded promising results. Despite its recent rise and underlying similarities to other NPDs, both biochemically and symptomatically, connections between the gut microbiome and ADHD currently lag behind those for other NPDs. We demonstrate that all evidence points to the importance of, and dire need for, a comprehensive and in-depth analysis of the role of the gut microbiome in ADHD, to deepen our understanding of a condition that affects millions of individuals worldwide.
Collapse
Affiliation(s)
- Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Trevor Cickovski
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Florida, USA
| | - Alok Deoraj
- Department of Environmental and Occupational Health, Robert Stempel College of Public Health and Social Work, Florida International University, Florida, USA
| | - Melanie Stollstorff
- Department of Psychology, College of Arts, Science and Education, Florida International University, Florida, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Florida, USA
| |
Collapse
|
32
|
van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019; 13:340. [PMID: 31649516 PMCID: PMC6794422 DOI: 10.3389/fnhum.2019.00340] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson's disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distil a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically inspired biomarkers and individualized treatments of these disorders.
Collapse
Affiliation(s)
- R. L. van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, Amsterdam, Netherlands
| |
Collapse
|
33
|
McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev 2019; 105:190-199. [PMID: 31260703 PMCID: PMC6742544 DOI: 10.1016/j.neubiorev.2019.06.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022]
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is involved in many brain functions and neurological disorders. In this review we discuss how LC-NE signaling affects the activity of cortical and subcortical sensory neurons, and how it influences perception-driven behaviors associated with mammalian somatosensory, visual, auditory, and olfactory systems. We summarize the consistent as well as seemingly inconsistent findings across brain areas and sensory modalities and propose a framework to understand these phenomena from the perspective of adrenergic receptor expression, dose-dependent physiology and excitation-inhibition balance. We also discuss potential future research directions in this field.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Schicknick H, Henschke JU, Budinger E, Ohl FW, Gundelfinger ED, Tischmeyer W. β-adrenergic modulation of discrimination learning and memory in the auditory cortex. Eur J Neurosci 2019; 50:3141-3163. [PMID: 31162753 PMCID: PMC6900137 DOI: 10.1111/ejn.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
Abstract
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.
Collapse
Affiliation(s)
- Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
35
|
Treviño M, Medina-Coss Y León R, Lezama E. Adrenergic Modulation of Visually-Guided Behavior. Front Synaptic Neurosci 2019; 11:9. [PMID: 30949042 PMCID: PMC6435528 DOI: 10.3389/fnsyn.2019.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022] Open
Abstract
Iontophoretic application of norepinephrine (NE) into the primary visual cortex (V1) in vivo reduces spontaneous and evoked activity, without changing the functional selectivity of cortical units. One possible consequence of this phenomenon is that adrenergic receptors (ARs) regulate the signal-to-noise ratio (SNR) of neural responses in this circuit. However, despite such strong inhibitory action of NE on neuronal firing patterns in V1, its specific action on visual behavior has not been studied. Furthermore, the majority of observations regarding cortical NE from in vivo recordings have been performed in anesthetized animals and have not been tested behaviorally. Here, we describe how micro-infusion of AR agonists/antagonists into mouse V1 influences visually-guided behavior at different contrasts and spatial frequencies. We found that cortical activation of α1- and β-AR produced a substantial reduction in visual discrimination performance at high contrasts and low spatial frequencies, consistent with a divisive effect. This reduction was reversible and was accompanied by a rise in escape latencies as well as an increase in the group averaged choice variance as a function of stimulus contrast. We conclude that pharmacological activation of cortical AR regulates visual perception and adaptive behavior through a divisive gain control of visual responses.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, México
| | - Ricardo Medina-Coss Y León
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, México
| | - Elí Lezama
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
36
|
Heilbron M, Meyniel F. Confidence resets reveal hierarchical adaptive learning in humans. PLoS Comput Biol 2019; 15:e1006972. [PMID: 30964861 PMCID: PMC6474633 DOI: 10.1371/journal.pcbi.1006972] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/19/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Hierarchical processing is pervasive in the brain, but its computational significance for learning under uncertainty is disputed. On the one hand, hierarchical models provide an optimal framework and are becoming increasingly popular to study cognition. On the other hand, non-hierarchical (flat) models remain influential and can learn efficiently, even in uncertain and changing environments. Here, we show that previously proposed hallmarks of hierarchical learning, which relied on reports of learned quantities or choices in simple experiments, are insufficient to categorically distinguish hierarchical from flat models. Instead, we present a novel test which leverages a more complex task, whose hierarchical structure allows generalization between different statistics tracked in parallel. We use reports of confidence to quantitatively and qualitatively arbitrate between the two accounts of learning. Our results support the hierarchical learning framework, and demonstrate how confidence can be a useful metric in learning theory.
Collapse
Affiliation(s)
- Micha Heilbron
- Cognitive Neuroimaging Unit / NeuroSpin center / Institute for Life Sciences Frédéric Joliot / Fundamental Research Division / Commissariat à l'Energie Atomique et aux énergies alternatives; INSERM, Université Paris-Sud; Université Paris-Saclay; Gif-sur-Yvette, France
| | - Florent Meyniel
- Cognitive Neuroimaging Unit / NeuroSpin center / Institute for Life Sciences Frédéric Joliot / Fundamental Research Division / Commissariat à l'Energie Atomique et aux énergies alternatives; INSERM, Université Paris-Sud; Université Paris-Saclay; Gif-sur-Yvette, France
| |
Collapse
|
37
|
Bar El Y, Kanner S, Barzilai A, Hanein Y. Activity changes in neuron-astrocyte networks in culture under the effect of norepinephrine. PLoS One 2018; 13:e0203761. [PMID: 30332429 PMCID: PMC6192555 DOI: 10.1371/journal.pone.0203761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022] Open
Abstract
The concerted activity of neuron-glia networks is responsible for the fascinating dynamics of brain functions. Although these networks have been extensively investigated using a variety of experimental (in vivo and in vitro) and theoretical models, the manner by which neuron-glia networks interact is not fully understood. In particular, how neuromodulators influence network-level signaling between neurons and astrocytes was poorly addressed. In this work, we investigated global effects of the neuromodulator norepinephrine (NE) on neuron-astrocyte network communication in co-cultures of neurons and astrocytes and in isolated astrocyte networks. Electrical stimulation was used to activate the neuron-astrocyte glutamate-mediated pathway. Our results showed dramatic changes in network activity under applied global perturbations. Under neuromodulation, there was a marked rise in calcium signaling in astrocytes, neuronal spontaneous activity was reduced, and the communication between neuron-astrocyte networks was perturbed. Moreover, in the presence of NE, we observed two astrocyte behaviors based on their coupling to neurons. There were also morphological changes in astrocytes upon application of NE, suggesting a physical cause underlies the change in signaling. Our results shed light on the role of NE in controlling sleep-wake cycles.
Collapse
Affiliation(s)
- Yasmin Bar El
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
38
|
Adelhöfer N, Gohil K, Passow S, Teufert B, Roessner V, Li SC, Beste C. The system-neurophysiological basis for how methylphenidate modulates perceptual-attentional conflicts during auditory processing. Hum Brain Mapp 2018; 39:5050-5061. [PMID: 30133058 DOI: 10.1002/hbm.24344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
The ability to selectively perceive and flexibly attend to relevant sensory signals in the environment is essential for action control. Whereas neuromodulation of sensory or attentional processing is often investigated, neuromodulation of interactive effects between perception and attention, that is, high attentional control demand when the relevant sensory information is perceptually less salient than the irrelevant one, is not well understood. To fill this gap, this pharmacological-electroencephalogram (EEG) study applied an intensity-modulated, focused-attention dichotic listening paradigm together with temporal EEG signal decomposition and source localization analyses. We used a double-blind MPH/placebo crossover design to delineate the effects of methylphenidate (MPH)-a dopamine/norepinephrine transporter blocker-on the resolution of perceptual-attentional conflicts, when perceptual saliency and attentional focus favor opposing ears, in healthy young adults. We show that MPH increased behavioral performance specifically in the condition with the most pronounced conflict between perceptual saliency and attentional focus. On the neurophysiological level, MPH effects in line with the behavioral data were observed after accounting for intraindividual variability in the signal. More specifically, MPH did not show an effect on stimulus-related processes but modulated the onset latency of processes between stimulus evaluation and responding. These modulations were further shown to be associated with activation differences in the temporoparietal junction (BA40) and the superior parietal cortex (BA7) and may reflect neuronal gain modulation principles. The findings provide mechanistic insights into the role of modulated dopamine/norepinephrine transmitter systems for the interactions between perception and attention.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Krutika Gohil
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Susanne Passow
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Benjamin Teufert
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| |
Collapse
|
39
|
Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines. J Neurosci 2018; 38:7476-7491. [PMID: 30037827 PMCID: PMC6104304 DOI: 10.1523/jneurosci.0514-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brainwide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of fMRI measurements performed in humans (19 females, 5 males) at “rest” under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes: α1 norepinephrine receptors (for the fluctuation pattern: placebo > atomoxetine), D2-like dopamine receptors (pattern: atomoxetine > placebo), and β norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics. SIGNIFICANCE STATEMENT The catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogeneous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brainwide fMRI signals at “rest.” We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics.
Collapse
|
40
|
Stitt I, Zhou ZC, Radtke-Schuller S, Fröhlich F. Arousal dependent modulation of thalamo-cortical functional interaction. Nat Commun 2018; 9:2455. [PMID: 29941957 PMCID: PMC6018110 DOI: 10.1038/s41467-018-04785-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/27/2018] [Indexed: 01/20/2023] Open
Abstract
Ongoing changes in arousal influence sensory processing and behavioral performance. Yet the circuit-level correlates for this influence remain poorly understood. Here, we investigate how functional interaction between posterior parietal cortex (PPC) and lateral posterior (LP)/Pulvinar is influenced by ongoing fluctuations in pupil-linked arousal, which is a non-invasive measure of neuromodulatory tone in the brain. We find that fluctuations in pupil-linked arousal correlate with changes to PPC to LP/Pulvinar oscillatory interaction, with cortical alpha oscillations driving activity during low arousal states, and LP/Pulvinar driving PPC in the theta frequency band during higher arousal states. Active visual exploration by saccadic eye movements elicits similar transitions in thalamo-cortical interaction. Furthermore, the presentation of naturalistic video stimuli induces thalamo-cortical network states closely resembling epochs of high arousal in the absence of visual input. Thus, neuromodulators may play a role in dynamically sculpting the patterns of thalamo-cortical functional interaction that underlie visual processing.
Collapse
Affiliation(s)
- Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
41
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
42
|
Nieus T, D'Andrea V, Amin H, Di Marco S, Safaai H, Maccione A, Berdondini L, Panzeri S. State-dependent representation of stimulus-evoked activity in high-density recordings of neural cultures. Sci Rep 2018; 8:5578. [PMID: 29615719 PMCID: PMC5882875 DOI: 10.1038/s41598-018-23853-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
Neuronal responses to external stimuli vary from trial to trial partly because they depend on continuous spontaneous variations of the state of neural circuits, reflected in variations of ongoing activity prior to stimulus presentation. Understanding how post-stimulus responses relate to the pre-stimulus spontaneous activity is thus important to understand how state dependence affects information processing and neural coding, and how state variations can be discounted to better decode single-trial neural responses. Here we exploited high-resolution CMOS electrode arrays to record simultaneously from thousands of electrodes in in-vitro cultures stimulated at specific sites. We used information-theoretic analyses to study how ongoing activity affects the information that neuronal responses carry about the location of the stimuli. We found that responses exhibited state dependence on the time between the last spontaneous burst and the stimulus presentation and that the dependence could be described with a linear model. Importantly, we found that a small number of selected neurons carry most of the stimulus information and contribute to the state-dependent information gain. This suggests that a major value of large-scale recording is that it individuates the small subset of neurons that carry most information and that benefit the most from knowledge of its state dependence.
Collapse
Affiliation(s)
- Thierry Nieus
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy. .,Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Milano, Italy.
| | - Valeria D'Andrea
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Hayder Amin
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Di Marco
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy.,Scienze cliniche applicate e biotecnologiche, Università dell'Aquila, L'Aquila, Italy
| | - Houman Safaai
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Department of Neurobiology, Harvard Medical School, 02115, Boston, Massachusetts, USA
| | - Alessandro Maccione
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Berdondini
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
43
|
Larsen RS, Waters J. Neuromodulatory Correlates of Pupil Dilation. Front Neural Circuits 2018; 12:21. [PMID: 29593504 PMCID: PMC5854659 DOI: 10.3389/fncir.2018.00021] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/26/2018] [Indexed: 01/20/2023] Open
Abstract
Pupillometry has long been used as a measure of brain state. Changes in pupil diameter are thought to coincide with the activity of neuromodulators, including noradrenaline and acetylcholine, producing alterations in the brain state and corresponding changes in behavior. Here we review mechanisms underlying the control of pupil diameter and how these mechanisms are correlated with changes in cortical activity and the recruitment of neuromodulatory circuits.
Collapse
Affiliation(s)
- Rylan S Larsen
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, United States
| |
Collapse
|
44
|
Pfeffer T, Avramiea AE, Nolte G, Engel AK, Linkenkaer-Hansen K, Donner TH. Catecholamines alter the intrinsic variability of cortical population activity and perception. PLoS Biol 2018; 16:e2003453. [PMID: 29420565 PMCID: PMC5821404 DOI: 10.1371/journal.pbio.2003453] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/21/2018] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
The ascending modulatory systems of the brain stem are powerful regulators of global brain state. Disturbances of these systems are implicated in several major neuropsychiatric disorders. Yet, how these systems interact with specific neural computations in the cerebral cortex to shape perception, cognition, and behavior remains poorly understood. Here, we probed into the effect of two such systems, the catecholaminergic (dopaminergic and noradrenergic) and cholinergic systems, on an important aspect of cortical computation: its intrinsic variability. To this end, we combined placebo-controlled pharmacological intervention in humans, recordings of cortical population activity using magnetoencephalography (MEG), and psychophysical measurements of the perception of ambiguous visual input. A low-dose catecholaminergic, but not cholinergic, manipulation altered the rate of spontaneous perceptual fluctuations as well as the temporal structure of "scale-free" population activity of large swaths of the visual and parietal cortices. Computational analyses indicate that both effects were consistent with an increase in excitatory relative to inhibitory activity in the cortical areas underlying visual perceptual inference. We propose that catecholamines regulate the variability of perception and cognition through dynamically changing the cortical excitation-inhibition ratio. The combined readout of fluctuations in perception and cortical activity we established here may prove useful as an efficient and easily accessible marker of altered cortical computation in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arthur-Ervin Avramiea
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Linkenkaer-Hansen
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Tobias H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Wolff N, Mückschel M, Ziemssen T, Beste C. The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas. Brain Struct Funct 2017; 223:925-940. [DOI: 10.1007/s00429-017-1531-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023]
|
46
|
Lee V, Pawlisch BA, Macedo-Lima M, Remage-Healey L. Norepinephrine enhances song responsiveness and encoding in the auditory forebrain of male zebra finches. J Neurophysiol 2017; 119:209-220. [PMID: 29021389 DOI: 10.1152/jn.00251.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Norepinephrine (NE) can dynamically modulate excitability and functional connectivity of neural circuits in response to changes in external and internal states. Regulation by NE has been demonstrated extensively in mammalian sensory cortices, but whether NE-dependent modulation in sensory cortex alters response properties in downstream sensorimotor regions is less clear. Here we examine this question in male zebra finches, a songbird species with complex vocalizations and a well-defined neural network for auditory processing of those vocalizations. We test the hypothesis that NE modulates auditory processing and encoding, using paired extracellular electrophysiology recordings and pattern classifier analyses. We report that a NE infusion into the auditory cortical region NCM (caudomedial nidopallium; analogous to mammalian secondary auditory cortex) enhances the auditory responses, burst firing, and coding properties of single NCM neurons. Furthermore, we report that NE-dependent changes in NCM coding properties, but not auditory response strength, are transmitted downstream to the sensorimotor nucleus HVC. Finally, NE modulation in the NCM of males is qualitatively similar to that observed in females: in both sexes, NE increases auditory response strengths. However, we observed a sex difference in the mechanism of enhancement: whereas NE increases response strength in females by decreasing baseline firing rates, NE increases response strength in males by increasing auditory-evoked activity. Therefore, NE signaling exhibits a compensatory sex difference to achieve a similar, state-dependent enhancement in signal-to-noise ratio and coding accuracy in males and females. In summary, our results provide further evidence for adrenergic regulation of sensory processing and modulation of auditory/sensorimotor functional connectivity. NEW & NOTEWORTHY This study documents that the catecholamine norepinephrine (also known as noradrenaline) acts in the auditory cortex to shape local processing of complex sound stimuli. Moreover, it also enhances the coding accuracy of neurons in the auditory cortex as well as in the downstream sensorimotor cortex. Finally, this study shows that while the sensory-enhancing effects of norepinephrine are similar in males and females, there are sex differences in the mode of action.
Collapse
Affiliation(s)
- Vanessa Lee
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts
| | - Benjamin A Pawlisch
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts.,Neuroscience and Behavior Program, University of Massachusetts Amherst, Massachusetts
| | - Matheus Macedo-Lima
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts.,Neuroscience and Behavior Program, University of Massachusetts Amherst, Massachusetts.,CAPES Foundation, Ministry of Education of Brazil , Brasilia , Brazil
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Massachusetts.,Psychological and Brain Sciences, University of Massachusetts Amherst, Massachusetts.,Neuroscience and Behavior Program, University of Massachusetts Amherst, Massachusetts
| |
Collapse
|
47
|
Hylin MJ, Brenneman MM, Corwin JV. Noradrenergic antagonists mitigate amphetamine-induced recovery. Behav Brain Res 2017; 334:61-71. [PMID: 28756213 DOI: 10.1016/j.bbr.2017.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Brain injury, including that due to stroke, leaves individuals with cognitive deficits that can disrupt daily aspect of living. As of now there are few treatments that shown limited amounts of success in improving functional outcome. The use of stimulants such as amphetamine have shown some success in improving outcome following brain injury. While the pharmacological mechanisms for amphetamine are known; the specific processes responsible for improving behavioral outcome following injury remain unknown. Understanding these mechanisms can help to refine the use of amphetamine as a potential treatment or lead to the use of other methods that share the same pharmacological properties. One proposed mechanism is amphetamine's impact upon noradrenaline (NA). In the current, study noradrenergic antagonists were administered prior to amphetamine to pharmacologically block α- and β-adrenergic receptors. The results demonstrated that the blockade of these receptors disrupted amphetamines ability to induce recovery from hemispatial neglect using an established aspiration lesion model. This suggests that amphetamine's ability to ameliorate neglect deficits may be due in part to noradrenaline. These results further support the role of noradrenaline in functional recovery. Finally, the development of polytherapies and combined therapeutics, while promising, may need to consider the possibility that drug interactions can negate the effectiveness of treatment.
Collapse
Affiliation(s)
- M J Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, United States.
| | - M M Brenneman
- Department of Psychology, Coastal Carolina University, P.O. Box 261954, Conway, SC, United States
| | - J V Corwin
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
48
|
Amygdalar Gating of Early Sensory Processing through Interactions with Locus Coeruleus. J Neurosci 2017; 37:3085-3101. [PMID: 28188216 DOI: 10.1523/jneurosci.2797-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/18/2016] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
Abstract
Fear- and stress-induced activity in the amygdala has been hypothesized to influence sensory brain regions through the influence of the amygdala on neuromodulatory centers. To directly examine this relationship, we used optical imaging to observe odor-evoked activity in populations of olfactory bulb inhibitory interneurons and of synaptic terminals of olfactory sensory neurons (the primary sensory neurons of the olfactory system, which provide the initial olfactory input to the brain) during pharmacological inactivation of amygdala and locus coeruleus (LC) in mice. Although the amygdala does not directly project to the olfactory bulb, joint pharmacological inactivation of the central, basolateral, and lateral nuclei of the amygdala nonetheless strongly suppressed odor-evoked activity in GABAergic inhibitory interneuron populations in the OB. This suppression was prevented by inactivation of LC or pretreatment of the olfactory bulb with a broad-spectrum noradrenergic receptor antagonist. Visualization of synaptic output from olfactory sensory neuron terminals into the olfactory bulb of the brain revealed that amygdalar inactivation preferentially strengthened the odor-evoked synaptic output of weakly activated populations of sensory afferents from the nose, thus demonstrating a change in sensory gating potentially mediated by local inhibition of olfactory sensory neuron terminals. We conclude that amygdalar activity influences olfactory processing as early as the primary sensory input to the brain by modulating norepinephrine release from the locus coeruleus into the olfactory bulb. These findings show that the amygdala and LC state actively determines which sensory signals are selected for processing in sensory brain regions. Similar local circuitry operates in the olfactory, visual, and auditory systems, suggesting a potentially shared mechanism across modalities.SIGNIFICANCE STATEMENT The affective state is increasingly understood to influence early neural processing of sensory stimuli, not just the behavioral response to those stimuli. The present study elucidates one circuit by which the amygdala, a critical structure for emotional learning, valence coding, and stress, can shape sensory input to the brain and early sensory processing through its connections to the locus coeruleus. One function of this interaction appears to be sensory gating, because inactivating the central, basolateral, and lateral nuclei of the amygdala selectively strengthened the weakest olfactory inputs to the brain. This linkage of amygdalar and LC output to primary sensory signaling may have implications for affective disorders that include sensory dysfunctions like hypervigilance, attentional bias, and impaired sensory gating.
Collapse
|
49
|
The norepinephrine system shows information-content specific properties during cognitive control - Evidence from EEG and pupillary responses. Neuroimage 2017; 149:44-52. [PMID: 28130191 DOI: 10.1016/j.neuroimage.2017.01.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 11/20/2022] Open
Abstract
The ability to exert cognitive control is a major function of the prefrontal cortex, the efficiency of which depends on the phasic release of norepinephrine (NE) at particular time points. However, different aspects of information are simultaneously processed at any given moment. This raises the question of whether the norepinephrine system is also capable of specifically modulating selected aspects of all ongoing information processing, especially when several of those processes are carried out by the same functional neuroanatomical structure at the same time. We examine this question in humans using a flanker paradigm by integrating neurophysiological (EEG) and pupil diameter data using novel signal processing techniques including Residue Iteration Decomposition (RIDE) and source localization. We show that during conflict monitoring, motor response-related processes are more strongly modulated by the NE system than stimulus-related processes or central decision processes between stimulus and response. This was the case even though these processes occurred at the same time point and were mediated by overlapping medial frontal cortical structures. The results indicate that the NE system exerts specific modulatory effects for different informational contents that are simultaneously processed in the medial frontal cortex.
Collapse
|
50
|
Beste C, Steenbergen L, Sellaro R, Grigoriadou S, Zhang R, Chmielewski W, Stock AK, Colzato L. Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control – A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimul 2016; 9:811-818. [DOI: 10.1016/j.brs.2016.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/12/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022] Open
|