1
|
Buzi G, Eustache F, Droit-Volet S, Desaunay P, Hinault T. Towards a neurodevelopmental cognitive perspective of temporal processing. Commun Biol 2024; 7:987. [PMID: 39143328 PMCID: PMC11324894 DOI: 10.1038/s42003-024-06641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
The ability to organize and memorize the unfolding of events over time is a fundamental feature of cognition, which develops concurrently with the maturation of the brain. Nonetheless, how temporal processing evolves across the lifetime as well as the links with the underlying neural substrates remains unclear. Here, we intend to retrace the main developmental stages of brain structure, function, and cognition linked to the emergence of timing abilities. This neurodevelopmental perspective aims to untangle the puzzling trajectory of temporal processing aspects across the lifetime, paving the way to novel neuropsychological assessments and cognitive rehabilitation strategies.
Collapse
Affiliation(s)
- Giulia Buzi
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Francis Eustache
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Sylvie Droit-Volet
- Université Clermont Auvergne, LAPSCO, CNRS, UMR 6024, Clermont-Ferrand, France
| | - Pierre Desaunay
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
- Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Thomas Hinault
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France.
| |
Collapse
|
2
|
Martinec Nováková L, Georgi H, Vlčková K, Kopeček M, Babuská A, Havlíček J. Small effects of olfactory identification and discrimination on global cognitive and executive performance over 1 year in aging people without a history of age-related cognitive impairment. Physiol Behav 2024; 282:114579. [PMID: 38710351 DOI: 10.1016/j.physbeh.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Olfactory and cognitive performance share neural correlates profoundly affected by physiological aging. However, whether odor identification and discrimination scores predict global cognitive status and executive function in healthy older people with intact cognition is unclear. Therefore, in the present study, we set out to elucidate these links in a convenience sample of 204 independently living, cognitively intact healthy Czech adults aged 77.4 ± 8.7 (61-97 years) over two waves of data collection (one-year interval). We used the Czech versions of the Montreal Cognitive Assessment (MoCA) to evaluate global cognition, and the Prague Stroop Test (PST), Trail Making Test (TMT), and several verbal fluency (VF) tests to assess executive function. As a subsidiary aim, we aimed to examine the contribution of olfactory performance towards achieving a MoCA score above vs. below the published cut-off value. We found that the MoCA scores exhibited moderate associations with both odor identification and discrimination. Furthermore, odor identification significantly predicted PST C and C/D scores. Odor discrimination significantly predicted PST C/D, TMT B/A, and standardized composite VF scores. Our findings demonstrate that olfaction, on the one hand, and global cognition and executive function, on the other, are related even in healthy older people.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Prague 8 - Libeň, Czech Republic; Department of Chemical Education and Humanities, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Hana Georgi
- Prague College of Psychosocial Studies, Hekrova 805, 149 00 Prague 4, Czech Republic
| | - Karolína Vlčková
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10 - Vršovice, Czech Republic; Thomayer Teaching Hospital, Vídeňská 800, 140 59 Prague 4 - Krč, Czech Republic
| | - Miloslav Kopeček
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10 - Vršovice, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Anna Babuská
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
3
|
Porta-Casteràs D, Vicent-Gil M, Serra-Blasco M, Navarra-Ventura G, Solé B, Montejo L, Torrent C, Martinez-Aran A, De la Peña-Arteaga V, Palao D, Vieta E, Cardoner N, Cano M. Increased grey matter volumes in the temporal lobe and its relationship with cognitive functioning in euthymic patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110962. [PMID: 38365103 DOI: 10.1016/j.pnpbp.2024.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is characterized by episodic mood dysregulation, although a significant portion of patients suffer persistent cognitive impairment during euthymia. Previous magnetic resonance imaging (MRI) research suggests BD patients may have accelerated brain aging, observed as lower grey matter volumes. How these neurostructural alterations are related to the cognitive profile of BD is unclear. METHODS We aim to explore this relationship in euthymic BD patients with multimodal structural neuroimaging. A sample of 27 euthymic BD patients and 24 healthy controls (HC) underwent structural grey matter MRI and diffusion-weighted imaging (DWI). BD patient's cognition was also assessed. FreeSurfer algorithms were used to obtain estimations of regional grey matter volumes. White matter pathways were reconstructed using TRACULA, and four diffusion metrics were extracted. ANCOVA models were performed to compare BD patients and HC values of regional grey matter volume and diffusion metrics. Global brain measures were also compared. Bivariate Pearson correlations were explored between significant brain results and five cognitive domains. RESULTS Euthymic BD patients showed higher ventricular volume (F(1, 46) = 6.04; p = 0.018) and regional grey matter volumes in the left fusiform (F(1, 46) = 15.03; pFDR = 0.015) and bilateral parahippocampal gyri compared to HC (L: F(1, 46) = 12.79, pFDR = 0.025/ R: F(1, 46) = 15.25, pFDR = 0.015). Higher grey matter volumes were correlated with greater executive function (r = 0.53, p = 0.008). LIMITATIONS We evaluated a modest sample size with concurrent pharmacological treatment. CONCLUSIONS Higher medial temporal volumes in euthymic BD patients may be a potential signature of brain resilience and cognitive adaptation to a putative illness neuroprogression. This knowledge should be integrated into further efforts to implement imaging into BD clinical management.
Collapse
Affiliation(s)
- D Porta-Casteràs
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Vicent-Gil
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - M Serra-Blasco
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Programa eHealth ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain
| | - G Navarra-Ventura
- Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Palma (Mallorca), Spain; Health Research Institute of the Balearic Islands (IdISBa), Son Espases University Hospital (HUSE), Palma (Mallorca), Spain; CIBERES, Carlos III Health Institute, Madrid, Spain
| | - B Solé
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - L Montejo
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - C Torrent
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - A Martinez-Aran
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - V De la Peña-Arteaga
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - D Palao
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - E Vieta
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - N Cardoner
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain.
| | - M Cano
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
4
|
Apa Z, Gilsoul J, Dideberg V, Collette F. Association between executive functions and COMT Val108/158Met polymorphism among healthy younger and older adults: A preliminary study. PLoS One 2024; 19:e0303343. [PMID: 38739620 PMCID: PMC11090336 DOI: 10.1371/journal.pone.0303343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Genetic variability in the dopaminergic system could contribute to age-related impairments in executive control. In this study, we examined whether genetic polymorphism for catechol-O-methyltransferase (COMT Val158Met) is related to performance on updating, shifting and inhibition tasks. METHODS We administered a battery of executive tasks assessing updating, shifting and inhibition functions to 45 older and 55 younger healthy participants, and created composite z-scores associated to each function. Six groups were created based on genetic alleles (Val/Val, Val/Met, Met/Met) derived from the COMT gene and age (younger, older). Age and genotype effects were assessed with t-test and ANOVA (p<0.05). RESULTS A lower performance was observed in the older group for the three executive processes, and more particularly for inhibition. Moreover, older participants homozygous for the Val allele have a lower performance on the inhibition composite in comparison to younger Val/Val. CONCLUSIONS These results confirm presence of executive performance decrease in healthy aging. With regard to genetic effect, older participants seem particularly disadvantaged when they have a lower baseline dopamine level (i.e., Val/Val homozygous) that is magnified by aging, and when the executive measure emphasize the need of stable representations (as in inhibition task requiring to maintain active the instruction to not perform an automated process).
Collapse
Affiliation(s)
- Zoltan Apa
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| | - Jessica Gilsoul
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| | | | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| |
Collapse
|
5
|
Moisseinen N, Ahveninen L, Martínez‐Molina N, Sairanen V, Melkas S, Kleber B, Sihvonen AJ, Särkämö T. Choir singing is associated with enhanced structural connectivity across the adult lifespan. Hum Brain Mapp 2024; 45:e26705. [PMID: 38716698 PMCID: PMC11077432 DOI: 10.1002/hbm.26705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Lotta Ahveninen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Noelia Martínez‐Molina
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Center for Brain and Cognition, Department of Information and Communication TechnologiesUniversity Pompeu FabraBarcelonaSpain
| | - Viljami Sairanen
- Department of RadiologyKanta‐Häme Central HospitalHämeenlinnaFinland
- Baby Brain Activity Center, Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Susanna Melkas
- Clinical Neurosciences, NeurologyUniversity of HelsinkiHelsinkiFinland
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical MedicineAarhus University and The Royal Academy of Music Aarhus/AalborgAarhusDenmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Centre for Clinical Research, School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Department of NeurologyHelsinki University HospitalHelsinkiFinland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Bampa G, Moraitou D, Metallidou P, Masoura E, Papantoniou G, Sofologi M, Kougioumtzis G, Papatzikis E, Tsolaki M. Metacognitive beliefs of efficacy about daily life situations and use of cognitive strategies in amnestic mild cognitive impairment: a cross-sectional study. Front Psychol 2024; 15:1275678. [PMID: 38414872 PMCID: PMC10896964 DOI: 10.3389/fpsyg.2024.1275678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Metacognition, the ability to monitor and regulate cognitive processes, is essential for individuals with Mild Cognitive Impairment (MCI) to accurately identify their deficits and effectively manage them. However, previous studies primarily focused on memory awareness in MCI, neglecting other domains affected in daily life. This study aimed to investigate how individuals with MCI perceive their abilities to handle various cognitively challenging situations representing real-life scenarios and their use of compensatory strategies. Thus 100 participants were recruited, including 50 with amnestic MCI with multiple deficits (aMCI) and 50 cognitively healthy controls (HC) matched in age and education. Participants completed three metacognitive scales assessing self-perceived efficacy in everyday life scenarios and one scale evaluating use of cognitive strategies. Results indicated that aMCI participants reported significantly lower self-efficacy in memory and divided-shifted attention scenarios compared to HC. Surprisingly, no significant group differences were found in the self-reports about the use of cognitive strategies. This suggests a potential gap in understanding or applying effective strategies for compensating cognitive deficits. These findings emphasize the importance of cognitive training programs targeting metacognitive knowledge enhancement and practical use of cognitive strategies that could enhance the quality of life for individuals with MCI.
Collapse
Affiliation(s)
- Grigoria Bampa
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center of Interdisciplinary Research and Innovation (CIRI-AUTH), Balcan Center, Thessaloniki, Greece
| | - Despina Moraitou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center of Interdisciplinary Research and Innovation (CIRI-AUTH), Balcan Center, Thessaloniki, Greece
| | - Panagiota Metallidou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elvira Masoura
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Papantoniou
- Laboratory of Psychology, Department of Early Childhood Education, School of Education, University of Ioannina, Ioannina, Greece
- Institute of Humanities and Social Sciences, University Research Centre of Ioannina (URCI), Ioannina, Greece
| | - Maria Sofologi
- Laboratory of Psychology, Department of Early Childhood Education, School of Education, University of Ioannina, Ioannina, Greece
- Institute of Humanities and Social Sciences, University Research Centre of Ioannina (URCI), Ioannina, Greece
| | - Georgios Kougioumtzis
- Department of Turkish and Modern Asian Studies, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychology, Neapolis University Pafos, Pafos, Cyprus
| | - Efthymios Papatzikis
- Department of Early Childhood Education and Care, Oslo Metropolitan University, Oslo, Norway
- Bright Start Foundation for Maternal and Child Health, Geneva, Switzerland
- School of Medicine and Health, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Magdalini Tsolaki
- Laboratory of Neurodegenerative Diseases, Center of Interdisciplinary Research and Innovation (CIRI-AUTH), Balcan Center, Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Association of Alzheimer's Disease and Related Disorders (GAADRD), Thessaloniki, Greece
| |
Collapse
|
7
|
Aghamohammadi-Sereshki A, Pietrasik W, Malykhin NV. Aging, cingulate cortex, and cognition: insights from structural MRI, emotional recognition, and theory of mind. Brain Struct Funct 2024:10.1007/s00429-023-02753-5. [PMID: 38305874 DOI: 10.1007/s00429-023-02753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
The cingulate cortex is a limbic structure involved in multiple functions, including emotional processing, pain, cognition, memory, and spatial orientation. The main goal of this structural Magnetic Resonance Imaging (MRI) study was to investigate whether age affects the cingulate cortex uniformly across its anteroposterior dimensions and determine if the effects of age differ based on sex, hemisphere, and regional cingulate anatomy, in a large cohort of healthy individuals across the adult lifespan. The second objective aimed to explore whether the decline in emotional recognition accuracy and Theory of Mind (ToM) is linked to the potential age-related reductions in the pregenual anterior cingulate (ACC) and anterior midcingulate (MCC) cortices. We recruited 126 healthy participants (18-85 years) for this study. MRI datasets were acquired on a 4.7 T system. The cingulate cortex was manually segmented into the pregenual ACC, anterior MCC, posterior MCC, and posterior cingulate cortex (PCC). We observed negative relationships between the presence and length of the superior cingulate gyrus and bilateral volumes of pregenual ACC and anterior MCC. Age showed negative effects on the volume of all cingulate cortical subregions bilaterally except for the right anterior MCC. Most of the associations between age and the cingulate subregional volumes were linear. We did not find a significant effect of sex on cingulate cortical volumes. However, stronger effects of age were observed in men compared to women. This study also demonstrated that performance on an emotional recognition task was linked to pregenual ACC volume, whist the ToM capabilities were related to the size of pregenual ACC and anterior MCC. These results suggest that the cingulate cortex contributes to emotional recognition ability and ToM across the adult lifespan.
Collapse
Affiliation(s)
| | - Wojciech Pietrasik
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2V2, Canada.
| |
Collapse
|
8
|
Lee AJ, Stark JH, Hayes SM. Baseline Frontoparietal Gray Matter Volume Predicts Executive Function Performance in Aging and Mild Cognitive Impairment at 24-Month Follow-Up. J Alzheimers Dis 2024; 100:357-374. [PMID: 38875035 DOI: 10.3233/jad-231468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Executive dysfunction in mild cognitive impairment (MCI) has been associated with gray matter atrophy. Prior studies have yielded limited insight into associations between gray matter volume and executive function in early and late amnestic MCI (aMCI). Objective To examine the relative importance of predictors of executive function at 24 months and relationships between baseline regional gray matter volume and executive function performance at 24-month follow-up in non-demented older adults. Methods 147 participants from the Alzheimer's Disease Neuroimaging Initiative (mean age = 70.6 years) completed brain magnetic resonance imaging and neuropsychological testing and were classified as cognitively normal (n = 49), early aMCI (n = 60), or late aMCI (n = 38). Analyses explored the importance of demographic, APOEɛ4, biomarker (p-tau/Aβ42, t-tau/Aβ42), and gray matter regions-of-interest (ROI) variables to 24-month executive function, whether ROIs predicted executive function, and whether relationships varied by baseline diagnostic status. Results Across all participants, baseline anterior cingulate cortex and superior parietal lobule volumes were the strongest predictors of 24-month executive function performance. In early aMCI, anterior cingulate cortex volume was the strongest predictor and demonstrated a significant interaction such that lower volume related to worse 24-month executive function in early aMCI. Educational attainment and inferior frontal gyrus volume were the strongest predictors of 24-month executive function performance for cognitively normal and late aMCI groups, respectively. Conclusions Baseline frontoparietal gray matter regions were significant predictors of executive function performance in the context of aMCI and may identify those at risk of Alzheimer's disease. Anterior cingulate cortex volume may predict executive function performance in early aMCI.
Collapse
Affiliation(s)
- Ann J Lee
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Jessica H Stark
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Scott M Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Halliday DWR, Karr JE, Shahnazian D, Gordon I, Sanchez Escudero JP, MacDonald SWS, Macoun SJ, Hundza SR, Garcia-Barrera MA. Electrophysiological variability during tests of executive functioning: A comparison of athletes with and without concussion and sedentary control participants. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-10. [PMID: 37598380 DOI: 10.1080/23279095.2023.2247512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
OBJECTIVE Sport participation may benefit executive functioning (EF), but EF can also be adversely affected by concussion, which can occur during sport participation. Neural variability is an emerging proxy of brain health that indexes the brain's range of possible responses to incoming stimuli (i.e., dynamic range) and interconnectedness, but has yet to be characterized following concussion among athletes. This study examined whether neural variability was enhanced by athletic participation and attenuated by concussion. METHOD Seventy-seven participants (18-25 years-old) were classified as sedentary controls (n = 33), athletes with positive concussion history (n = 21), or athletes without concussion (n = 23). Participants completed tests of attention switching, response inhibition, and updating working memory while undergoing electroencephalography recordings to index neural variability. RESULTS Compared to sedentary controls and athletes without concussion, athletes with concussion exhibited a restricted whole-brain dynamic range of neural variability when completing a test of inhibitory control. There were no group differences observed for either the switching or working memory tasks. CONCLUSIONS A history of concussion was related to reduced dynamic range of neural activity during a task of response inhibition in young adult athletes. Neural variability may have value for evaluating brain health following concussion.
Collapse
Affiliation(s)
- Drew W R Halliday
- Department of Psychology, University of Victoria, Victoria, Canada
- CORTEX Laboratory, University of Victoria, Victoria, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, Canada
| | - Justin E Karr
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | | | - Iris Gordon
- Department of Psychology, University of Victoria, Victoria, Canada
- CORTEX Laboratory, University of Victoria, Victoria, Canada
| | | | - Stuart W S MacDonald
- Department of Psychology, University of Victoria, Victoria, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, Canada
| | - Sarah J Macoun
- Department of Psychology, University of Victoria, Victoria, Canada
| | - Sandra R Hundza
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, Canada
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, Canada
| | - Mauricio A Garcia-Barrera
- Department of Psychology, University of Victoria, Victoria, Canada
- CORTEX Laboratory, University of Victoria, Victoria, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, Canada
| |
Collapse
|
10
|
DesRuisseaux LA, Suchy Y, Franchow EI. Intra-individual variability identifies individuals vulnerable to contextually induced executive lapses. Clin Neuropsychol 2023; 37:322-349. [PMID: 35392764 DOI: 10.1080/13854046.2022.2055651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Contextual stressors, such as engagement in burdensome emotion regulation known as expressive suppression (ES), can result in transient but clinically meaningful decrement in performance on measures of executive functioning (EF). The goal of the present investigation was to examine whether intra-individual variability (IIV-I), which has been identified as an indicator of cognitive weakness, could serve as a marker of vulnerability to EF decrements due to both naturally-occurring and experimentally-manipulated ES. In Study 1, 180 cognitively healthy older adults completed the Push-Turn-Taptap (PTT) task to assess IIV-I, four Delis-Kaplan Executive Function System (D-KEFS) subtests to assess EF, and the Burden of State Emotion Regulation Questionnaire (B-SERQ) to assess naturally-occurring ES. In Study 2, a subset (n = 81) of participants underwent experimental manipulation to induce ES, followed by second administration of the D-KEFS to examine ES-induced decrements in EF. In Study 1, hierarchical linear regression yielded a significant interaction between ES and IIV-I as predictors of EF performance, demonstrating that high ES was associated with low EF only among individuals with high IIV-I. In Study 2, repeated measures ANOVA demonstrated an interaction between time (pre- vs. post- manipulation), group (ES vs. control), and IIV-I (high vs. low), such that only individuals who exhibited high IIV-I were negatively impacted by the ES manipulation. IIV-I moderates the association between ES and EF, such that only individuals with high IIV-I exhibit vulnerability to the impact of ES. Thus, IIV-I may act as a marker of vulnerability to temporary EF depletion.
Collapse
Affiliation(s)
| | - Yana Suchy
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Emilie I Franchow
- Department of Psychology, University of Utah, Salt Lake City, UT, USA.,Advocate Aurora Healthcare, Milwaukee, WI, USA
| |
Collapse
|
11
|
Sugimoto H, Sekiguchi T, Otake-Matsuura M. Association between social comparison orientation and hippocampal properties in older adults: A multimodal MRI study. Soc Neurosci 2023; 17:544-557. [PMID: 36692233 DOI: 10.1080/17470919.2023.2166580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Social comparison orientation (SCO) refers to the tendency to compare oneself with others and has two distinct dimensions: one about opinions and the other about abilities. Although dissociable neural mechanisms underlying the two dimensions of social comparison can be assumed, little is known about how each dimension of SCO is associated with cognitive and brain health among older adults. To investigate this, we analyzed the SCO scale questionnaire data, neuropsychological assessment data, and multimodal MRI data collected from 90 community-dwelling older adults. We found that global cognitive performance was positively correlated with the score of the opinion subscale but not with the score of the ability subscale and the total score. Similarly, hippocampal volume was positively correlated with opinion score alone. Additionally, the resting-state functional connectivity between the hippocampal seed and the default mode network showed a positive correlation only with the opinion score. Moreover, fractional anisotropy in the hippocampal cingulum was positively correlated with opinion score only. These findings suggest that global cognition and hippocampal properties in older age are associated with the SCO of opinion, which could reflect a regular habit of performing the types of cognitively demanding activities involved in evaluation of self and other opinions.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | | | | |
Collapse
|
12
|
Zhao S, Li Y, Shi Y, Li X. Cognitive Aging: How the Brain Ages? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:9-21. [PMID: 37418203 DOI: 10.1007/978-981-99-1627-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive aging refers to the cognitive changes or functional decline that comes with age. The relation between aging and functional declines involves various aspects of cognition, including memory, attention, processing speed, and executive function. In this chapter, we have introduced several dimensions about cognitive aging trajectories. Meanwhile, we have reviewed the history of the study of cognitive aging and expatiated two trends that are particularly noteworthy in the effort to elucidate the process of aging. One is that the differences between components of mental abilities have become gradually specified. The other one is a growing interest in the neural process, which relates changes in the brain structure to age-related changes in cognition. Lastly, as the basis of cognitive function, brain structures and functions change during aging, and these changes are reflected in a corresponding decline in cognitive function. We have discussed the patterns of reorganization of various structural and functional aging processes of the brain and their relationship with cognitive function.
Collapse
Affiliation(s)
- Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Yumeng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Yuqing Shi
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China.
| |
Collapse
|
13
|
Longitudinal changes in grey matter and cognitive performance over four years of healthy aging. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Brothers SL, Gereau MM, DesRuisseaux LA, Suchy Y. Reappraising cognitive reappraisal: The taxing impact of emotion regulation on executive functioning in older adults. J Clin Exp Neuropsychol 2022; 44:1-14. [PMID: 36094061 DOI: 10.1080/13803395.2022.2113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Cognitive reappraisal (CR) and expressive suppression (ES) are two common emotion regulation strategies that share similar cognitive and neural underpinnings. Prior research has consistently shown that recent engagement in ES (both self-reported and experimentally manipulated) is associated with subsequent temporary decrements in executive functioning (EF). Thus far, only one study has examined the association between CR and EF, with null results. However, that study was limited by examining only zero-order correlations and by assessing only the speed, not accuracy, of EF performance. The present study examined multivariate relationships among recent CR, recent ES, and EF (both speed and accuracy), as well as the potential impacts of more chronic engagements in, and trait-level preferences between, the two emotion regulation strategies. METHOD Participants were 201 community-dwelling older adults aged 60 to 93 who had participated in three separate studies examining the relationship between self-reported emotion regulation and EF. RESULTS Recent CR was associated with EF performance accuracy above and beyond chronic CR. Both recent CR and ES contributed to EF performance accuracy uniquely beyond each other and beyond chronic and preferred emotion regulation. CONCLUSIONS Both recent ES and CR appear to have a deleterious impact on EF performance accuracy, potentially due to utilization of similar resources; both should be accounted for when assessing emotion regulation and its impacts on EF.
Collapse
Affiliation(s)
- Stacey L Brothers
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Michelle M Gereau
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | | | - Yana Suchy
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Sugimoto H, Otake-Matsuura M. A pilot voxel-based morphometry study of older adults after the PICMOR intervention program. BMC Geriatr 2022; 22:63. [PMID: 35045810 PMCID: PMC8772081 DOI: 10.1186/s12877-021-02669-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Age-related decline in cognitive function, such as executive function, is associated with structural changes in the neural substrates, such as volume reductions in the lateral prefrontal cortex. To prevent or delay age-related changes in cognitive function, cognitive intervention methods that employ social activity, including conversations, have been proposed in some intervention studies. Interestingly, previous studies have consistently reported that verbal fluency ability can be trained by conversation-based interventions in healthy older adults. However, little is known about the neural substrates that underlie the beneficial effect of conversation-based interventions on cognitive function. In this pilot study, we aimed to provide candidate brain regions that are responsible for the enhancement of cognitive function, by analyzing structural magnetic resonance imaging (MRI) data that were additionally obtained from participants in our previous intervention study. Methods A voxel-based morphometric analysis was applied to the structural MRI data. In the analysis, the regional brain volume was compared between the intervention group, who participated in a group conversation-based intervention program named Photo-Integrated Conversation Moderated by Robots (PICMOR), and the control group, who joined in a control program based on unstructured free conversations. Furthermore, regions whose volume was positively correlated with an increase in verbal fluency task scores throughout the intervention period were explored. Results Results showed that the volume of several regions, including the superior frontal gyrus, parahippocampal gyrus/hippocampus, posterior middle temporal gyrus, and postcentral gyrus, was greater in the intervention group than in the control group. In contrast, no regions showed greater volume in the control group than in the intervention group. The region whose volume showed a positive correlation with the increased task scores was identified in the inferior parietal lobule. Conclusions Although definitive conclusions cannot be drawn from this study due to a lack of MRI data from the pre-intervention period, it achieved the exploratory purpose by successfully identifying candidate brain regions that reflect the beneficial effect of conversation-based interventions on cognitive function, including the lateral prefrontal cortex, which plays an important role in executive functions. Trial registration The trial was retrospectively registered on 7 May 2019 (UMIN Clinical Trials Registry number: UMIN000036667). Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02669-x.
Collapse
|
17
|
Cao L, Liang Y, Lv W, Park K, Miura Y, Shinomiya Y, Yoshida S. Relating brain structure images to personality characteristics using 3D convolution neural network. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2021. [DOI: 10.1049/cit2.12021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lixian Cao
- Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education Zhuhai College of Jilin University Zhuhai China
| | - Yanchun Liang
- Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education Zhuhai College of Jilin University Zhuhai China
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education College of Computer Science and Technology Jilin University Changchun China
| | - Wei Lv
- Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education Zhuhai College of Jilin University Zhuhai China
| | - Kaechang Park
- School of Information & Research Institute Kochi University of Technology Kochi Japan
| | - Yasuhiro Miura
- School of Information & Research Institute Kochi University of Technology Kochi Japan
| | - Yuki Shinomiya
- School of Information & Research Institute Kochi University of Technology Kochi Japan
| | - Shinichi Yoshida
- School of Information & Research Institute Kochi University of Technology Kochi Japan
| |
Collapse
|
18
|
Soares JZ, Pettersen R, Benth JŠ, Persson K, Strobel C, Selbæk G, Bogdanovic N. Vitamin D Levels, APOE Allele, and MRI Volumetry Assessed by NeuroQuant in Norwegian Adults with Cognitive Symptoms. J Alzheimers Dis 2020; 79:311-321. [PMID: 33252081 DOI: 10.3233/jad-201018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Allele ɛ4 of the apolipoprotein (APOE∈4) gene is the strongest known genetic risk factor for late-onset sporadic Alzheimer's disease. A possible relationship between vitamin D and APOE is not yet clear. OBJECTIVE In this exploratory, cross-sectional study, we examined the association between serum levels of 25-hydroxyvitamin D [25(OH)D] and brain volumes and the associations of both serum levels of 25(OH)D and APOE polymorphism to brain volumes in 127 persons (mean age 66 years) with cognitive symptoms. METHODS All subjects were examined with fully automated software for MRI volumetry, NeuroQuant. RESULTS After adjustment for relevant covariates, higher serum 25(OH)D levels were associated with greater volumes of cortical gray matter on both left (p = 0.02) and right (p = 0.04) sides. When both 25(OH)D levels and APOE genotype were used as the main covariates, no significant associations were found between vitamin D level and brain volume in any of the 11 brain regions. In adjusted models, only homozygous but not heterozygous APOE∈4 allele carriers had significantly larger inferior lateral ventricles (p = 0.003) and smaller hippocampal volume (p = 0.035) than those without ɛ4. Homozygous APOE∈4 carriers also had significantly higher vitamin D levels (p = 0.009) compared to persons without the APOE∈4 allele. CONCLUSION Higher vitamin D levels might have a preserving effect on cortical grey matter volume.
Collapse
Affiliation(s)
- Jelena Zugic Soares
- Medical Department, Section of Geriatrics, Lovisenberg Diaconal Hospital, Nydalen, Oslo, Norway
| | - Renate Pettersen
- Medical Department, Section of Geriatrics, Lovisenberg Diaconal Hospital, Nydalen, Oslo, Norway
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Blindern, Norway.,Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Karin Persson
- Department of Geriatric medicine, Oslo University Hospital, Nydalen, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Carsten Strobel
- Medical Department, Section of Geriatrics, Lovisenberg Diaconal Hospital, Nydalen, Oslo, Norway
| | - Geir Selbæk
- Department of Geriatric medicine, Oslo University Hospital, Nydalen, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nenad Bogdanovic
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Karolinska Institutet, Department for Neurobiology, Caring Science and Society, Division of Clinical Geriatrics Novum Research Park, Stockholm, Sweden
| |
Collapse
|
19
|
Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020; 50:801-814. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aging process is accompanied by critical changes in cellular and molecular functions, which upset the homeostatic balance in the central nervous system. Accumulation of metals renders the brain susceptible to neurotoxic insults by mechanisms such as mitochondrial dysfunction, neuronal calcium-ion dyshomeostasis, buildup of damaged molecules, compromised DNA repair, reduction in neurogenesis, and impaired energy metabolism. These hallmarks have been identified to be responsible for neuronal injuries, resulting in several neurological disorders. Various studies have shown solid associations between metal accumulation, abnormal protein expressions, and pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. This review highlights metals (such as manganese, zinc, iron, copper, and nickel) for their accumulation, and consequences in the development of neurological disorders, in relation to the aging brain.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology, Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Longitudinal change in executive function is associated with impaired top-down frontolimbic regulation during reappraisal in older adults. Neuroimage 2020; 225:117488. [PMID: 33164856 PMCID: PMC7779563 DOI: 10.1016/j.neuroimage.2020.117488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Networks in the prefrontal cortex (PFC) that are important for executive function are also engaged in adaptive responding to negative events. These networks are particularly vulnerable to age-related structural atrophy and an associated loss of executive function, yet existing evidence suggests preserved emotion processing ability in ageing. Using longitudinally acquired data from a battery of cognitive tasks, we defined a metric for the rate of decline of executive function. With this metric, we investigated relationships between changes in executive function and emotion reappraisal ability and brain structure, in 34 older adults, using functional and structural MRI. During task-based fMRI, participants were asked to cognitively reappraise negatively valenced images. We hypothesised one of two associations with decreasing executive function over time: 1) a decreased ability to reappraise reflected in decreased PFC and increased amygdala activation, or 2) a neural compensation mechanism characterised by increased PFC activation but no differential amygdala activation. Structurally, for a decreased reappraisal ability, we predicted a decrease in grey matter in PFC and/or a decrease of white matter integrity in amygdala-PFC pathways. Neither of the two hypotheses relating to brain function were completely supported, with the findings indicating a steeper decline in executive function associated with both increased PFC and increased left amygdala activity when reappraising negative stimuli. In addition, white matter integrity of the uncinate fasciculus, a primary white matter tract connecting the amygdala and ventromedial areas of PFC, was lower in those individuals who demonstrated a greater decrease in executive function. These findings highlight the association of diminishing cognitive ability with brain structure and function linked to emotion regulation.
Collapse
|
21
|
Glisky EL, Alexander GE, Hou M, Kawa K, Woolverton CB, Zigman EK, Nguyen LA, Haws K, Figueredo AJ, Ryan L. Differences between young and older adults in unity and diversity of executive functions. AGING NEUROPSYCHOLOGY AND COGNITION 2020; 28:829-854. [PMID: 33028159 DOI: 10.1080/13825585.2020.1830936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Miyake and colleagues (2000) identified three independent but correlated components of executive function in young adults - set shifting, inhibition, and updating. The present study compared the factor structure in young adults to two groups of older adults (ages 60-73 and 74-98). A three-factor model of shifting, inhibition and updating was confirmed in young adults, but the factors were weakly or uncorrelated. In both older groups, a two-factor solution was indicated, updating/inhibition and shifting, which were moderately correlated in young-older adults, and strongly correlated in the old-older group. A nested factors model in the oldest group revealed a common factor, which loaded on all but one of the tests, and a shifting-specific factor. We concluded that in young adulthood, shifting, updating and inhibition may operate relatively independently. As people age and processing becomes less efficient, they may rely increasingly on general executive control processes, reallocating their limited resources to optimize performance.
Collapse
Affiliation(s)
| | - Gene E Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Mingzhu Hou
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Kevin Kawa
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Erika K Zigman
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Lauren A Nguyen
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Kari Haws
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | | | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
22
|
Frontoparietal structural properties mediate adult life span differences in executive function. Sci Rep 2020; 10:9066. [PMID: 32494018 PMCID: PMC7271169 DOI: 10.1038/s41598-020-66083-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/15/2020] [Indexed: 02/02/2023] Open
Abstract
Executive function (EF) refers to a set of cognitive functions that support goal-directed behaviors. Recent findings have suggested that the frontoparietal network (FPN) subserves neural processes that are related to EF. However, the FPN structural and functional network properties that mediate age-related differences in EF components remain unclear. To this end, we used three experimental tasks to test the component processes of EF based on Miyake and Friedman’s model: one common EF component process (incorporating inhibition, shifting, and updating) and two specific EF component processes (shifting and updating). We recruited 126 healthy participants (65 females; 20 to 78 years old) who underwent both structural and functional MRI scanning. We tested a mediation path model of three structural and functional properties of the FPN (i.e., gray matter volume, white matter fractional anisotropy, and intra/internetwork functional connectivity) as mediators of age-related differences in the three EF components. The results indicated that age-related common EF component differences are mediated by regional gray matter volume changes in both hemispheres of the frontal lobe, which suggests that structural changes in the frontal lobe may have an indirect influence on age-related general elements of EF. These findings suggest that the FPN mediates age-related differences in specific components of EF.
Collapse
|
23
|
Huang Y, Su L, Ma Q. The Stroop effect: An activation likelihood estimation meta-analysis in healthy young adults. Neurosci Lett 2020; 716:134683. [DOI: 10.1016/j.neulet.2019.134683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
|
24
|
Salami A, Rieckmann A, Karalija N, Avelar-Pereira B, Andersson M, Wåhlin A, Papenberg G, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. Neurocognitive Profiles of Older Adults with Working-Memory Dysfunction. Cereb Cortex 2019; 28:2525-2539. [PMID: 29901790 PMCID: PMC5998950 DOI: 10.1093/cercor/bhy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in old age are linked to differences in brain-based measures. We used latent-profile analysis on n-back working-memory (WM) performance to identify subgroups in a large sample of older adults (n = 181; age = 64–68 years). Our analysis identified one larger normal subgroup with higher performance (n = 113; 63%), and a second smaller subgroup (n = 55; 31%) with lower performance. The low-performing subgroup showed weaker load-dependent BOLD modulation and lower connectivity within the fronto-parietal network (FPN) as well as between FPN and striatum during n-back, along with lower FPN connectivity at rest. This group also exhibited lower FPN structural integrity, lower frontal dopamine D2 binding potential, inferior performance on offline WM tests, and a trend-level genetic predisposition for lower dopamine-system efficiency. By contrast, this group exhibited relatively intact episodic memory and associated brain measures (i.e., hippocampal volume, structural, and functional connectivity within the default-mode network). Collectively, these data provide converging evidence for the existence of a group of older adults with impaired WM functioning characterized by reduced cortico-striatal coupling and aberrant cortico-cortical integrity within FPN.
Collapse
Affiliation(s)
- Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Abstract
The gap between predicted brain age using magnetic resonance imaging (MRI) and chronological age may serve as a biomarker for early-stage neurodegeneration. However, owing to the lack of large longitudinal studies, it has been challenging to validate this link. We aimed to investigate the utility of such a gap as a risk biomarker for incident dementia using a deep learning approach for predicting brain age based on MRI-derived gray matter (GM). We built a convolutional neural network (CNN) model to predict brain age trained on 3,688 dementia-free participants of the Rotterdam Study (mean age 66 ± 11 y, 55% women). Logistic regressions and Cox proportional hazards were used to assess the association of the age gap with incident dementia, adjusted for age, sex, intracranial volume, GM volume, hippocampal volume, white matter hyperintensities, years of education, and APOE ε4 allele carriership. Additionally, we computed the attention maps, which shows which regions are important for age prediction. Logistic regression and Cox proportional hazard models showed that the age gap was significantly related to incident dementia (odds ratio [OR] = 1.11 and 95% confidence intervals [CI] = 1.05-1.16; hazard ratio [HR] = 1.11, and 95% CI = 1.06-1.15, respectively). Attention maps indicated that GM density around the amygdala and hippocampi primarily drove the age estimation. We showed that the gap between predicted and chronological brain age is a biomarker, complimentary to those that are known, associated with risk of dementia, and could possibly be used for early-stage dementia risk screening.
Collapse
|
26
|
Hoagey DA, Rieck JR, Rodrigue KM, Kennedy KM. Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: A partial least squares correlation analysis. Hum Brain Mapp 2019; 40:5315-5329. [PMID: 31452304 PMCID: PMC6864896 DOI: 10.1002/hbm.24774] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/30/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
Cortical atrophy and degraded axonal health have been shown to coincide during normal aging; however, few studies have examined these measures together. To lend insight into both the regional specificity and the relative timecourse of structural degradation of these tissue compartments across the adult lifespan, we analyzed gray matter (GM) morphometry (cortical thickness, surface area, volume) and estimates of white matter (WM) microstructure (fractional anisotropy, mean diffusivity) using traditional univariate and more robust multivariate techniques to examine age associations in 186 healthy adults aged 20–94 years old. Univariate analysis of each tissue type revealed that negative age associations were largest in frontal GM and WM tissue and weaker in temporal, cingulate, and occipital regions, representative of not only an anterior‐to‐posterior gradient, but also a medial‐to‐lateral gradient. Multivariate partial least squares correlation (PLSC) found the greatest covariance between GM and WM was driven by the relationship between WM metrics in the anterior corpus callosum and projections of the genu, anterior cingulum, and fornix; and with GM thickness in parietal and frontal regions. Surface area was far less susceptible to age effects and displayed less covariance with WM metrics, while regional volume covariance patterns largely mirrored those of cortical thickness. Results support a retrogenesis‐like model of aging, revealing a coupled relationship between frontal and parietal GM and the underlying WM, which evidence the most protracted development and the most vulnerability during healthy aging.
Collapse
Affiliation(s)
- David A Hoagey
- Center for Vital Longevity, The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Karen M Rodrigue
- Center for Vital Longevity, The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas
| | - Kristen M Kennedy
- Center for Vital Longevity, The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas
| |
Collapse
|
27
|
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019; 56:3295-3312. [PMID: 30117106 PMCID: PMC6476855 DOI: 10.1007/s12035-018-1283-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
28
|
Ramanoël S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, Krainik A, Jaillard A, Baciu M. Gray Matter Volume and Cognitive Performance During Normal Aging. A Voxel-Based Morphometry Study. Front Aging Neurosci 2018; 10:235. [PMID: 30123123 PMCID: PMC6085481 DOI: 10.3389/fnagi.2018.00235] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Normal aging is characterized by decline in cognitive functioning in conjunction with extensive gray matter (GM) atrophy. A first aim of this study was to determine GM volume differences related to aging by comparing two groups of participants, middle-aged group (MAG, mean age 41 years, N = 16) and older adults (OG, mean age 71 years, N = 14) who underwent an magnetic resonance images (MRI) voxel-based morphometry (VBM) evaluation. The VBM analyses included two optimized pipelines, for the cortex and for the cerebellum. Participants were also evaluated on a wide range of cognitive tests assessing both domain-general and language-specific processes, in order to examine how GM volume differences between OG and MAG relate to cognitive performance. Our results show smaller bilateral GM volume in the OG relative to the MAG, in several cerebral and right cerebellar regions involved in language and executive functions. Importantly, our results also revealed smaller GM volume in the right cerebellum in OG relative to MAG, supporting the idea of a complex cognitive role for this structure. This study provides a broad picture of cerebral, but also cerebellar and cognitive changes associated with normal aging.
Collapse
Affiliation(s)
- Stephen Ramanoël
- INSERM/CNRS, Institut Vision, Sorbonne University, Pierre and Marie Curie Universities (UPMC) Paris 06, Paris, France
| | - Elena Hoyau
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Louise Kauffmann
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
- CNRS, Grenoble INP, GIPSA-lab, University of Grenoble Alpes, Grenoble, France
| | - Félix Renard
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
| | - Cédric Pichat
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Naïla Boudiaf
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| | - Alexandre Krainik
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Assia Jaillard
- UMS IRMaGe Grenoble Hospital, University of Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- CNRS LPNC UMR 5105, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
29
|
Borsa VM, Perani D, Della Rosa PA, Videsott G, Guidi L, Weekes BS, Franceschini R, Abutalebi J. Bilingualism and healthy aging: Aging effects and neural maintenance. Neuropsychologia 2018; 111:51-61. [DOI: 10.1016/j.neuropsychologia.2018.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
|
30
|
Gray Matter Volume Abnormalities in the Reward System in First-Episode Patients with Major Depressive Disorder. THE INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018) 2018. [DOI: 10.1007/978-3-319-74690-6_69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
31
|
Abstract
This chapter provides a brief overview of studies that combine postmortem magnetic resonance imaging (MRI) and histopathology. We touch upon the logistics of setting up a protocol that limits unwanted postmortem delays and explain how combining postmortem MRI and histopathology can elucidate the histologic substrate of signal changes that appear on MRI. This is demonstrated by exemplary studies in multiple sclerosis, and includes various histopathologic techniques and a wide range of conventional and advanced MRI sequences at various field strengths. We cover topics such as how to visualize white-matter pathology and repair with conventional and advanced MRI sequences, describe the history of visualizing pathology of the gray matter (with newly developed MRI and immunohistopathology techniques), and how advanced methods have aided research in other neurologic diseases. We conclude with several suggestions for future development, such as bridging the gap between postmortem and in vivo research and the importance of collecting non-neurological control tissue.
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Droppa K, Karim HT, Tudorascu DL, Karp JF, Reynolds CF, Aizenstein HJ, Butters MA. Association between change in brain gray matter volume, cognition, and depression severity: Pre- and post- antidepressant pharmacotherapy for late-life depression. J Psychiatr Res 2017; 95:129-134. [PMID: 28843842 PMCID: PMC6582647 DOI: 10.1016/j.jpsychires.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Late-life depression (LLD) is associated with cognitive impairments and reduced gray matter volume (GMV); however the mechanisms underlying this association are not well understood. The goal of this study was to characterize changes in depression severity, cognitive function, and brain structure associated with pharmacologic antidepressant treatment for LLD. We administered a detailed neurocognitive battery and conducted structural magnetic resonance imaging (MRI) on 26 individuals with LLD, pre-/post-a 12-week treatment trial with venlafaxine. After calculating changes in cognitive performance, GMV, and depression severity, we calculated Pearson's correlations, performed permutation testing, and false discovery rate correction. We found that loss of GMV over 12 weeks in the superior orbital frontal gyrus was associated with less improvement in depression severity and that increased GMV in the same was associated with greater improvement in depression severity. We detected no associations between changes in cognitive performance and improvements in either depressive symptoms or changes in GMV.
Collapse
Affiliation(s)
- K Droppa
- New York University, University of Pittsburgh
| | - HT Karim
- Department of Bioengineering, University of Pittsburgh
| | - DL Tudorascu
- Department of Medicine, University of Pittsburgh
| | - JF Karp
- Department of Psychiatry, University of Pittsburgh
| | - CF Reynolds
- Department of Psychiatry, University of Pittsburgh
| | - HJ Aizenstein
- Department of Bioengineering, University of Pittsburgh,Department of Psychiatry, University of Pittsburgh
| | - MA Butters
- Department of Psychiatry, University of Pittsburgh
| |
Collapse
|
33
|
Genon S, Wensing T, Reid A, Hoffstaedter F, Caspers S, Grefkes C, Nickl-Jockschat T, Eickhoff SB. Searching for behavior relating to grey matter volume in a-priori defined right dorsal premotor regions: Lessons learned. Neuroimage 2017; 157:144-156. [PMID: 28552730 DOI: 10.1016/j.neuroimage.2017.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/17/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, we showed that the functional heterogeneity of the right dorsal premotor (PMd) cortex could be better understood by dividing it into five subregions that showed different behavioral associations according to task-based activations studies. The present study investigated whether the revealed behavioral profile could be corroborated and complemented by a structural brain behavior correlation approach in two healthy adults cohorts. Grey matter volume within the five volumes of interest (VOI-GM) was computed using voxel-based morphometry. Associations between the inter-individual differences in VOI-GM and performance across a range of neuropsychological tests were assessed in the two cohorts with and without correction for demographical variables. Additional analyses were performed in random smaller subsamples drawn from each of the two cohorts. In both cohorts, correlation coefficients were low; only few were significant and a considerable number of correlations were counterintuitive in their directions (i.e., higher performance related to lower grey matter volume). Furthermore, correlation patterns were inconsistent between the two cohorts. Subsampling revealed that correlation patterns could vary widely across small samples and that negative correlations were as likely as positive correlations. Thus, the structural brain-behavior approach did not corroborate the functional profiles of the PMd subregions inferred from activation studies, suggesting that local recruitment by fMRI studies does not necessarily imply covariance of local structure with behavioral performance in healthy adults. We discuss the limitations of such studies and related recommendations for future studies.
Collapse
Affiliation(s)
- Sarah Genon
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; GIGA-CRC In Vivo Imaging, University of Liege, Belgium; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany.
| | - Tobias Wensing
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen
| | - Andrew Reid
- Department of Artificial Intelligence, Donders Centre for Cognition, Radboud University Nijmegen, The Netherlands
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; C. u. O. Vogt-Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Germany
| | - Christian Grefkes
- Department of Neurology, University of Cologne, Germany; Institute of Neuroscience and Medicine, INM-3, Research Centre Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, INM-1/INM-7, Research Centre Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|