1
|
Scarpellino G, Brunetti V, Berra-Romani R, De Sarro G, Guerra G, Soda T, Moccia F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int J Mol Sci 2024; 25:9071. [PMID: 39201757 PMCID: PMC11354477 DOI: 10.3390/ijms25169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
D'Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Brailoiu E, Barr JL, Wittorf HN, Inan S, Unterwald EM, Brailoiu GC. Modulation of the Blood-Brain Barrier by Sigma-1R Activation. Int J Mol Sci 2024; 25:5147. [PMID: 38791182 PMCID: PMC11121402 DOI: 10.3390/ijms25105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Sigma non-opioid intracellular receptor 1 (Sigma-1R) is an intracellular chaperone protein residing on the endoplasmic reticulum at the mitochondrial-associated membrane (MAM) region. Sigma-1R is abundant in the brain and is involved in several physiological processes as well as in various disease states. The role of Sigma-1R at the blood-brain barrier (BBB) is incompletely characterized. In this study, the effect of Sigma-1R activation was investigated in vitro on rat brain microvascular endothelial cells (RBMVEC), an important component of the blood-brain barrier (BBB), and in vivo on BBB permeability in rats. The Sigma-1R agonist PRE-084 produced a dose-dependent increase in mitochondrial calcium, and mitochondrial and cytosolic reactive oxygen species (ROS) in RBMVEC. PRE-084 decreased the electrical resistance of the RBMVEC monolayer, measured with the electric cell-substrate impedance sensing (ECIS) method, indicating barrier disruption. These effects were reduced by pretreatment with Sigma-1R antagonists, BD 1047 and NE 100. In vivo assessment of BBB permeability in rats indicates that PRE-084 produced a dose-dependent increase in brain extravasation of Evans Blue and sodium fluorescein brain; the effect was reduced by the Sigma-1R antagonists. Immunocytochemistry studies indicate that PRE-084 produced a disruption of tight and adherens junctions and actin cytoskeleton. The brain microcirculation was directly visualized in vivo in the prefrontal cortex of awake rats with a miniature integrated fluorescence microscope (aka, miniscope; Doric Lenses Inc.). Miniscope studies indicate that PRE-084 increased sodium fluorescein extravasation in vivo. Taken together, these results indicate that Sigma-1R activation promoted oxidative stress and increased BBB permeability.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (E.B.); (J.L.B.); (S.I.)
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jeffrey L. Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (E.B.); (J.L.B.); (S.I.)
| | - Hailey N. Wittorf
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (E.B.); (J.L.B.); (S.I.)
| | - Ellen M. Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (E.B.); (J.L.B.); (S.I.)
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gabriela Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
4
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
6
|
Liu A, Sun J, Tiwari S, Wong J, Wang H, Tang D, Han Z. Effect of Chinese herbal formulae (BU-SHEN-YI-QI granule) treatment on thrombin expression after ischemia/reperfusion. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Aihua Liu
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, P.R. People’s Republic of China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, P.R. People’s Republic of China
| | - Sagun Tiwari
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
- International Education College, Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| | - John Wong
- School of Nursing and Department of Occupational Therapy, MGH Institute of Health Professions, Boston, MA, USA
| | - Honglin Wang
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| | - Dongxu Tang
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P.R. People’s Republic of China
| |
Collapse
|
7
|
Kohs TCL, Fallon ME, Oseas EC, Healy LD, Tucker EI, Gailani D, McCarty OJT, Vandenbark AA, Offner H, Verbout NG. Pharmacological targeting of coagulation factor XI attenuates experimental autoimmune encephalomyelitis in mice. Metab Brain Dis 2023; 38:2383-2391. [PMID: 37341855 PMCID: PMC10530106 DOI: 10.1007/s11011-023-01251-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Multiple sclerosis (MS) is the most common causes of non-traumatic disability in young adults worldwide. MS pathophysiologies include the formation of inflammatory lesions, axonal damage and demyelination, and blood brain barrier (BBB) disruption. Coagulation proteins, including factor (F)XII, can serve as important mediators of the adaptive immune response during neuroinflammation. Indeed, plasma FXII levels are increased during relapse in relapsing-remitting MS patients, and previous studies showed that reducing FXII levels was protective in a murine model of MS, experimental autoimmune encephalomyelitis (EAE). Our objective was to determine if pharmacological targeting of FXI, a major substrate of activated FXII (FXIIa), improves neurological function and attenuates CNS damage in the setting of EAE. EAE was induced in male mice using murine myelin oligodendrocyte glycoprotein peptides combined with heat-inactivated Mycobacterium tuberculosis and pertussis toxin. Upon onset of symptoms, mice were treated every other day intravenously with anti-FXI antibody, 14E11, or saline. Disease scores were recorded daily until euthanasia for ex vivo analyses of inflammation. Compared to the vehicle control, 14E11 treatment reduced the clinical severity of EAE and total mononuclear cells, including CD11b+CD45high macrophage/microglia and CD4+ T cell numbers in brain. Following pharmacological targeting of FXI, BBB disruption was reduced, as measured by decreased axonal damage and fibrin(ogen) accumulation in the spinal cord. These data demonstrate that pharmacological inhibition of FXI reduces disease severity, immune cell migration, axonal damage, and BBB disruption in mice with EAE. Thus, therapeutic agents targeting FXI and FXII may provide a useful approach for treating autoimmune and neurologic disorders.
Collapse
Affiliation(s)
- Tia C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA.
| | - Meghan E Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Ethan C Oseas
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Laura D Healy
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| | - David Gailani
- Department of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Norah G Verbout
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| |
Collapse
|
8
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
9
|
Scimone C, Alibrandi S, Donato L, De Gaetano GV, Fusco C, Nardella G, Castori M, Rinaldi C, Alafaci C, Germanò A, D'Angelo R, Sidoti A. Amplification of protease-activated receptors signaling in sporadic cerebral cavernous malformation endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119474. [PMID: 37030452 DOI: 10.1016/j.bbamcr.2023.119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
In the central nervous system, thrombin-mediated activation of protease-activated receptors (PARs) results in neuroinflammation and increased vascular permeability. These events have been linked to cancer and neurodegeneration. Endothelial cells (ECs) isolated from sporadic cerebral cavernous malformation (CCM) specimens showed dysregulation of genes involved in "thrombin-mediated PAR-1 activation" signaling. CCM is a vascular disease involving brain capillaries. In CCM, ECs show defective cell junctions. Oxidative stress and neuroinflammation play a key role in disease onset and progression. In order to confirm the possible role of thrombin pathway in sporadic CCM pathogenesis, we evaluated PARs expression in CCM-ECs. We found that sporadic CCM-ECs overexpress PAR1, PAR3 and PAR4, together with other coagulation factor encoding genes. Moreover, we investigated about expression of the three familial CCM genes (KRIT1, CCM2 and PDCD10) in human cerebral microvascular ECs, following thrombin exposure, as well as protein level. Thrombin exposure affects EC viability and results in dysregulation of CCM gene expression and, then, in decreased protein level. Our results confirm amplification of PAR pathway in CCM suggesting, for the first time, the possible role of PAR1-mediated thrombin signaling in sporadic CCM. Thrombin-mediated PARs over activation results in increased blood-brain barrier permeability due to loss of cell junction integrity and, in this context, also the three familial CCM genes may be involved.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, C.da Papardo-Sperone 31, 98100 Messina, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | | | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy.
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| |
Collapse
|
10
|
Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG. Mitochondrial Dysfunction, Oxidative Stress, and Therapeutic Strategies in Diabetes, Obesity, and Cardiovascular Disease. Antioxidants (Basel) 2023; 12:antiox12030658. [PMID: 36978905 PMCID: PMC10045078 DOI: 10.3390/antiox12030658] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mitochondria are subcellular organelles involved in essential cellular functions, including cytosolic calcium regulation, cell apoptosis, and reactive oxygen species production. They are the site of important biochemical pathways, including the tricarboxylic acid cycle, parts of the ureagenesis cycle, or haem synthesis. Mitochondria are responsible for the majority of cellular ATP production through OXPHOS. Mitochondrial dysfunction has been associated with metabolic pathologies such as diabetes, obesity, hypertension, neurodegenerative diseases, cellular aging, and cancer. In this article, we describe the pathophysiological changes in, and mitochondrial role of, metabolic disorders (diabetes, obesity, and cardiovascular disease) and their correlation with oxidative stress. We highlight the genetic changes identified at the mtDNA level. Additionally, we selected several representative biomarkers involved in oxidative stress and summarize the progress of therapeutic strategies.
Collapse
Affiliation(s)
- Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Correspondence: (A.G.); (C.-E.V.)
| | - Lucian-Mihai Antoci
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Cristian-Gabriel Ciobanu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street, No. 62, 700309 Iasi, Romania
| | - Cristiana-Elena Vlad
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Nephrology-Internal Medicine, “Dr. C. I. Parhon” Clinical Hospital, 700503 Iasi, Romania
- Correspondence: (A.G.); (C.-E.V.)
| | - Mihaela Blaj
- Anaesthesia and Intensive Care Department, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Anaesthesia and Intensive Care Department, Sf. Spiridon University Hospital, 700111 Iasi, Romania
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| |
Collapse
|
11
|
Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, Wang X, Li W. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion 2023; 69:71-82. [PMID: 36709855 DOI: 10.1016/j.mito.2023.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Blood-brain barrier disruption plays an important role in central nervous system diseases. This review provides information on the role of mitochondrial oxidative stress in brain microvascular endothelial cells in cellular dysfunction, the disruption of intercellular junctions, transporter dysfunction, abnormal angiogenesis, neurovascular decoupling, and the involvement and aggravation of vascular inflammation and illustrates related molecular mechanisms. In addition, recent drug and nondrug therapies targeting cerebral vascular endothelial cell mitochondria to repair the blood-brain barrier are discussed. This review shows that mitochondrial oxidative stress disorder in brain microvascular endothelial cells plays a key role in the occurrence and development of blood-brain barrier damage and may be critical in various pathological mechanisms of blood-brain barrier damage. These new findings suggest a potential new strategy for the treatment of central nervous system diseases through mitochondrial modulation of cerebral vascular endothelial cells.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Xin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
12
|
Cheng S, Wu D, Yuan L, Liu H, Ei-Seedi HR, Du M. Crassostrea gigas-Based Bioactive Peptide Protected Thrombin-Treated Endothelial Cells against Thrombosis and Cell Barrier Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9664-9673. [PMID: 35900011 DOI: 10.1021/acs.jafc.2c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The activation of thrombin-treated endothelial cells resulted in disruption of the vascular tissues. A novel oyster-derived bioactive dodecapeptide (IEELEELEAER, P-2-CG) was reported to protect the human umbilical vein endothelial cells and their barrier function via the decrease of VE-cadherin disruption and the restoration of the F-actin arrangement. The promotion of the extrinsic pathway in this case triggers the release of tissue factors that occurs on the surface of the endothelial cells, thus changing the antithrombotic to prothrombotic. P-2-CG induced accordingly a prolongation of plasma clotting time and thrombin generation time, following the alteration of the antithrombotic phenotype. Furthermore, the antithrombotic activity of P-2-CG was also supported by the reduction of FXa and the inhibition of other factors release, for instance, inflammation factors, ROS, etc. In addition to its antithrombogenic role, P-2-CG displayed anti-inflammatory and antioxidant properties via the mitogen-activated protein kinase cascades and central signaling pathways as shown in an in vitro model of endothelial dysfunction.
Collapse
Affiliation(s)
- Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Di Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lushun Yuan
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75123, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Zolotoff C, Puech C, Roche F, Perek N. Effects of intermittent hypoxia with thrombin in an in vitro model of human brain endothelial cells and their impact on PAR-1/PAR-3 cleavage. Sci Rep 2022; 12:12305. [PMID: 35853902 PMCID: PMC9296553 DOI: 10.1038/s41598-022-15592-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with obstructive sleep apnea/hypopnea (OSA) are at high risk of cerebrovascular diseases leading to cognitive impairment. The oxidative stress generated by intermittent hypoxia (IH) could lead to an increase in blood-brain barrier (BBB) permeability, an essential interface for the protection of the brain. Moreover, in patients with OSA, blood coagulation could be increased leading to cardiovascular complications. Thrombin is a factor found increased in these populations that exerts various cellular effects through activation of protease activated receptors (PARs). Thus, we have evaluated in an in vitro BBB model the association of IH with thrombin at two concentrations. We measured the apparent BBB permeability, expression of tight junctions, ROS production, HIF-1α expression, and cleavage of PAR-1/PAR-3. Pre-treatment with dabigatran was performed. IH and higher thrombin concentrations altered BBB permeability: high levels of HIF-1α expression, ROS and PAR-1 activation compared to PAR-3 in such conditions. Conversely, lower concentration of thrombin associated with IH appear to have a protective effect on BBB with a significant cleavage of PAR-3. Dabigatran reversed the deleterious effect of thrombin at high concentrations but also suppressed the beneficial effect of low dose thrombin. Therefore, thrombin and PARs represent novel attractive targets to prevent BBB opening in OSA.
Collapse
Affiliation(s)
- Cindy Zolotoff
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France. .,Faculté de Médecine - Campus Santé Innovations, 10 Rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Clémentine Puech
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Frédéric Roche
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France.,Service de Physiologie Clinique Et de L'Exercice, Centre VISAS, CHU Saint Etienne, Saint-Priest-en-Jarez, France
| | - Nathalie Perek
- INSERM, U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France
| |
Collapse
|
14
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
15
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Abstract
During sepsis, an initial prothrombotic shift takes place, in which coagulatory acute-phase proteins are increased, while anticoagulatory factors and platelet count decrease. Further on, the fibrinolytic system becomes impaired, which contributes to disease severity. At a later stage in sepsis, coagulation factors may become depleted, and sepsis patients may shift into a hypo-coagulable state with an increased bleeding risk. During the pro-coagulatory shift, critically ill patients have an increased thrombosis risk that ranges from developing micro-thromboses that impair organ function to life-threatening thromboembolic events. Here, thrombin plays a key role in coagulation as well as in inflammation. For thromboprophylaxis, low molecular weight heparins (LMWH) and unfractionated heparins (UFHs) are recommended. Nevertheless, there are conditions such as heparin resistance or heparin-induced thrombocytopenia (HIT), wherein heparin becomes ineffective or even puts the patient at an increased prothrombotic risk. In these cases, argatroban, a direct thrombin inhibitor (DTI), might be a potential alternative anticoagulatory strategy. Yet, caution is advised with regard to dosing of argatroban especially in sepsis. Therefore, the starting dose of argatroban is recommended to be low and should be titrated to the targeted anticoagulation level and be closely monitored in the further course of treatment. The authors of this review recommend using DTIs such as argatroban as an alternative anticoagulant in critically ill patients suffering from sepsis or COVID-19 with suspected or confirmed HIT, HIT-like conditions, impaired fibrinolysis, in patients on extracorporeal circuits and patients with heparin resistance, when closely monitored.
Collapse
|
17
|
Blood-Brain Barrier Disruption Mediated by FFA1 Receptor-Evidence Using Miniscope. Int J Mol Sci 2022; 23:ijms23042258. [PMID: 35216375 PMCID: PMC8875452 DOI: 10.3390/ijms23042258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), obtained from diet and dietary supplements, have been tested in clinical trials for the prevention or treatment of several diseases. n-3 PUFAs exert their effects by activation of free fatty acid (FFA) receptors. FFA1 receptor, expressed in the pancreas and brain, is activated by medium- to long-chain fatty acids. Despite some beneficial effects on cognition, the effects of n-3 PUFAs on the blood-brain barrier (BBB) are not clearly understood. We examined the effects of FFA1 activation on BBB permeability in vitro, using rat brain microvascular endothelial cells (RBMVEC), and in vivo, by assessing Evans Blue extravasation and by performing live imaging of brain microcirculation in adult rats. AMG837, a synthetic FFA1 agonist, produced a dose-dependent decrease in RBMVEC monolayer resistance assessed with Electric Cell-Substrate Impedance Sensing (ECIS); the effect was attenuated by the FFA1 antagonist, GW1100. Immunofluorescence studies revealed that AMG837 produced a disruption in tight and adherens junction proteins. AMG837 increased Evans Blue content in the rat brain in a dose-dependent manner. Live imaging studies of rat brain microcirculation with miniaturized fluorescence microscopy (miniscope) showed that AMG837 increased extravasation of sodium fluorescein. Taken together, our results demonstrate that FFA1 receptor activation reduced RBMVEC barrier function and produced a transient increase in BBB permeability.
Collapse
|
18
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
19
|
Sun K, Hu X, Feng Z, Wang H, Lv H, Wang Z, Zhang G, Xu S, You X. Predicting Ca 2+ and Mg 2+ ligand binding sites by deep neural network algorithm. BMC Bioinformatics 2022; 22:324. [PMID: 35045825 PMCID: PMC8772041 DOI: 10.1186/s12859-021-04250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Alkaline earth metal ions are important protein binding ligands in human body, and it is of great significance to predict their binding residues. Results In this paper, Mg2+ and Ca2+ ligands are taken as the research objects. Based on the characteristic parameters of protein sequences, amino acids, physicochemical characteristics of amino acids and predicted structural information, deep neural network algorithm is used to predict the binding sites of proteins. By optimizing the hyper-parameters of the deep learning algorithm, the prediction results by the fivefold cross-validation are better than those of the Ionseq method. In addition, to further verify the performance of the proposed model, the undersampling data processing method is adopted, and the prediction results on independent test are better than those obtained by the support vector machine algorithm. Conclusions An efficient method for predicting Mg2+ and Ca2+ ligand binding sites was presented.
Collapse
Affiliation(s)
- Kai Sun
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, People's Republic of China
| | - Xiuzhen Hu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China. .,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, People's Republic of China.
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, People's Republic of China
| | - Hongbin Wang
- College of Data Science and Application, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Haotian Lv
- College of Data Science and Application, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Ziyang Wang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, People's Republic of China
| | - Gaimei Zhang
- Hohhot First Hospital, Hohhot, 010051, People's Republic of China
| | - Shuang Xu
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, People's Republic of China
| | - Xiaoxiao You
- College of Sciences, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China.,Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot, People's Republic of China
| |
Collapse
|
20
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
21
|
Scimone C, Alibrandi S, Donato L, Alafaci C, Germanò A, Vinci SL, D'Angelo R, Sidoti A. Editome landscape of CCM-derived endothelial cells. RNA Biol 2022; 19:852-865. [PMID: 35771000 PMCID: PMC9248949 DOI: 10.1080/15476286.2022.2091306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By regulating several phases of gene expression, RNA editing modifications contribute to maintaining physiological RNA expression levels. RNA editing dysregulation can affect RNA molecule half-life, coding/noncoding RNA interaction, alternative splicing, and circular RNA biogenesis. Impaired RNA editing has been observed in several pathological conditions, including cancer and Alzheimer's disease. No data has been published yet on the editome profile of endothelial cells (ECs) isolated from human cerebral cavernous malformation (CCM) lesions. Here, we describe a landscape of editome modifications in sporadic CCM-derived ECs (CCM-ECs) by comparing editing events with those observed in human brain microvascular endothelial cells (HBMECs). With a whole transcriptome-based variant calling pipeline, we identified differential edited genes in CCM-ECs that were enriched in pathways related to angiogenesis, apoptosis and cell survival, inflammation and, in particular, to thrombin signalling mediated by protease-activated receptors and non-canonical Wnt signalling. These pathways, not yet associated to CCM development, could be a novel field for further investigations on CCM molecular mechanisms. Moreover, enrichment analysis of differentially edited miRNAs suggested additional small noncoding transcripts to consider for development of targeted therapies.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sergio L Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| |
Collapse
|
22
|
Kong L, Gu PP, Tang ZZ, Gou LS, Liu YW. High glucose upregulates PAR-1 in SH-SY5Y cells via deficiency of miR-20a and miR-190a. Fundam Clin Pharmacol 2021; 36:509-517. [PMID: 34904279 DOI: 10.1111/fcp.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Thrombin activity enhancement and its receptor protease-activated receptor 1 (PAR-1) activation play vital roles in neurologic deficits in the central nervous system. Our recent study showed that PAR-1 upregulation stimulated by chronic high glucose (HG) caused central neuron injury through neuroinflammation; however, the molecular mechanisms are far from clear. In the present study, we found that HG resulted in neuronal injury of SH-SY5Y cells as evidenced by decreased cell viability and increased lactate dehydrogenase release and elevated the mRNA level of PAR-1. Moreover, we predicted and determined several potential microRNAs (miRs) combining with the 3'-UTR of PAR-1 mRNA, finding that miR-20a-5p, miR-93-5p, and miR-190a-5p were significantly decreased in HG-cultured SH-SY5Y cells compared with control. Further, SH-SY5Y cells stably transfected with miR-20a-5p or miR-190a-5p mimic were established, and overexpression efficiency were confirmed. It was found that miR-20a-5p or miR-190a-5p overexpression markedly decreased PAR-1 mRNA level and protein expression in SH-SY5Y cells cultured with HG and normal glucose, indicating that miR-20a or miR-19a deficiency contributed to HG-induced PAR-1 upregulation. Together, our findings demonstrated that PAR-1 upregulation mediated HG-induced neuronal damage in central neurons, which was achieved through miR-20a or miR-190a deficiency.
Collapse
Affiliation(s)
- Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Pan-Pan Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhuang-Zhuang Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Kouki MA, Pritchard AB, Alder JE, Crean S. Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer's Disease? J Alzheimers Dis 2021; 85:957-973. [PMID: 34897087 DOI: 10.3233/jad-215103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is protected by a highly selective barrier, the blood-brain barrier (BBB), that regulates the exchange and homeostasis of bloodborne molecules, excluding xenobiotics. This barrier forms the first line of defense by prohibiting pathogens from crossing to the CNS. Aging and chronic exposure of the BBB to pathogens renders it permeable, and this may give rise to pathology in the CNS such as Alzheimer's disease (AD). Researchers have linked pathogens associated with periodontitis to neuroinflammation and AD-like pathology in vivo and in vitro. Although the presence of periodontitis-associated bacteria has been linked to AD in several clinical studies as DNA and virulence factors were confirmed in brain samples of human AD subjects, the mechanism by which the bacteria traverse to the brain and potentially influences neuropathology is unknown. In this review, we present current knowledge about the association between periodontitis and AD, the mechanism whereby periodontal pathogens might provoke neuroinflammation and how periodontal pathogens could affect the BBB. We suggest future studies, with emphasis on the use of human in vitro models of cells associated with the BBB to unravel the pathway of entry for these bacteria to the CNS and to reveal the molecular and cellular pathways involved in initiating the AD-like pathology. In conclusion, evidence demonstrate that bacteria associated with periodontitis and their virulence factors are capable of inflecting damage to the BBB and have a role in giving rise to pathology similar to that found in AD.
Collapse
Affiliation(s)
- Mhd Ammar Kouki
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anna Barlach Pritchard
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Jane Elizabeth Alder
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - StJohn Crean
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
24
|
ten Cate H, Guzik TJ, Eikelboom J, Spronk HMH. Pleiotropic actions of factor Xa inhibition in cardiovascular prevention: mechanistic insights and implications for anti-thrombotic treatment. Cardiovasc Res 2021; 117:2030-2044. [PMID: 32931586 PMCID: PMC8318102 DOI: 10.1093/cvr/cvaa263] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which atherothrombotic complications lead to cardiovascular morbidity and mortality. At advanced stages, myocardial infarction, ischaemic stroke, and peripheral artery disease, including major adverse limb events, are caused either by acute occlusive atherothrombosis or by thromboembolism. Endothelial dysfunction, vascular smooth muscle cell activation, and vascular inflammation are essential in the development of acute cardiovascular events. Effects of the coagulation system on vascular biology extend beyond thrombosis. Under physiological conditions, coagulation proteases in blood are pivotal in maintaining haemostasis and vascular integrity. Under pathological conditions, including atherosclerosis, the same coagulation proteases (including factor Xa, factor VIIa, and thrombin) become drivers of atherothrombosis, working in concert with platelets and vessel wall components. While initially atherothrombosis was attributed primarily to platelets, recent advances indicate the critical role of fibrin clot and plasma coagulation factors. Mechanisms of atherothrombosis and hypercoagulability vary depending on plaque erosion or plaque rupture. In addition to contributing to thrombus formation, factor Xa and thrombin can affect endothelial dysfunction, oxidative stress, vascular smooth muscle cell function as well as immune cell activation and vascular inflammation. By these mechanisms, they promote atherosclerosis and contribute to plaque instability. In this review, we first discuss the postulated vasoprotective mechanisms of protease-activated receptor signalling induced by coagulation enzymes under physiological conditions. Next, we discuss preclinical studies linking coagulation with endothelial cell dysfunction, thromboinflammation, and atherogenesis. Understanding these mechanisms is pivotal for the introduction of novel strategies in cardiovascular prevention and therapy. We therefore translate these findings to clinical studies of direct oral anticoagulant drugs and discuss the potential relevance of dual pathway inhibition for atherothrombosis prevention and vascular protection.
Collapse
Affiliation(s)
- Hugo ten Cate
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tomasz J Guzik
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - John Eikelboom
- Population Health Research Institute, Hamilton General Hospital and McMaster University, Hamilton, L8L 2x2, ON, Canada
| | - Henri M H Spronk
- Department of Internal Medicine, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Biochemistry, Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
25
|
Kong L, Liu Y, Zhang YM, Li Y, Gou LS, Ma TF, Liu YW. Sarsasapogenin ameliorates diabetes-associated memory impairment and neuroinflammation through down-regulation of PAR-1 receptor. Phytother Res 2021; 35:3167-3180. [PMID: 33885189 DOI: 10.1002/ptr.7005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Sarsasapogenin (Sar), a natural steroidal compound, shows neuroprotection, cognition-enhancement, antiinflammation, antithrombosis effects, and so on. However, whether Sar has ameliorative effects on diabetes-associated cognitive impairment remains unknown. In this study, we found that Sar ameliorated diabetes-associated memory impairment in streptozotocin-induced diabetic rats, evidenced by increased numbers of crossing platform and percentage of time spent in the target quadrant in Morris water maze tests, and suppressed the nucleotide-binding domain and leucine-rich repeat containing protein 1 (NLRP1) inflammasome in hippocampus and cerebral cortex. Furthermore, Sar inhibited advanced glycation end-products and its receptor (AGEs/RAGE) axis and suppressed up-regulation of thrombin receptor protease-activated receptor 1 (PAR-1) in cerebral cortex. On the other hand, Sar mitigated high glucose-induced neuronal damages, NLRP1 inflammasome activation, and PAR-1 up-regulation in high glucose-cultured SH-SY5Y cells, but did not affect thrombin activity. Moreover, the effects of Sar were similar to those of a selective PAR-1 antagonist vorapaxar. Further studies indicated that activation of the NLRP1 inflammasome and NF-κB mediated the effect of PAR-1 up-regulation in high glucose condition by using PAR-1 knockdown assay. In summary, this study demonstrated that Sar prevented memory impairment caused by diabetes, which was achieved through suppressing neuroinflammation from activated NLRP1 inflammasome and NF-κB regulated by cerebral PAR-1. HIGHLIGHTS: Sarsasapogenin ameliorated memory impairment caused by diabetes in rats. Sarsasapogenin mitigated neuronal damages and neuroinflammation by down-regulating cerebral PAR-1. The NLRP1 inflammasome and NF-κB signaling mediated the pro-inflammatory effects of PAR-1. Sarsasapogenin was a pleiotropic neuroprotective agent and memory enhancer in diabetic rodents.
Collapse
Affiliation(s)
- Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu, China
| | - Teng-Fei Ma
- Institute for Stem Cell and Neural Regeneration; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Jordan KR, Parra-Izquierdo I, Gruber A, Shatzel JJ, Pham P, Sherman LS, McCarty OJT, Verbout NG. Thrombin generation and activity in multiple sclerosis. Metab Brain Dis 2021; 36:407-420. [PMID: 33411219 PMCID: PMC7864536 DOI: 10.1007/s11011-020-00652-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The coagulation cascade and immune system are intricately linked, highly regulated and respond cooperatively in response to injury and infection. Increasingly, evidence of hyper-coagulation has been associated with autoimmune disorders, including multiple sclerosis (MS). The pathophysiology of MS includes immune cell activation and recruitment to the central nervous system (CNS) where they degrade myelin sheaths, leaving neuronal axons exposed to damaging inflammatory mediators. Breakdown of the blood-brain barrier (BBB) facilitates the entry of peripheral immune cells. Evidence of thrombin activity has been identified within the CNS of MS patients and studies using animal models of experimental autoimmune encephalomyelitis (EAE), suggest increased thrombin generation and activity may play a role in the pathogenesis of MS as well as inhibit remyelination processes. Thrombin is a serine protease capable of cleaving multiple substrates, including protease activated receptors (PARs), fibrinogen, and protein C. Cleavage of all three of these substrates represent pathways through which thrombin activity may exert immuno-regulatory effects and regulate permeability of the BBB during MS and EAE. In this review, we summarize evidence that thrombin activity directly, through PARs, and indirectly, through fibrin formation and activation of protein C influences neuro-immune responses associated with MS and EAE pathology.
Collapse
Affiliation(s)
- Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA.
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - András Gruber
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
- Aronora Inc, Portland, OR, USA
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Norah G Verbout
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Aronora Inc, Portland, OR, USA
| |
Collapse
|
28
|
Endothelial Protease Activated Receptor 1 (PAR1) Signalling Is Required for Lymphocyte Transmigration across Brain Microvascular Endothelial Cells. Cells 2020; 9:cells9122723. [PMID: 33371217 PMCID: PMC7766634 DOI: 10.3390/cells9122723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Lymphocyte transendothelial migration (TEM) relies on ICAM-1 engagement on the luminal surface of the endothelial cells (ECs). In blood–brain barrier (BBB) ECs, ICAM-1 triggers TEM signalling, including through JNK MAP kinase and AMP-activated protein kinase (AMPK), which lead to the phosphorylation and internalisation of the adherens junction protein VE-cadherin. In addition to ICAM-1, G protein-coupled receptors (GPCRs) are also required for lymphocytes TEM across BBB ECs. Here, we investigated the role of protease activated GPCRs (PARs) and found a specific role for PAR1 in support of lymphocyte TEM across BBB ECs in vitro. PAR1 requirement for TEM was confirmed using protease inhibitors, specific small molecule and peptide antagonists, function blocking antibodies and siRNA-mediated knockdown. In BBB ECs, PAR1 stimulation led to activation of signalling pathways essential to TEM; notably involving JNK and endothelial nitric oxide synthase (eNOS), with the latter downstream of AMPK. In turn, nitric oxide production through eNOS was essential for TEM by modulating VE-cadherin on Y731. Collectively, our data showed that non-canonical PAR1 activation by a lymphocyte-released serine protease is required for lymphocyte TEM across the BBB in vitro, and that this feeds into previously established ICAM-1-mediated endothelial TEM signalling pathways.
Collapse
|
29
|
Wenzel J, Spyropoulos D, Assmann JC, Khan MA, Stölting I, Lembrich B, Kreißig S, Ridder DA, Isermann B, Schwaninger M. Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain—Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2837-2844. [DOI: 10.1161/atvbaha.120.315061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
THBD (thrombomodulin) is part of the anticoagulant protein C-system that acts at the endothelium and is involved in anti-inflammatory and barrier-stabilizing processes. A recombinant soluble form of THBD was shown to have protective effects in different organs, but how the endogenous THBD is regulated during ischemia, particularly in the brain is not known to date. The aim of this study was to investigate the role of THBD, especially in brain endothelial cells, during ischemic stroke.
Approach and Results:
To induce ischemic brain damage, we occluded the middle cerebral artery of mice. We found an increased endothelial expression of
Thbd
in the peri-infarct area, whereas in the core of the ischemic tissue
Thbd
expression was decreased compared with the contralateral side. We generated a novel Cre/loxP-based mouse line that allows for the inducible deletion of
Thbd
specifically in brain endothelial cells, which worsened stroke outcome 48 hours after middle cerebral artery occlusion. Unexpectedly, we found no signs of increased coagulation, thrombosis, or inflammation in the brain but decreased vessel diameters and impaired angiogenesis in the peri-infarct area that led to a reduced overall vessel length 1 week after stroke induction.
Conclusions:
Endogenous THBD acts as a protective factor in the brain during ischemic stroke and enhances vessel diameter and proliferation. These previously unknown properties of THBD could offer new opportunities to affect vessel function after ischemia and thereby improve stroke outcome.
Collapse
Affiliation(s)
- Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| | - Dimitrios Spyropoulos
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| | - Julian Christopher Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Mahtab Ahmad Khan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Beate Lembrich
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Sara Kreißig
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | | | - Berend Isermann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany (B.I.)
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| |
Collapse
|
30
|
Ye F, Garton HJL, Hua Y, Keep RF, Xi G. The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Transl Stroke Res 2020; 12:496-511. [PMID: 32989665 DOI: 10.1007/s12975-020-00855-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Thrombin is increased in the brain after hemorrhagic and ischemic stroke primarily due to the prothrombin entry from blood either with a hemorrhage or following blood-brain barrier disruption. Increasing evidence indicates that thrombin and its receptors (protease-activated receptors (PARs)) play a major role in brain pathology following ischemic and hemorrhagic stroke (including intracerebral, intraventricular, and subarachnoid hemorrhage). Thrombin and PARs affect brain injury via multiple mechanisms that can be detrimental or protective. The cleavage of prothrombin into thrombin is the key step of hemostasis and thrombosis which takes place in every stroke and subsequent brain injury. The extravascular effects and direct cellular interactions of thrombin are mediated by PARs (PAR-1, PAR-3, and PAR-4) and their downstream signaling in multiple brain cell types. Such effects include inducing blood-brain-barrier disruption, brain edema, neuroinflammation, and neuronal death, although low thrombin concentrations can promote cell survival. Also, thrombin directly links the coagulation system to the immune system by activating interleukin-1α. Such effects of thrombin can result in both short-term brain injury and long-term functional deficits, making extravascular thrombin an understudied therapeutic target for stroke. This review examines the role of thrombin and PARs in brain injury following hemorrhagic and ischemic stroke and the potential treatment strategies which are complicated by their role in both hemostasis and brain.
Collapse
Affiliation(s)
- Fenghui Ye
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Hugh J L Garton
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
31
|
1-Chromonyl-5-Imidazolylpentadienone Demonstrates Anti-Cancer Action against TNBC and Exhibits Synergism with Paclitaxel. Int J Mol Sci 2020; 21:ijms21165777. [PMID: 32806551 PMCID: PMC7460825 DOI: 10.3390/ijms21165777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Curcumin has been well studied for its anti-oxidant, anti-inflammatory, and anti-cancer action. Its potential as a therapy is limited due to its low bioavailability and rapid metabolism. To overcome these challenges, investigators are developing curcumin analogs, nanoparticle formulations, and combining curcumin with other compounds or dietary components. In the present study, we used a 1-chromonyl-5-imidazolylpentadienone named KY-20-22 that contains both the pharmacophore of curcumin and 1,4 benzopyrone (chromone) moiety typical for flavonoids, and also included specific moieties to enhance the bioavailability. When we tested the in vitro effect of KY-20-22 in triple-negative breast cancer (TNBC) cell lines, we found that it decreased the cell survival and colony formation of MDA-MB-231 and MDA-MB-468 cells. An increase in mitochondrial reactive oxygen species was also observed in TNBC cells exposed to KY-20-22. Furthermore, KY-20-22 decreased epithelial-mesenchymal formation (EMT) as evidenced by the modulation of the EMT markers E-cadherin and N-cadherin. Based on the fact that KY-20-22 regulates interleukin-6, a cytokine involved in chemotherapy resistance, we combined it with paclitaxel and found that it synergistically induced anti-proliferative action in TNBC cells. The results from this study suggested that 1-chromonyl-5-imidazolylpentadienone KY-20-22 exhibited anti-cancer action in MDA-MB-231 and MDA-MB-468 cells. Future studies are required to evaluate the anti-cancer ability and bioavailability of KY-20-22 in the TNBC animal model.
Collapse
|
32
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
33
|
Puech C, Delavenne X, He Z, Forest V, Mismetti P, Perek N. Direct oral anticoagulants are associated with limited damage of endothelial cells of the blood-brain barrier mediated by the thrombin/PAR-1 pathway. Brain Res 2019; 1719:57-63. [DOI: 10.1016/j.brainres.2019.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/01/2022]
|
34
|
Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca 2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2019; 235:1515-1530. [PMID: 31310018 DOI: 10.1002/jcp.29071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 μM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Mario Garcia-Carrasco
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
GPR55-mediated effects on brain microvascular endothelial cells and the blood-brain barrier. Neuroscience 2019; 414:88-98. [PMID: 31279825 DOI: 10.1016/j.neuroscience.2019.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
GPR55, an atypical cannabinoid receptor activated by lysophosphatidylinositol (LPI) has been involved in various physiological and pathological processes. We examined the effect of GPR55 activation on rat brain microvascular endothelial cells (RBMVEC), an essential component of the blood-brain barrier (BBB). GPR55 was detected in RBMVEC by western blot and immunocytochemistry. Treatment of RBMVEC with LPI increased cytosolic Ca2+ concentration, [Ca2+]i, in a concentration-dependent manner; the effect was abolished by the GPR55 antagonist, ML-193. Repetitive application of LPI induced tachyphylaxis. LPI-induced increase in [Ca2+]i was not sensitive to U-73122, a phospholipase C inhibitor, but was abolished by the blockade of voltage-gated Ca2+ channels or in Ca2+-free saline, indicating that Ca2+ influx was involved in this response. LPI induced a biphasic change in RBMVEC membrane potential: a fast depolarization followed by a long-lasting hyperpolarization. The hyperpolarization phase was prevented by apamin and charibdotoxin, inhibitors of small- and intermediate-conductance Ca2+-activated K+ channels (KCa). Immunofluorescence studies indicate that LPI produced transient changes in tight and adherens junctions proteins and F-actin stress fibers. LPI decreased the electrical resistance of RBMVEC monolayer assessed with Electric Cell-Substrate Impedance Sensing (ECIS) in a dose-dependent manner. In vivo studies indicate that systemic administration of LPI increased the permeability of the BBB, assessed with Evans Blue method. Taken together, our results indicate that GPR55 activation modulates the function of endothelial cells of brain microvessels, produces a transient reduction in endothelial barrier function and increases BBB permeability.
Collapse
|
36
|
Hao XD, Le CS, Zhang HM, Shang DS, Tong LS, Gao F. Thrombin disrupts vascular endothelial-cadherin and leads to hydrocephalus via protease-activated receptors-1 pathway. CNS Neurosci Ther 2019; 25:1142-1150. [PMID: 30955248 DOI: 10.1111/cns.13129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Previous studies indicated that intraventricular injection of thrombin would induce hydrocephalus. But how thrombin works in this process remains unclear. Since cadherin plays a critical role in hydrocephalus, we aimed to explore the mechanisms of how thrombin acted on choroid plexus vascular endothelium and how thrombin interacted with vascular endothelial-cadherin (VE-cadherin) during hydrocephalus. METHODS There were two parts in this study. Firstly, rats received an injection of saline or thrombin into the right lateral ventricle. Magnetic resonance imaging was applied to measure the lateral ventricle volumes. Albumin leakage and Evans blue content were assessed to test the blood-brain barrier function. Immunofluorescence and Western blot were applied to detect the location and the expression of VE-cadherin. Secondly, we observed the roles of protease-activated receptors-1 (PAR1) inhibitor (SCH79797), Src inhibitor (PP2), p21-activated kinase-1 (PAK1) inhibitor (IPA3) in the thrombin-induced hydrocephalus, and their effects on the regulation of VE-cadherin. RESULTS Our study demonstrated that intraventricular injection of thrombin caused significant downregulation of VE-cadherin in choroid plexus and dilation of ventricles. In addition, the inhibition of PAR1/p-Src/p-PAK1 pathway reversed the decrease of VE-cadherin and attenuated thrombin-induced hydrocephalus. CONCLUSIONS Our results suggested that the thrombin-induced hydrocephalus was associated with the inhibition of VE-cadherin via the PAR1/p-Src/p-PAK1 pathway.
Collapse
Affiliation(s)
- Xiao-Di Hao
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chen-Sheng Le
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hong-Mei Zhang
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - De-Sheng Shang
- School of Medicine, Department of Radiology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lu-Sha Tong
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Feng Gao
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Pleşeru AM, Mihailă RG. The role of thrombin in central nervous system activity and stroke. ACTA ACUST UNITED AC 2018; 91:368-371. [PMID: 30564010 PMCID: PMC6296729 DOI: 10.15386/cjmed-973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023]
Abstract
Background Thrombin is a key factor of hemostasis, mediating the conversion of fibrinogen into fibrin. Along with prothrombin, of which thrombin is the active derivative, it has been found locally expressed in the central nervous system. This article aims to describe the role of thrombin in the normal functioning of the central nervous system and stroke. Methods In this mini-review, the specialized databases Medscape, PubMed, and Web of Science, from the years 2003–2018, were used to find relevant documents by using MeSH terms: “thrombin” and “stroke”. Results Prothrombin and thrombin influence neural development, protection and regeneration, thrombin being a relatively strong regulating factor of brain function. However, high levels of thrombin are detrimental to neuronal health, and cause atherosclerotic plaque development and instability - a leading cause of cerebral infarction. In stroke, thrombin promotes direct cellular toxicity, vascular disruption, oxidative stress and inflammatory response. There is a direct correlation between thrombin activity in the affected brain hemisphere and the infarction volume. Direct acting thrombin inhibitors, like dabigatran, significantly decrease the risk of ischemic stroke. Conclusion Further studies on the correlation between thrombin levels, generation and activity and the risk and recurrence of ischemic cerebral stroke should give new insight on this association, resulting in an optimized practical therapeutic approach.
Collapse
Affiliation(s)
- Ancuţa-Maria Pleşeru
- Neurology Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, Romania.,Neurology Department, Emergency Clinical County Hospital Sibiu, Romania
| | - Romeo Gabriel Mihailă
- Hematology Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, Romania
| |
Collapse
|
38
|
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38:1255-1275. [PMID: 29737222 PMCID: PMC6092767 DOI: 10.1177/0271678x18774666] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | | | - David A Antonetti
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
- Department of Ophthalmology & Visual Science Medical School, University of Michigan Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
39
|
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833:531-544. [PMID: 29935175 DOI: 10.1016/j.ejphar.2018.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA; Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
40
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
41
|
Brailoiu E, Barlow CL, Ramirez SH, Abood ME, Brailoiu GC. Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells. Neuroscience 2018. [PMID: 29522856 DOI: 10.1016/j.neuroscience.2018.02.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator that exerts various pathophysiological effects by interacting with a G protein-coupled receptor. PAF has been reported to increase the permeability of the blood-brain barrier (BBB) via incompletely characterized mechanisms. We investigated the effect of PAF on rat brain microvascular endothelial cells (RBMVEC), a critical component of the BBB. PAF produced a dose-dependent increase in cytosolic Ca2+ concentration; the effect was prevented by the PAF receptor antagonist, WEB2086. The effect of PAF on cytosolic Ca2+ was abolished in Ca2+-free saline or in the presence of L-type voltage-gated Ca2+ channel inhibitor, nifedipine, indicating that Ca2+ influx is critical for PAF-induced increase in cytosolic Ca2+. PAF produced RBMVEC depolarization; the effect was inhibited by WEB2086. In cells loaded with [(4-amino-5-methylamino-2',7'-difluoro-fluorescein)diacetate] (DAF-FM), a nitric oxide (NO)-sensitive fluorescent dye, PAF increased the NO level; the effect was prevented by WEB2086, nifedipine or by l-NAME, an inhibitor of NO synthase. Immunocytochemistry studies indicate that PAF reduced the immunostaining of ZO-1, a tight junction-associated protein, increased F-actin fibers, and produced intercellular gaps. PAF produced a decrease in RBMVEC monolayer electrical resistance assessed with Electric Cell-Substrate Impedance Sensing (ECIS), indicative of a disruption of endothelial barrier function. In vivo studies indicate that PAF increased the BBB permeability, assessed with sodium fluorescein and Evans Blue methods, via PAF receptor-dependent mechanisms, consequent to Ca2+ influx and increased NO levels. Our studies reveal that PAF alters the BBB permeability by multiple mechanisms, which may be relevant for central nervous system (CNS) inflammatory disorders.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Christine L Barlow
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Servio H Ramirez
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States; Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|