1
|
Aguggia JP, Cornejo MP, Fernandez G, De Francesco PN, Mani BK, Cassano D, Cabral A, Valdivia S, García Romero G, Reynaldo M, Fehrentz JA, Zigman JM, Perello M. Growth hormone secretagogue receptor signaling in the supramammillary nucleus targets nitric oxide-producing neurons and controls recognition memory in mice. Psychoneuroendocrinology 2022; 139:105716. [PMID: 35290931 DOI: 10.1016/j.psyneuen.2022.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Ghrelin is a stomach-derived hormone that acts via the growth hormone secretagogue receptor (GHSR). Recent evidence suggests that some of ghrelin's actions may be mediated via the supramammillary nucleus (SuM). Not only does ghrelin bind to cells within the mouse SuM, but ghrelin also activates SuM cells and intra-SuM ghrelin administration induces feeding in rats. In the current study, we aimed to further characterize ghrelin action in the SuM. We first investigated a mouse model expressing enhanced green fluorescent protein (eGFP) under the promoter of GHSR (GHSR-eGFP mice). We found that the SuM of GHSR-eGFP mice contains a significant amount of eGFP cells, some of which express neuronal nitric oxide synthase. Centrally-, but not systemically-, injected ghrelin reached the SuM, where it induced c-Fos expression. Furthermore, a 5-day 40% calorie restriction protocol, but not a 2-day fast, increased c-Fos expression in non-eGFP+ cells of the SuM of GHSR-eGFP mice, whereas c-Fos induction by calorie restriction was not observed in GHSR-deficient mice. Exposure of satiated mice to a binge-like eating protocol also increased c-Fos expression in non-eGFP+ cells of the SuM of GHSR-eGFP mice in a GHSR-dependent manner. Finally, intra-SuM-injected ghrelin did not acutely affect food intake, locomotor activity, behavioral arousal or spatial memory but increased recognition memory. Thus, we provide a compelling neuroanatomical characterization of GHSR SuM neurons and its behavioral implications in mice.
Collapse
Affiliation(s)
- Julieta P Aguggia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
2
|
Seckler JM, Lewis SJ. Advances in D-Amino Acids in Neurological Research. Int J Mol Sci 2020; 21:ijms21197325. [PMID: 33023061 PMCID: PMC7582301 DOI: 10.3390/ijms21197325] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
D-amino acids have been known to exist in the human brain for nearly 40 years, and they continue to be a field of active study to today. This review article aims to give a concise overview of the recent advances in D-amino acid research as they relate to the brain and neurological disorders. This work has largely been focused on modulation of the N-methyl-D-aspartate (NMDA) receptor and its relationship to Alzheimer’s disease and Schizophrenia, but there has been a wealth of novel research which has elucidated a novel role for several D-amino acids in altering brain chemistry in a neuroprotective manner. D-amino acids which have no currently known activity in the brain but which have active derivatives will also be reviewed.
Collapse
Affiliation(s)
- James M. Seckler
- Department Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Stephen J. Lewis
- Department Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
3
|
Amino Acids in Health and Endocrine Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:97-109. [PMID: 32761572 DOI: 10.1007/978-3-030-45328-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dietary amino acids play an important role in maintaining health. Branched chain amino acids can adversely increase blood pressure whereas arginine and citrulline can reduce it. D-amino acids play important roles in several cell types including testis, the nervous system and adrenal glands. Several amino acids also can have dramatic effects on diabetes; branched chain amino acids, phenylalanine and tyrosine have been implicated while others, namely arginine and citrulline can improve outcomes. Leucine has been shown to play important roles in muscle primarily through the mTOR pathway though this effect does not translate across every population. Glutamine, arginine and D-aspartate also exert their muscle effects through mTOR. Relationships between amino acids and endocrine function include that of glucocorticoids, thyroid function, glucagon-like peptide 1 (GLP-1), ghrelin, insulin-like growth factor-1 (IGF-1) and leptin. Leucine, for example, can alleviate the effect of dexamethasone on muscle protein accretion. Interestingly, amino acid transporters play an important role in thyroid function. Several amino acids have been shown to increase GLP-1 levels in non-diabetics when administered orally. Similarly, several amino acids increase ghrelin levels in different species while cysteine can decrease it in mice. There is evidence to suggest that the arginine/NO pathway may be involved in modulating some of the effects of ghrelin on cells. In regard to IGF-1, branched chain amino acids can increase levels in adults while tryptophan and phenylalanine have been shown to increase levels in infants. Finally, leptin levels can be elevated by branched chain amino acids while restricting leucine in high fat diets can increase leptin sensitivity.
Collapse
|
4
|
Elamin MA, Youseif SM, Mohammed HA. Ghrelin, resistin and insulin in obese diabetic women in Wad-Madani, Sudan. Afr Health Sci 2020; 20:266-276. [PMID: 33402915 PMCID: PMC7750074 DOI: 10.4314/ahs.v20i1.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obesity in the Sudan is increasing at alarming rate with the tendency of reaching an epidemic proportion in women. It is commonly associated with type 2 diabetes (T2D). Some adipokine hormones such as resistin are associated with obesity. OBJECTIVES To study how the levels of resistin, ghrelin and insulin are associated with obesity,fat distribution and (T2D) and to ascertain any interrelationships between them. SUBJECTS AND METHODS 150 women, age ≥18 years old, resident in Wad-Madani town, Sudan were participated in the study. They were divided into 3 groups according to body mass index (BMI) value: I (normal weight), II (overweight) and III (obese diabetic). Fasting serum resistin and ghrelin concentrations were measured using ELISA method. Insulin levels were determined by radioimmunoassay(RIA). RESULTS The mean±SD levels of resistin 5.80±4.91ng/mL,Ghrelin107.60±26.67pg/M and Insulin 11.92±8.54mLU/ml in obese diabetic were found to be greater than in normal or overweight women. In normal weight values were 3.07±2.15 ng/mL 83.30±13.38pg/mL, and 6.62±6.77mLU/ml for resistini, ghrelin and Insulin, respectively. Values for overweight women 3.64±2.63 pg/mL 90±17.35 pg/mL and 8.13±7.54 mLU/ml for resistin, ghrelin and insulin respectively. CONCLUSIONS AND RECOMMENDATIONS Increased BMI, waist circumference (WC) and hormones (ghrelin and resistin) were associated with insulin resistance. Further studies are needed to accept or refute these findings.
Collapse
Affiliation(s)
- Mohammed Aliya Elamin
- Department of Medical Physiology, Faculty of Medicine, King Faisal University, Alahsa, Saudi Arabia
| | | | - Hamid Azhari Mohammed
- Department of Molecular Biology, Institute of Cancer, University of Gezira, Madani, Sudan
| |
Collapse
|
5
|
Structural and Functional Characterization of Conotoxins from Conus achatinus Targeting NMDAR. Mar Drugs 2020; 18:md18030135. [PMID: 32111068 PMCID: PMC7143421 DOI: 10.3390/md18030135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Conotoxin-Ac1 and its variant conotoxin-Ac1-O6P, were isolated from the venom duct of Conus achatinus, a fish-hunting cone snail species collected in the Sea of Hainan, China. Conotoxin-Ac1 is linear peptide that contain 15 amino acids. In the present study, we synthesized and structurally and functionally characterized conotoxin-Ac1 as well as 19 variants. Electrophysiological results showed that conotoxin-Ac1 inhibited N-methyl-D-aspartate receptor subunit 2B (NR2B) with an IC50 of 8.22 ± 0.022 μM. Further structure-activity studies of conotoxin-Ac demonstrated that polar amino acid residues were important for modulating its active, and the replacement of N1, O9, E10, and S12 by Ala resulted in a significant decrease in potency to NR2B. °Furthermore, conotoxin-Ac1 and conotoxin-Ac1-O6P were tested in hot-plate and tail-flick assays to measure the potential analgesic activity to an acute thermal stimulus in a dose-dependent manner. Subsequently, the analgesic activity of conotoxin-Ac1 mutants was analyzed by the hot-plate method. The results show that N1, Y2, Y3, E10, N11, S12, and T15 play an important role in the analgesic activity of conotoxin-Ac1. N1 and S12 have significant effects on conotoxin-Ac1 in inhibiting NR2B and analgesic activity. In conclusion, we have discovered that conotoxin-Ac1 is an inhibitor of NMDAR and displays antinociceptive activity.
Collapse
|