1
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
2
|
Webber HE, Badawi JC, Schmitz JM, Yoon JH, Calvillo DJ, Becker CI, Lane SD. Objective and subjective measurement of sleep in people who use substances: Emerging evidence and recommendations from a systematic review. J Sleep Res 2024:e14330. [PMID: 39238202 DOI: 10.1111/jsr.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
People who use substances commonly experience sleep disruptions, affecting the regulation of physical and mental health, and presenting a significant barrier to treatment success. Sleep impairments are noted in all phases of substance use; however, differences between subjective versus objective methods used to measure sleep quality have been reported. While polysomnography is the gold-standard for sleep measurement, recent advances in actigraphy may help address the discordance between subjective and objective sleep reports. This systematic review examined emerging evidence (2016-present) for sleep impairment in people who use substances, with the twofold goal of: (1) identifying whether sleep outcomes vary across substance type (alcohol, nicotine, cannabis, cocaine, methamphetamine and opioids); and (2) contrasting results from subjective and objective measures. While some differences between subjective and objective sleep were noted, there was overwhelming evidence of clinically relevant sleep impairment in people who use alcohol, nicotine, cocaine, methamphetamine and opioids, with less consistent results for cannabis. Gaps in the literature are identified and future recommendations are presented, including utilization of common methodological frameworks, identification of mechanisms, and closer examination of sleep across stages of substance use and the interconnection between sleep and return to use.
Collapse
Affiliation(s)
- Heather E Webber
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jessica C Badawi
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jin H Yoon
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Douglas J Calvillo
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Psychological Sciences, Rice University, Houston, Texas, USA
| | - Cabrina I Becker
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Scott D Lane
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Moshrefi F, Farrokhi AM, Fattahi M, Azizbeigi R, Haghparast A. The role of orexin receptors within the CA1 area in the acquisition and expression of methamphetamine place preference. J Psychiatr Res 2024; 172:291-299. [PMID: 38428165 DOI: 10.1016/j.jpsychires.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Treatment of Methamphetamine (METH) use disorder has become a crucial public health issue. The orexin system manipulation has provided promising evidence to attenuate addictive-like behaviors. This study explored the role of the orexin 1 receptor and orexin 2 receptor (OX1R and OX2R) in the CA1 area of the hippocampal formation in the acquisition and expression of METH-induced place preference. Animals were subjected to bilateral administration of different dosages (1, 3, 10, and 30 nmol/0.5 μl DMSO per side) of a selective OX1R antagonist, SB334867, or selective OX2R antagonist, TCS OX2 29 into the CA1 area throughout the conditioning phase or once on the post-conditioning phase in separate control and experimental groups. Behavioral data revealed that both OX1R (10 nmol; P < 0.01 and 30 nmol; P < 0.001) and OX2R (10 nmol; P < 0.05 and 30 nmol; P < 0.001) antagonism during the conditioning phase could block the formation of METH place preference dose-dependently. In addition, intra-CA1 microinjection of SB334867 on the post-conditioning phase attenuated the expression of METH place preference in a dose-dependent manner (3 nmol; P < 0.05, 10 nmol; P < 0.01 and 30 nmol; P < 0.001) whereas intra-CA1 administration of TCS OX2 29 only at the highest dosage (30 nmol) declined the expression of METH place preference (P < 0.01). It was also indicated that the suppressive effects of orexin receptor blockade on the METH-seeking behavior in the CA1 area were anatomically specific to this area. These findings support the possibility of targeting the orexin system to develop novel and successful pharmacological options for the treatment of METH dependence.
Collapse
Affiliation(s)
- Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lu J, Qin C, Wang C, Sun J, Mao H, Wei J, Shen X, Chen Y, Liu S, Qu X. Lateral hypothalamic orexin neurons mediate electroacupuncture-induced anxiolytic effects in a rat model of post-traumatic stress disorder. Brain Res Bull 2023; 201:110712. [PMID: 37481143 DOI: 10.1016/j.brainresbull.2023.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The lateral hypothalamus' orexinergic system has been associated with anxiety-related behaviors, and electroacupuncture (EA) modifies orexin neurons to control the anti-anxiety process. However, in a rat model of post-traumatic stress disorder (PTSD), the important role of LH orexin neurons (OXNs) in the anxiolytic effects induced by EA has not been explored. In this study, rats underwent modified single prolonged stress (MSPS) for seven days before developing EA. The rats were then subjected to elevated plus maze (EPM) and open field (OFT) tests, and western blot and c-Fos/orexin double labeling investigations were carried out to determine the functional activation of LH orexinergic neurons. Compared to MSPS model rats, it has been demonstrated that EA stimulation enhanced the amount of time spent in the central zone (TSCZ) in OFT and the amount of time spent in the open arm (TSOA) in EPM in MSPS model rats (P < 0.01). After behavioral testing, MSPS model rats had decreased activated c-Fos positive OXNs. Still, EA in SPS rats increased that number and elevated orexin type 1 receptors (OXR1) protein expression in the LH. Furthermore, after administering SB334867 (an OXR1 antagonist) to MSPS model rats, the effects of EA therapy on anxiety-like behaviors (ALBs) were significantly diminished. Additionally, when low-dose orexin-A (LORXA) was administered intracerebroventricularly together with EA stimulation in MSPS rats, the anxiolytic effects of the stimulation were substantially enhanced (P < 0.05). The results of this study reveal the mechanisms by which acupuncture may reduce PTSD and advance our understanding of the function of LH orexin signaling in EA's anxiolytic effects.
Collapse
Affiliation(s)
- Jiaqi Lu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Qin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Sun
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.
| | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoyi Qu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Moline M, Asakura S, Beuckman C, Landry I, Setnik B, Ashworth J, Henningfield JE. The abuse potential of lemborexant, a dual orexin receptor antagonist, according to the 8 factors of the Controlled Substances Act. Psychopharmacology (Berl) 2023; 240:699-711. [PMID: 36749354 PMCID: PMC10006052 DOI: 10.1007/s00213-023-06320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
RATIONALE Lemborexant (LEM) is a dual orexin receptor antagonist (DORA) approved in multiple countries including the USA, Japan, Canada, Australia, and several Asian countries for the treatment of insomnia in adults. As a compound with central nervous system activity, it is important to understand the abuse potential of LEM with respect to public health. OBJECTIVES This review discusses data for LEM relevant to each of the 8 factors of the United States Controlled Substances Act. RESULTS LEM did not demonstrate abuse potential in nonclinical testing and was associated with a low incidence of abuse-related adverse events in clinical study participants with insomnia disorder. Similar to other DORAs that have been evaluated (eg., almorexant, suvorexant (SUV), and daridorexant), LEM and the positive controls (zolpidem and SUV) also showed drug liking in a phase 1 abuse potential study that enrolled subjects who used sedatives recreationally. However, internet surveillance of SUV and the FDA Adverse Events Reporting System suggests that drugs in the DORA class display very low abuse-related risks in the community. Additionally, as described in FDA-approved labeling, it does not carry physical dependence and withdrawal risks. CONCLUSIONS LEM, similar to most other prescription insomnia medications, was placed into Schedule IV. However, LEM and other drugs in the DORA class may have a lower potential for abuse as suggested by real-world postmarketing data from federal surveys and internet surveillance, and thus may have lower risks to public health than Schedule IV benzodiazepines and nonbenzodiazepine hypnotics that potentiate GABA signaling.
Collapse
Affiliation(s)
- Margaret Moline
- Eisai Inc., 200 Metro Boulevard, Nutley, Jersey, NJ, 07110, USA.
| | | | | | | | - Beatrice Setnik
- Altasciences, Laval, Quebec, Canada and the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Jack E Henningfield
- Pinney Associates, Inc., Bethesda, MD, USA.,The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Gao WR, Hu XH, Yu KY, Cai HY, Wang ZJ, Wang L, Wu MN. Selective orexin 1 receptor antagonist SB-334867 aggravated cognitive dysfunction in 3xTg-AD mice. Behav Brain Res 2023; 438:114171. [PMID: 36280008 DOI: 10.1016/j.bbr.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Cognitive dysfunction is the main clinical manifestation of Alzheimer's disease (AD). Previous research found that elevated orexin level in the cerebrospinal fluid was closely related to the course of AD, and orexin-A treatment could increase amyloid β protein (Aβ) deposition and aggravate spatial memory impairment in APP/PS1 mice. Furthermore, recent research found that dual orexin receptor (OXR) antagonist might affect Aβ level and cognitive dysfunction in AD, but the effects of OX1R or OX2R alone is unreported until now. Considering that OX1R is highly expressed in the hippocampus and plays important roles in learning and memory, the effects of OX1R in AD cognitive dysfunction and its possible mechanism should be investigated. In the present study, selective OX1R antagonist SB-334867 was used to block OX1R. Then, different behavioral tests were performed to observe the effects of OX1R blockade on cognitive function of 3xTg-AD mice exhibited both Aβ and tau pathology, in vivo electrophysiological recording and western blot were used to investigate the potential mechanism. The results showed that chronic OX1R blockade aggravated the impairments of short-term working memory, long-term spatial memory and synaptic plasticity in 9-month-old female 3xTg-AD mice, increased levels of soluble Aβ oligomers and p-tau, and decreased PSD-95 expression in the hippocampus of 3xTg-AD mice. These results indicate that the detrimental effects of SB-334867 on cognitive behaviors in 3xTg-AD mice are closely related to the decrease of PSD-95 and depression of in vivo long-term potentiation (LTP) caused by increased Aβ oligomers and p-tau.
Collapse
Affiliation(s)
- Wen-Rui Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Lei Wang
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
Veisi A, Khaleghzadeh-Ahangar H, Fattahi M, Haghparast A. The Role of Orexin-1 Receptors Within the Hippocampal CA1 Area in the Extinction and Reinstatement of Methamphetamine-Seeking Behaviors. Neurochem Res 2023; 48:671-680. [PMID: 36284025 DOI: 10.1007/s11064-022-03793-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Psychostimulant addiction is a chronic brain disorder with high relapse rates, requiring new therapeutic strategies. The orexin system is highly implicated in processing reward and addiction through connections with critical areas such as the hippocampus. This study investigated the role of orexin-1 receptors (OX1R) within the CA1 subregion of the hippocampus in the extinction and reinstatement of the methamphetamine-induced conditioned place preference. After cannulae implantation, recovery, and establishing the methamphetamine place preference, 98 male Wistar rats received different doses of bilateral intra-CA1 selective OX1R antagonist, SB334867 (1, 3, 10, and 30 nmol/0.5 μl DMSO per side) during the 10-day extinction period (daily) or after extinction phase, just on the reinstatement day (single dose) in separate experimental and control groups. The findings indicated that bilateral microinjection of SB334867 into the CA1 area during the extinction period could significantly reduce the extinction latency and maintenance of rewarding aspects of methamphetamine dose-dependently (3, 10, and 30 nmol). In another set of experiments, a single dose of bilateral intra-CA1 SB334867 administration on the reinstatement phase prevented the methamphetamine-induced reinstatement of drug-seeking behaviors at the high doses (10, and 30 nmol). The present study provided more evidence for the implication of hippocampal OX1R in the maintenance of rewarding and reinforcing properties of methamphetamine and its role in the relapse of methamphetamine-seeking behavior. Further investigations on the role of the orexin system, including the orexin-2 receptors in treating addiction, are needed to introduce its antagonists as effective therapeutic options for psychostimulant addiction.
Collapse
Affiliation(s)
- Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Tyree SM, Jennings KJ, Gonzalez OC, Li SB, Nicholson JR, von Heimendahl M, de Lecea L. Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice. Commun Biol 2023; 6:74. [PMID: 36658362 PMCID: PMC9852239 DOI: 10.1038/s42003-023-04409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neurons in the lateral hypothalamus expressing the neuropeptide Hypocretin, also known as orexin, are known critical modulators of arousal stability. However, their role in the different components of the arousal construct such as attention and decision making is poorly understood. Here we study Hypocretin neuronal circuit dynamics during stop action impulsivity in a Go/NoGo task in mice. We show that Hypocretin neuronal activity correlates with anticipation of reward. We then assessed the causal role of Hypocretin neuronal activity using optogenetics in a Go/NoGo task. We show that stimulation of Hypocretin neurons during the cue period dramatically increases the number of premature responses. These effects are mimicked by amphetamine, reduced by atomoxetine, a norepinephrine uptake inhibitor, and blocked by a Hypocretin receptor 1 selective antagonist. We conclude that Hypocretin neurons have a key role in the integration of salient stimuli during wakefulness to produce appropriate and timely responses to rewarding and aversive cues.
Collapse
Affiliation(s)
- Susan M. Tyree
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA ,Present Address: Atlantia Clinical Trials, Cork, Ireland
| | - Kimberly J. Jennings
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA ,grid.55460.320000000121548364Present Address: University of Texas, Austin, TX USA
| | - Oscar C. Gonzalez
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA
| | - Shi-bin Li
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA
| | - Janet R. Nicholson
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Moritz von Heimendahl
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Luis de Lecea
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA
| |
Collapse
|
10
|
Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology (Berl) 2023; 240:15-25. [PMID: 36571628 PMCID: PMC9816302 DOI: 10.1007/s00213-022-06296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE The female menstrual or estrous cycle and its associated fluctuations in circulating estradiol (E2), progesterone, and other gonadal hormones alter orexin or hypocretin peptide production and receptor activity. Depending on the estrous cycle phase, the transcription of prepro-orexin mRNA, post-translational modification of orexin peptide, and abundance of orexin receptors change in a brain region-specific manner. The most dramatic changes occur in the hypothalamus, which is considered the starting point of the hypothalamic-pituitary-gonadal axis as well as the hub of orexin-producing neurons. Thus, hypothalamus-regulated behaviors, including arousal, feeding, reward processing, and the stress response depend on coordinated efforts between E2, progesterone, and the orexin system. Given the rise of orexin therapeutics for various neuropsychiatric conditions including insomnia and affective disorders, it is important to delineate the behavioral outcomes of this drug class in both sexes, as well as within different time points of the female reproductive cycle. OBJECTIVES Summarize how the menstrual or estrous cycle affects orexin system functionality in animal models in order to predict how orexin pharmacotherapies exert varying degrees of behavioral effects across the dynamic hormonal milieu.
Collapse
|
11
|
Giannotti G, Mottarlini F, Heinsbroek JA, Mandel MR, James MH, Peters J. Oxytocin and orexin systems bidirectionally regulate the ability of opioid cues to bias reward seeking. Transl Psychiatry 2022; 12:432. [PMID: 36195606 PMCID: PMC9532415 DOI: 10.1038/s41398-022-02161-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
As opioid-related fatalities continue to rise, the need for novel opioid use disorder (OUD) treatments could not be more urgent. Two separate hypothalamic neuropeptide systems have shown promise in preclinical OUD models. The oxytocin system, originating in the paraventricular nucleus (PVN), may protect against OUD severity. By contrast, the orexin system, originating in the lateral hypothalamus (LH), may exacerbate OUD severity. Thus, activating the oxytocin system or inhibiting the orexin system are potential therapeutic strategies. The specific role of these systems with regard to specific OUD outcomes, however, is not fully understood. Here, we probed the therapeutic efficacy of pharmacological interventions targeting the orexin or oxytocin system on two distinct metrics of OUD severity in rats-heroin choice (versus choice for natural reward, i.e., food) and cued reward seeking. Using a preclinical model that generates approximately equal choice between heroin and food reward, we examined the impact of exogenously administered oxytocin, an oxytocin receptor antagonist (L-368,899), and a dual orexin receptor antagonist (DORA-12) on opioid choice. Whereas these agents did not alter heroin choice when rewards (heroin and food) were available, oxytocin and DORA-12 each significantly reduced heroin seeking in the presence of competing reward cues when no rewards were available. In addition, the number of LH orexin neurons and PVN oxytocin neurons correlated with specific behavioral economic variables indicative of heroin versus food motivation. These data identify a novel bidirectional role of the oxytocin and orexin systems in the ability of opioid-related cues to bias reward seeking.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Francesca Mottarlini
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA ,grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Jasper A. Heinsbroek
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Mitchel R. Mandel
- grid.430503.10000 0001 0703 675XDepartment of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Morgan H. James
- grid.430387.b0000 0004 1936 8796Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Murillo-Rodríguez E, Coronado-Álvarez A, López-Muciño LA, Pastrana-Trejo JC, Viana-Torre G, Barberena JJ, Soriano-Nava DM, García-García F. Neurobiology of dream activity and effects of stimulants on dreams. Curr Top Med Chem 2022; 22:1280-1295. [PMID: 35761491 DOI: 10.2174/1568026622666220627162032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
The sleep-wake cycle is the result of the activity of a multiple neurobiological network interaction. Dreaming feature is one interesting sleep phenomena that represents sensorial components, mostly visual perceptions, accompanied with intense emotions. Further complexity has been added to the topic of the neurobiological mechanism of dreams generation by the current data that suggests the influence of drugs on dream generation. Here, we discuss the review on some of the neurobiological mechanism of the regulation of dream activity, with special emphasis on the effects of stimulants on dreaming.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Luis Angel López-Muciño
- Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| | - José Carlos Pastrana-Trejo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Gerardo Viana-Torre
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Juan José Barberena
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group.,Escuela de Psicología, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Fabio García-García
- Intercontinental Neuroscience Research Group.,Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| |
Collapse
|
13
|
Bai P, Liu Y, Xu Y, Striar R, Yuan G, Afshar S, Langan AG, Rattray AK, Wang C. Synthesis and characterization of a new Positron emission tomography probe for orexin 2 receptors neuroimaging. Bioorg Chem 2022; 123:105779. [PMID: 35397430 PMCID: PMC9050936 DOI: 10.1016/j.bioorg.2022.105779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
The orexin receptors (OXRs) have been involved in multiple physiological and neuropsychiatric functions. Identification of PET imaging probes specifically targeting OXRs enables us to better understand the OX system. Seltorexant (JNJ-42847922) is a potent OX2R antagonist with the potential to be an OX2R PET imaging probe. Here, we describe the synthesis and characterization of [18F]Seltorexant as an OX2R PET probe. The ex vivo autoradiography studies indicated the good binding specificity of [18F]Seltorexant. In vivo PET imaging of [18F]Seltorexant in rodents showed suitable BBB penetration with the highest brain uptake of %ID/cc = 3.4 at 2 min post-injection in mice. The regional brain biodistribution analysis and blocking studies showed that [18F]Seltorexant had good binding selectivity and specificity. However, pretreatment with unlabelled Seltorexant and P-gp competitor CsA observed significantly increased brain uptake of [18F]Seltorexant, indicating [18F]Seltorexant could interact P-gp at the blood-brain barrier. Our findings demonstrated that [18F]Seltorexant is a potential brain OX2R PET imaging probe, which paves the way for new OX2R PET probes development and OX system investigation.
Collapse
Affiliation(s)
- Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Amelia G Langan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Anna K Rattray
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States.
| |
Collapse
|
14
|
Abstract
The hypocretins (Hcrts), also known as orexins, are two neuropeptides produced exclusively in the lateral hypothalamus. They act on two specific receptors that are widely distributed across the brain and involved in a myriad of neurophysiological functions that include sleep, arousal, feeding, reward, fear, anxiety and cognition. Hcrt cell loss in humans leads to narcolepsy with cataplexy (narcolepsy type 1), a disorder characterized by intrusions of sleep into wakefulness, demonstrating that the Hcrt system is nonredundant and essential for sleep/wake stability. The causal link between Hcrts and arousal/wakefulness stabilisation has led to the development of a new class of drugs, Hcrt receptor antagonists to treat insomnia, based on the assumption that blocking orexin-induced arousal will facilitate sleep. This has been clinically validated: currently, two Hcrt receptor antagonists are approved to treat insomnia (suvorexant and lemborexant), with a New Drug Application recently submitted to the US Food and Drug Administration for a third drug (daridorexant). Other therapeutic applications under investigation include reduction of cravings in substance-use disorders and prevention of neurodegenerative disorders such as Alzheimer's disease, given the apparent bidirectional relationship between poor sleep and worsening of the disease. Circuit neuroscience findings suggest that the Hcrt system is a hub that integrates diverse inputs modulating arousal (e.g., circadian rhythms, metabolic status, positive and negative emotions) and conveys this information to multiple output regions. This neuronal architecture explains the wealth of physiological functions associated with Hcrts and highlights the potential of the Hcrt system as a therapeutic target for a number of disorders. We discuss present and future possible applications of drugs targeting the Hcrt system for the treatment of circuit-related neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
15
|
Wang C, Chen M, Qin C, Qu X, Shen X, Liu S. Lateral Hypothalamic Orexin Neurons Mediate the Reward Effects of Pain Relief Induced by Electroacupuncture. Front Mol Neurosci 2022; 15:812035. [PMID: 35299694 PMCID: PMC8923289 DOI: 10.3389/fnmol.2022.812035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
The reward of pain relief caused by acupuncture has been found to be clinically significant. However, the molecular mechanisms underlying acupuncture-induced reward of pain relief in chronic pain remain unclear and have not been analyzed in suitable preclinical models. Here, we investigated whether acupuncture could potentially induce the reward of pain relief and orexin neuronal signaling in the lateral hypothalamus (LH) and exhibit a possible role in electroacupuncture (EA)-induced reward in spared nerve injury (SNI) rats. Therefore, by using conditioned place preference (CPP) paradigm, we noticed that EA induced the preference for cues associated with EA-induced pain relief in the early, but not late, phase of chronic pain. These observations were different from the immediate antihyperalgesic effects of EA. c-Fos/orexin double labeling revealed that EA stimulation on 14 days but not on 28 days after SNI modeling activated greater numbers of c-Fos positive orexin neurons in the LH after the CPP test. Moreover, the administration of an orexin-A antagonist in the LH significantly blocked the reward effects of pain relief induced by EA. Furthermore, by using cholera toxin b subunit combined with c-Fos detection, we found that the orexin circuit from the LH to the nucleus accumbens (NAc) shell was significantly activated after EA induced CPP. Microinjection of the orexin antagonist into the NAc shell substantially attenuated the CPP induced by EA. Intravenous injection of low-dose orexin-A together with EA resulted in significantly greater antihyperalgesia effects and CPP scores. Together, these findings clearly demonstrated that LH orexin signaling could potentially play a critical role in the reward effects of pain relief induced by acupuncture. The observations of the present study extended our understanding of orexin signaling in the LH and its role in EA-induced reward, providing new insights into the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
| | | | | | | | | | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:335-371. [PMID: 35341570 PMCID: PMC10948018 DOI: 10.1016/bs.apha.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although μ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Similar role of mPFC orexin-1 receptors in the acquisition and expression of morphine- and food-induced conditioned place preference in male rats. Neuropharmacology 2021; 198:108764. [PMID: 34450116 DOI: 10.1016/j.neuropharm.2021.108764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Self-control problems are a typical character of drug addiction and excessive food consumption and it has been shown that natural rewards and drugs of abuse share parts of the same neural substrate and reward processing in the brain. Different brain areas are involved in natural and drug reward processing including the mesolimbic pathway, amygdala, nucleus accumbens (NAc), and prefrontal cortex. Considering the important role of orexins in the addictive behavior and the presence of orexin-1 subtype receptors (Orx1R) in the medial prefrontal cortex (mPFC), this study investigated the role of mPFC in natural- and drug-reward seeking behaviors to deepen our understanding of possible similarities or differences. To induce food- or morphine-conditioned place preference (CPP), adult male Wistar rats underwent CPP testing and received intra-mPFC doses of SB334867 (3, 10, or 30 nM/0.5 μl DMSO 12%), as an Orx1R antagonist, during the acquisition or expression phases of the CPP test. Results indicated that microinjection of Orx1R antagonist into the mPFC had similar effects on both morphine- and food-induced CPP and attenuated CPP scores in the acquisition and expression phases of the CPP test. The data demonstrated that Orx1Rs in the mPFC regulate the reward-related effects of morphine- and food-induced reward.
Collapse
|
18
|
Asakura S, Shiotani M, Gauvin DV, Fujiwara A, Ueno T, Bower N, Beuckmann CT, Moline M. Nonclinical evaluation of abuse liability of the dual orexin receptor antagonist lemborexant. Regul Toxicol Pharmacol 2021; 127:105053. [PMID: 34619288 DOI: 10.1016/j.yrtph.2021.105053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Lemborexant is a dual orexin receptor antagonist (DORA) approved in multiple countries including the United States, Japan, Canada and Australia for the treatment of adults with insomnia. As required for marketing approval of new compounds with central nervous system activity with sedating effects, the abuse potential of lemborexant was assessed in accordance with regulatory guidelines, which included three nonclinical studies. These assessments comprised physical dependence and drug discrimination studies in rats and a self-administration study in rhesus monkeys. There was no evidence of withdrawal signs following abrupt drug discontinuation, indicating that lemborexant does not induce physical dependence. In the drug discrimination study, lemborexant at doses up to 1000 mg/kg administered orally did not cross-generalize to the zolpidem training stimulus, although another DORA included in the same experiment, suvorexant, showed partial generalization with zolpidem. In rhesus monkeys, lemborexant treatment did not induce any gross behavioral changes, and there was no increase in self-administration rates compared with control, indicative of a lack of reinforcing effects of lemborexant. Collectively, these nonclinical studies support the position that lemborexant, which has been placed in Schedule IV by the United States Drug Enforcement Administration, has a low risk of abuse in humans.
Collapse
Affiliation(s)
| | | | - David V Gauvin
- MPI Research (A Charles River Company), Mattawan, MI, USA
| | | | | | | | | | | |
Collapse
|
19
|
Vitale RM, Iannotti FA, Schiano Moriello A, Tunisi L, Piscitelli F, Savopoulos R, Cristino L, De Petrocellis L, Amodeo P, Gray R, Di Marzo V. Identification and Characterization of Cannabidiol as an OX1R Antagonist by Computational and In Vitro Functional Validation. Biomolecules 2021; 11:1134. [PMID: 34439801 PMCID: PMC8394412 DOI: 10.3390/biom11081134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
The potential, multifaceted therapeutic profile of cannabidiol (CBD), a major constituent derived from the Cannabis sativa plant, covers a wide range of neurological and psychiatric disorders, ranging from anxiety to pediatric epilepsy and drug addiction. However, the molecular targets responsible for these effects have been only partially identified. In this view, the involvement of the orexin system, the key regulator in arousal and the sleep/wake cycle, and in motivation and reward processes, including drug addiction, prompted us to explore, using computational and experimental approaches, the possibility that CBD could act as a ligand of orexin receptors, orexin 1 receptor of type 1 (OX1R) and type 2 (OX2R). Ligand-binding assays showed that CBD is a selective ligand of OX1R in the low micromolar range (Ki 1.58 ± 0.2 μM) while in vitro functional assays, carried out by intracellular calcium imaging and mobilization assays, showed that CBD acts as an antagonist at this receptor. Finally, the putative binding mode of CBD has been inferred by molecular docking and molecular dynamics simulations and its selectivity toward the OX1R subtype rationalized at the molecular level. This study provides the first evidence that CBD acts as an OX1R antagonist, supporting its potential use in addictive disorders and/or body weight regulation.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
- Epitech Group SpA, Saccolongo, 35100 Padova, Italy
| | - Lea Tunisi
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80131 Naples, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
| | - Ranjev Savopoulos
- GW Research Ltd., Sovereign House, Vision Park, Histon, Cambridge CB24 9BZ, UK; (R.S.); (R.G.)
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
| | - Luciano De Petrocellis
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
| | - Roy Gray
- GW Research Ltd., Sovereign House, Vision Park, Histon, Cambridge CB24 9BZ, UK; (R.S.); (R.G.)
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (L.C.); (L.D.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (A.S.M.); (L.T.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC G1V 4G5, Canada
| |
Collapse
|
20
|
Zlebnik NE, Holtz NA, Lepak VC, Saykao AT, Zhang Y, Carroll ME. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend 2021; 224:108719. [PMID: 33940327 PMCID: PMC8180489 DOI: 10.1016/j.drugalcdep.2021.108719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Worldwide methamphetamine (METH) use has increased significantly over the last 10 years, and in the US, METH dependence has sky-rocketed among individuals with opioid use disorder. Of significant concern, METH use is gaining popularity among groups with susceptibility to developing severe substance use disorders, such as women and adolescents. Nevertheless, there is no established pharmacotherapy for METH addiction. Emerging evidence has identified the orexin/hypocretin system as an important modulator of reward-driven behavior and a potential target for the treatment of drug addiction and relapse. However, to date, there have been no investigations into the therapeutic efficacy of orexin/hypocretin receptor antagonists for METH-motivated behavior in adolescents or adults. In the present study, we examined the effects of selective antagonists of the orexin-1 (SB-334867, 20 mg/kg) and orexin-2 (TCS-OX2-29, 20 mg/kg) receptors on the reinstatement of METH seeking in both adolescent and adult male and female rats. METHODS Rats were trained to self-administer METH (0.05 mg/kg/inf, iv) during two 2-h sessions/day for 5 days. Following 20 sessions of extinction over 10 days, a within-subjects design was used to test for METH seeking precipitated by METH (1 mg/kg, ip) or METH cues after systemic pretreatment with SB-334867 or TCS-OX2-29. RESULTS SB-334867 reduced cue-induced reinstatement in males and females, regardless of age. Additionally, METH-induced METH seeking was attenuated by SB-334867 in adolescents and by TCS-OX2-29 in adults. CONCLUSION Selective orexin/hypocretin receptor antagonists have significant therapeutic potential for diminishing METH-seeking behavior, although their treatment efficacy may be influenced by age.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Nathan A Holtz
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Victoria C Lepak
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Amy T Saykao
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Marilyn E Carroll
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
21
|
Zhan D, Perrer DA, Decker AM, Langston TL, Mavanji V, Harris DL, Kotz CM, Zhang Y. Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. J Med Chem 2021; 64:8806-8825. [PMID: 34101446 PMCID: PMC8994207 DOI: 10.1021/acs.jmedchem.1c00841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Loss of orexin-producing neurons results in narcolepsy with cataplexy, and orexin agonists have been shown to increase wakefulness and alleviate narcolepsy symptoms in animal models. Several OX2R agonists have been reported but with little or no activity at OX1R. We conducted structure-activity relationship studies on the OX2R agonist YNT-185 (2) and discovered dual agonists such as RTOXA-43 (40) with EC50's of 24 nM at both OX2R and OX1R. Computational modeling studies based on the agonist-bound OX2R cryogenic electron microscopy structures showed that 40 bound in the same binding pocket and interactions of the pyridylmethyl group of 40 with OX1R may have contributed to its high OX1R potency. Intraperitoneal injection of 40 increased time awake, decreased time asleep, and increased sleep/wake consolidation in 12-month old mice. This work provides a promising dual small molecule agonist and supports development of orexin agonists as potential treatments for orexin-deficient disorders such as narcolepsy.
Collapse
Affiliation(s)
- Dehui Zhan
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - David A. Perrer
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Ann M. Decker
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | | | - Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Danni L. Harris
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Catherine M. Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
- Geriatric, Research, Education and Clinical Center, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| |
Collapse
|
22
|
Barr JL, Zhao P, Brailoiu GC, Brailoiu E. Choline-Sigma-1R as an Additional Mechanism for Potentiation of Orexin by Cocaine. Int J Mol Sci 2021; 22:5160. [PMID: 34068146 PMCID: PMC8152999 DOI: 10.3390/ijms22105160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Orexin A, an endogenous peptide involved in several functions including reward, acts via activation of orexin receptors OX1 and OX2, Gq-coupled GPCRs. We examined the effect of a selective OX1 agonist, OXA (17-33) on cytosolic calcium concentration, [Ca2+]i, in neurons of nucleus accumbens, an important area in the reward circuit. OXA (17-33) increased [Ca2+]i in a dose-dependent manner; the effect was prevented by SB-334867, a selective OX1 receptors antagonist. In Ca2+-free saline, the OXA (17-33)-induced increase in [Ca2+]i was not affected by pretreatment with bafilomycin A1, an endo-lysosomal calcium disrupter, but was blocked by 2-APB and xestospongin C, antagonists of inositol-1,4,5-trisphosphate (IP3) receptors. Pretreatment with VU0155056, PLD inhibitor, or BD-1047 and NE-100, Sigma-1R antagonists, reduced the [Ca2+]i response elicited by OXA (17-33). Cocaine potentiated the increase in [Ca2+]i by OXA (17-33); the potentiation was abolished by Sigma-1R antagonists. Our results support an additional signaling mechanism for orexin A-OX1 via choline-Sigma-1R and a critical role for Sigma-1R in the cocaine-orexin A interaction in nucleus accumbens neurons.
Collapse
Affiliation(s)
- Jeffrey L. Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| | - G. Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.L.B.); (P.Z.)
| |
Collapse
|
23
|
The Different Facets of Triclocarban: A Review. Molecules 2021; 26:molecules26092811. [PMID: 34068616 PMCID: PMC8126057 DOI: 10.3390/molecules26092811] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.
Collapse
|
24
|
Synthesis and biological evaluation of novel 18F-labeled phenylbenzofuran-2-carboxamide derivative for detection of orexin 1 receptor in the brain. Bioorg Med Chem Lett 2021; 43:128098. [PMID: 33984472 DOI: 10.1016/j.bmcl.2021.128098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 01/12/2023]
Abstract
Although the orexin 1 receptor (OX1R) in the brain is considered to regulate reward and feeding, the in vivo function of OX1R has not been fully elucidated. In vivo imaging of OX1R with positron emission tomography (PET) may be useful to further understand the molecular details of OX1R. In this study, we newly designed and synthesized a phenylbenzofuran-2-carboxamide (PBC) derivative ([18F]PBC-1) and evaluated its utility as a PET probe targeting OX1R in the brain. The results of cell binding assays suggested that [18F]PBC-1 has affinity for OX1R. In an in vitro competitive inhibition assay, PBC-1 showed selective binding affinity for OX1R (IC50 = 19.5 nM) over orexin 2 receptor (IC50 = 456.7 nM). Furthermore, [18F]PBC-1 displayed sufficient brain uptake for in vivo imaging with PET in a biodistribution study using normal mice, but in vivo instability was observed. These results suggest that further modifications for improvement of the pharmacokinetics are needed, but the PBC scaffold has potential for the development of useful PET probes targeting OX1R in the brain.
Collapse
|
25
|
Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021; 22:ijms22073788. [PMID: 33917517 PMCID: PMC8038761 DOI: 10.3390/ijms22073788] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
- Correspondence:
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
| | - Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| | - Frederic W. Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| |
Collapse
|
26
|
Ohrui S, Irukayama-Tomobe Y, Ishikawa Y, Yanagisawa M, Nagase H. Design and Synthesis of Novel Orexin Antagonists via Structural Simplification of the Morphinan Skeleton. HETEROCYCLES 2021; 103:929. [DOI: 10.3987/com-20-s(k)63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
28
|
Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020; 89:139-146. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Excessive, binge drinking is a major contributor to the great harm and cost of alcohol use disorder. We recently showed, using both limited and intermittent-access two-bottle-choice models, that inhibiting nucleus accumbens shell (Shell) orexin-1-receptors (Ox1Rs) reduces alcohol intake in higher-drinking male C57BL/6 mice (Lei et al., 2019). Other studies implicate Ox1Rs, tested systemically, for several higher-drinking models, including the single-bottle, Rhodes Drinking-in-the-Dark paradigm. Here, we report studies examining whether Shell Ox1Rs contribute to alcohol intake in male mice using a single-bottle Limited Daily Access (LDA) drinking model modified from drinking-in-the-dark paradigms (2-h access starting 3 h into the dark cycle, 5 days per week). In addition, some previous work has suggested possible differences in circuitry for one- versus two-choice behaviors, and thus other mice first drank under a single-bottle schedule, and then an additional water bottle was included 2 days a week starting in week 3. Surprisingly, at the same time we were determining Ox1R importance for two-bottle-choice models, parallel studies found that inhibiting Shell Ox1Rs had no impact on drinking using the single-bottle LDA model, or when a second bottle containing water was added later during drinking. Furthermore, we have related Shell Ox1R regulation of intake to basal consumption, but no such pattern was observed with single-bottle LDA drinking. Thus, unlike our previous work showing the importance of Shell Ox1Rs for male alcohol drinking under several two-bottle-choice models, Shell Ox1Rs were not required under a single-bottle paradigm, even if a second water-containing bottle was later added. These results raise the speculations that different mechanisms could promote intake under single- versus two-bottle access conditions, and that the conditions under which an animal learns to drink can impact circuitry driving future intake.
Collapse
|
29
|
Sabnis RW. Novel 5-Alkyl Pyrrolidine Orexin Receptor Agonists for Treating Sleep Disorders. ACS Med Chem Lett 2020; 11:2085-2086. [PMID: 33214817 DOI: 10.1021/acsmedchemlett.0c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram W Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
30
|
Préville C, Bonaventure P, Koudriakova T, Lord B, Nepomuceno D, Rizzolio M, Mani N, Coe KJ, Ndifor A, Dugovic C, Dvorak CA, Coate H, Pippel DJ, Fitzgerald A, Allison B, Lovenberg TW, Carruthers NI, Shireman BT. Substituted Azabicyclo[2.2.1]heptanes as Selective Orexin-1 Antagonists: Discovery of JNJ-54717793. ACS Med Chem Lett 2020; 11:2002-2009. [PMID: 33062185 DOI: 10.1021/acsmedchemlett.0c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
The orexin system consists of two neuropeptides (orexin-A and orexin-B) that exert their mode of action on two receptors (orexin-1 and orexin-2). While the role of the orexin-2 receptor is established as an important modulator of sleep wake states, the role of the orexin-1 receptor is believed to play a role in addiction, panic, or anxiety. In this manuscript, we describe the optimization of a nonselective substituted azabicyclo[2.2.1]heptane dual orexin receptor antagonist (DORA) into orally bioavailable, brain penetrating, selective orexin-1 receptor (OX1R) antagonists. This resulted in the discovery of our first candidate for clinical development, JNJ-54717793.
Collapse
Affiliation(s)
- Cathy Préville
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pascal Bonaventure
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Tatiana Koudriakova
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian Lord
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Diane Nepomuceno
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michele Rizzolio
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Neelakandha Mani
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Kevin J. Coe
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Anthony Ndifor
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Christine Dugovic
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Curt A. Dvorak
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Heather Coate
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Daniel J. Pippel
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Anne Fitzgerald
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brett Allison
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Timothy W. Lovenberg
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas I. Carruthers
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brock T. Shireman
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
31
|
Powers KG, Ma XM, Eipper BA, Mains RE. Cell-type specific knockout of peptidylglycine α-amidating monooxygenase reveals specific behavioral roles in excitatory forebrain neurons and cardiomyocytes. GENES BRAIN AND BEHAVIOR 2020; 20:e12699. [PMID: 32902163 DOI: 10.1111/gbb.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Neuropeptides and peptide hormones play a crucial role in integrating the many factors that affect physiologic and cognitive processes. The potency of many of these peptides requires an amidated amino acid at the C-terminus; a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), catalyzes this modification. Anxiety-like behavior is known to be altered in mice with a single functional Pam allele (Pam+/- ) and in mice unable to express Pam in excitatory forebrain neurons (PamEmx1-cKO/cKO ) or in cardiomyocytes (PamMyh6-cKO/cKO ). Examination of PAM-positive and glutamic acid decarboxylase 67 (GAD)-positive cells in the amygdala of PamEmx1-cKO/cKO mice demonstrated the absence of PAM in pyramidal neurons and its continued presence in GAD-positive interneurons, suggestive of altered excitatory/inhibitory balance. Additional behavioral tests were used to search for functional alterations in these cell-type specific knockout mice. PamEmx1-cKO/cKO mice exhibited a less focused search pattern for the Barnes Maze escape hole than control or PamMyh6-cKO/cKO mice. While wildtype mice favor interacting with novel objects as opposed to familiar objects, both PamEmx1-cKO/cKO and PamMyh6-cKO/cKO mice exhibited significantly less interest in the novel object. Since PAM levels in the central nervous system of PamMyh6-cKO/cKO mice are unaltered, the behavioral effect observed in these mice may reflect their inability to produce atrial granules and the resulting reduction in serum levels of atrial natriuretic peptide. In the sociability test, male mice of all three genotypes spent more time with same-sex stranger mice; while control females showed no preference for stranger mice, female PamEmx1-cKO/cKO mice showed preference for same-sex stranger mice in all trials.
Collapse
Affiliation(s)
- Kathryn G Powers
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
32
|
Liu J, Han J, Izawa K, Sato T, White S, Meanwell NA, Soloshonok VA. Cyclic tailor-made amino acids in the design of modern pharmaceuticals. Eur J Med Chem 2020; 208:112736. [PMID: 32966895 DOI: 10.1016/j.ejmech.2020.112736] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Tailor-made AAs are indispensable components of modern medicinal chemistry and are becoming increasingly prominent in new drugs. In fact, about 30% of small-molecule pharmaceuticals contain residues of tailor-made AAs or structurally related diamines and amino-alcohols. Cyclic tailor-made AAs present a particular value to rational structural design by virtue of their local conformational constraints and are widely used in lead optimization programs. The present review article highlights 34 compounds, all of which are derived from cyclic AAs, representing recently-approved, small-molecule pharmaceuticals as well as promising drug candidates currently in various phases of clinical study. For each compound, the discussion includes the discovery, therapeutic profile and optimized synthesis, with a focus on the preparation of cyclic tailor-made AA as the principal structural feature. The present review article is intended to serve as a reference source for organic, medicinal and process chemists along with other professionals working in the fields of drug design and pharmaceutical discovery.
Collapse
Affiliation(s)
- Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Sarah White
- Oakwood Chemical, Inc, 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box, 4000, Princeton, NJ, 08543 4000, United States
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
33
|
Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proc Natl Acad Sci U S A 2020; 117:18059-18067. [PMID: 32669442 DOI: 10.1073/pnas.2002704117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Orexins are neuropeptides that activate the rhodopsin-like G protein-coupled receptors OX1R and OX2R. The orexin system plays an important role in the regulation of the sleep-wake cycle and the regulation of feeding and emotions. The nonselective orexin receptor antagonist suvorexant has been the first drug on the market targeting the orexin system and is prescribed for the treatment of insomnia. Subtype-selective OX1R antagonists are valuable tools to further investigate the functions and physiological role of the OX1R in vivo and promising lead compounds for the treatment of drug addiction, anxiety, pain or obesity. Starting from the OX1R and OX2R crystal structures bound to suvorexant, we exploited a single amino acid difference in the orthosteric binding site by using molecular docking and structure-based drug design to optimize ligand interactions with the OX1R while introducing repulsive interactions with the OX2R. A newly established enantiospecific synthesis provided ligands showing up to 75-fold selectivity for the OX1R over the OX2R subtype. The structure of a new OX1R antagonist with subnanomolar affinity (JH112) was determined by crystallography in complex with the OX1R and corresponded closely to the docking-predicted geometry. JH112 exhibits high selectivity over a panel of different GPCRs, is able to cross the blood-brain barrier and acts as slowly diffusing and insurmountable antagonist for Gq protein activation and in particular β-arrestin-2 recruitment at OX1R. This study demonstrates the potential of structure-based drug design to develop more subtype-selective GPCR ligands with potentially reduced side effects and provides an attractive probe molecule and lead compound.
Collapse
|
34
|
Pulver A, Kiive E, Kanarik M, Harro J. Association of orexin/hypocretin receptor gene (HCRTR1) with reward sensitivity, and interaction with gender. Brain Res 2020; 1746:147013. [PMID: 32652147 DOI: 10.1016/j.brainres.2020.147013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Orexins/hypocretins maintain wakefulness, increase appetite and participate in the coordination of stress response. We have recently provided evidence on the role of orexins in aggression, showing the association of the HCRTR1 genotype. (rs2271933 G > A; leading to amino acid substitution Ile408Val) with aggressiveness or breach of law in four independent cohorts. Aggressive behaviour can be reward driven and hence we have examined the association of HCRTR1 rs2271933 genotype with different aspects of reward sensitivity in the birth cohort representative Estonian Children Personality Behaviour and Health Study. HCRTR1 genotype was associated with reward sensitivity in a gender dependent manner. Male HCRTR1 A/A homozygotes had higher Openness to Rewards and the overall reward sensitivity score while, in contrast, female A/A homozygotes scored lower than G-allele carriers in Openness to Rewards. In the total sample, aggressiveness correlated positively with reward sensitivity, but this was on account of Insatiability by Reward. In contrast, the HCRTR1 A/A homozygotes had a positive association of aggressiveness and Openness to Rewards. Experience of stressful life events had a small but significant increasing effect on both aspects of reward sensitivity, and correlated in an anomalous way with reward sensitivity in the HCRTR1 A/A homozygotes. Conclusively, the higher aggressiveness of HCRTR1 A/A homozygotes appears based on a qualitative difference in sensitivity to rewards, in the form that suggests their lower ability to prevent responses to challenges being converted into overt aggression.
Collapse
Affiliation(s)
- Aleksander Pulver
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia
| | - Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Näituse 2, 50409 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, Astra Building, 10120 Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia.
| |
Collapse
|
35
|
Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI. Involvement of orexinergic system in psychiatric and neurodegenerative disorders: A scoping review. Brain Circ 2020; 6:70-80. [PMID: 33033776 PMCID: PMC7511915 DOI: 10.4103/bc.bc_42_19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Orexin is a neuropeptide secreted from lateral hypothalamus and pre-frontal cortex concerned in the wakefulness and excitement. This study aimed to review the possible neurobiological effect of orexin. A diversity of search strategies was adopted and assumed which included electronic database searches of Medline and PubMed using MeSH terms, keywords, and title words during the search. Orexin plays a vital role in activation of learning, memory acquisition, and consolidation through activation of monoaminergic system, which affect cognitive flexibility and cognitive function. Orexin stimulates adrenocorticotropin and corticosteroid secretions via activation of central corticotropin-releasing hormone. Cerebrospinal fluid (CSF) and serum orexin serum levels are reduced in depression, schizophrenia, and narcolepsy. However, high orexin serum levels are revealed in drug addictions. Regarding neurodegenerative brain diseases, CSF and serum orexin serum levels are reduced Parkinson disease, Alzheimer dementia, Huntington's disease, amyotrphic lateral sclerosis, and multiple sclerosis. Orexin antagonist leads to significant reduction of sympathetic over-activity during withdrawal syndrome. As well, orexin antagonist improves sleep pattern. Orexinergic system is involved in the different psychiatric and neurological disorders; therefore, targeting of this system could be possible novel pathway in the management of these disorders. In addition, measurement of CSF and serum orexin levels might predict the relapse and withdrawal of addict patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - May H Abdulhadi
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Nawar R Hussien
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Marwa S Al-Niemi
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Huda A Rasheed
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
36
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res 2020; 1731:146461. [PMID: 31526801 PMCID: PMC7069781 DOI: 10.1016/j.brainres.2019.146461] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
The orexin (hypocretin) system is multifaceted, and regulates sleep-wake cycles, nociception, endocrine function and reward-seeking behavior. We have established an important role for this system in motivation for drugs of abuse. The orexin-1 receptor (Ox1R) antagonist SB334867 (SB) reduces seeking of drug reward under conditions of high motivation. There is some evidence that the effects of systemic SB on reward seeking persist beyond the pharmacological availability of the drug, however the time course of these effects is not well characterized, nor is it known whether similar persistent effects are observed following intraparenchymal injections. Here, we used a behavioral economics paradigm, which allows for repeated testing of drug motivation across consecutive days, to examine the persistent effects of acute systemic and local treatment with SB on motivation for the short-acting μ-opioid receptor agonistremifentanil. Systemic injections of SB immediately prior to behavioral testing reduced motivation for remifentanil; this effect was sustained on a subsequent test at 24 h, but not on a third test at 48 h. When injected into ventral pallidum (VP) the effects of SB were more persistent, with reduced motivation observed for up to 48 h. We next made SB injections into VP 24 h prior to behavioral testing; this produced effects that persisted for at least 72 h post-treatment. Cued reinstatement of extinguished remifentanil seeking was also attenuated by pretreatment with SB 24 h earlier. These data indicate that the effects of SB on opioid seeking behavior persist beyond the bioavailability of the compound. These observations have important ramifications for the future clinical use of orexin receptor antagonists for the treatment of addiction.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), PO Box 1954851167, Tehran, Iran; Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Caroline B Pantazis
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
38
|
Introduction to the Special Issue: "Making orexin-based therapies for addiction a reality: What are the steps from here?". Brain Res 2020; 1731:146665. [PMID: 31930996 DOI: 10.1016/j.brainres.2020.146665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Abstract
Despite accumulating evidence demonstrating the essential roles played by neuropeptides, it has proven challenging to use this information to develop therapeutic strategies. Peptidergic signaling can involve juxtacrine, paracrine, endocrine, and neuronal signaling, making it difficult to define physiologically important pathways. One of the final steps in the biosynthesis of many neuropeptides requires a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), and lack of amidation renders most of these peptides biologically inert. PAM, an ancient integral membrane enzyme that traverses the biosynthetic and endocytic pathways, also affects cytoskeletal organization and gene expression. While mice, zebrafish, and flies lacking Pam (PamKO/KO ) are not viable, we reasoned that cell type-specific elimination of Pam expression would generate mice that could be screened for physiologically important and tissue-specific deficits. Conditional PamcKO/cKO mice, with loxP sites flanking the 2 exons deleted in the global PamKO/KO mouse, were indistinguishable from wild-type mice. Eliminating Pam expression in excitatory forebrain neurons reduced anxiety-like behavior, increased locomotor responsiveness to cocaine, and improved thermoregulation in the cold. A number of amidated peptides play essential roles in each of these behaviors. Although atrial natriuretic peptide (ANP) is not amidated, Pam expression in the atrium exceeds levels in any other tissue. Eliminating Pam expression in cardiomyocytes increased anxiety-like behavior and improved thermoregulation. Atrial and serum levels of ANP fell sharply in PAM myosin heavy chain 6 conditional knockout mice, and RNA sequencing analysis identified changes in gene expression in pathways related to cardiac function. Use of this screening platform should facilitate the development of therapeutic approaches targeted to peptidergic pathways.
Collapse
|
40
|
Wiskerke J, James MH, Aston-Jones G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res 2019; 1731:146222. [PMID: 31002819 DOI: 10.1016/j.brainres.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
There is considerable clinical interest in the neuropeptide orexin/hypocretin for its ability to regulate motivation and reward as well as arousal and wakefulness. For instance, antagonists for the orexin-1 receptor (OxR1) are thought to hold great promise for treating drug addiction and disorders associated with overeating, as these compounds repeatedly have been found to suppress seeking of various drugs of abuse as well as highly palatable foods in preclinical models. Given the hypothesized role of OxR1 signaling in cue-driven motivation, an outstanding question is whether pharmacologically blocking this receptor affects cognitive functioning. Response inhibition - the ability to cancel ongoing behavior - is one aspect of cognitive control that may be particularly relevant. Response inhibition deficits are commonly associated with a range of psychiatric disorders and neurological diseases, including substance use disorders and obesity. Moreover, OxR1 signaling recently has been implicated in waiting impulsivity, another aspect of inhibitory control. Here, we investigated the effects of the OxR1 antagonist SB-334867 on response inhibition in a rat version of the stop-signal reaction time task. Results show that acutely blocking OxR1 had minimal effects on response inhibition or attentional functioning. In contrast, this manipulation reduced motivation to perform the task and earn food rewards, consistent with other recent findings. These results add to the growing body of literature implicating OxR1 in the regulation of motivation and suggest that effects of pharmacological compounds such as SB-334867 on drug-seeking behavior are not related to effects on response inhibition.
Collapse
Affiliation(s)
- Joost Wiskerke
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA; Present address: Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA; Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | | |
Collapse
|
41
|
James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur J Neurosci 2018; 50:2602-2612. [PMID: 30240516 DOI: 10.1111/ejn.14166] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
Abstract
Behavioral economics is a powerful, translational approach for measuring drug demand in both humans and animals. Here, we asked if demand for cocaine in rats with limited drug experience could be used to identify individuals most at risk of expressing an addiction phenotype following either long- or intermittent access self-administration schedules, both of which model the transition to uncontrolled drug-seeking. Because the orexin-1 receptor antagonist SB-334867 (SB) is particularly effective at reducing drug-seeking in highly motivated individuals, we also asked whether demand measured after prolonged drug experience could predict SB efficacy. Demand elasticity (α) measured immediately following acquisition of cocaine self-administration ('baseline α') was positively correlated with α assessed after 2w of long- or intermittent access. Baseline α also predicted the magnitude of compulsive responding for cocaine, drug-seeking in initial abstinence and cued reinstatement following long-, intermittent- or standard short access. When demand was measured after these differential access conditions, α predicted the same addiction endophenotypes predicted by baseline α, as well as primed reinstatement and the emergence of negative emotional mood behavior following abstinence. α also predicted the efficacy of SB, such that high demand rats showed greater reductions in motivation for cocaine following SB compared to low demand rats. Together, these findings indicate that α might serve as a behavioral biomarker to predict individuals most likely to progress from controlled to uncontrolled drug use, and to identify individuals most likely to benefit from orexin-based therapies for the treatment of addiction.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia
| | - Hannah E Bowrey
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Colin M Stopper
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|