1
|
Zhang J, Zhao X, Tang J, Liu C, Zhang Y, Cai C, Du Q. Sleep restriction exacerbates cardiac dysfunction in diabetic mice by causing cardiomyocyte death and fibrosis through mitochondrial damage. Cell Death Discov 2024; 10:446. [PMID: 39433752 PMCID: PMC11494183 DOI: 10.1038/s41420-024-02214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiovascular complication of diabetes mellitus with a poor prognosis and is the leading cause of death in diabetic patients. Sleep deficiency is not only recognized as an important risk factor for the development of type 2 DM, but is also associated with increased morbidity and mortality of cardiovascular disease. The underlying role and mechanisms of sleep restriction (SR) in DCM are far from clear. The KK/Upj-Ay mouse model of T2 DM was used as a study subject, and the small animal ultrasound imaging system was used to detect the function of the heart; immunopathological staining was used to clarify the histo-structural pathological alterations of the heart; and TUNEL staining, qPCR, transmission electron microscopy (TEM), and ELISA kits were used to detect apoptosis, oxidative stress, inflammation, and mitochondrial damage, and related molecular alterations. SR led to a significant increase in mortality, cardiac hypertrophy, necrosis, glycogen deposition and fibrosis further deteriorated in DM KK mice. SR increased cardiomyocyte death in KK mice through the Bax/Bcl2 pathway. In addition to this, SR not only exacerbated the inflammatory response, but also aggravated mitochondrial damage and promoted oxidative stress in KK mice through the PRDM16-PGC-1α pathway. Overall, SR exacerbates structural alterations and dysfunction through inflammation, oxidative stress, and apoptosis in DM KK mice, increasing the risk of death. Clinicians and diabetic patients are prompted to pay attention to sleep habits to avoid accelerating the transition of DCM to heart failure and inducing death due to poor sleep habits.
Collapse
Affiliation(s)
- Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Jing Tang
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Ce Liu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Yining Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Cheng Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China.
- Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, China.
| |
Collapse
|
2
|
Brice KN, Braden-Kuhle PN, Miller SK, Regan A, Lacy V, Chumley MJ, Boehm GW. Chronic sleep loss alters the inflammatory response and BDNF expression in C57BL/6J mice. J Neuroimmunol 2024; 396:578462. [PMID: 39378741 DOI: 10.1016/j.jneuroim.2024.578462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Although adequate sleep is imperative for proper physiological function, over one-third of US adults obtain insufficient sleep. The current research investigated the impact of chronic sleep restriction (CSR) on inflammatory markers and hippocampal BDNF mRNA, following an immune insult in both male and female mice. Patterns of cytokine expression were different when the study was done in males vs. females, indicating potential sex differences in the inflammatory response following CSR. Further, CSR led to suppressed hippocampal BDNF expression in males, an effect not observed in females. These data suggest a complex interaction between chronic sleep loss, inflammation, and sex that warrants further exploration.
Collapse
Affiliation(s)
- Kelly N Brice
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, United States of America.
| | - Paige N Braden-Kuhle
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, United States of America
| | - Shelby K Miller
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, United States of America
| | - Allison Regan
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, United States of America
| | - Vivienne Lacy
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, United States of America
| | - Michael J Chumley
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, United States of America
| | - Gary W Boehm
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, United States of America
| |
Collapse
|
3
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Zhao X, Lu J, Zhang J, Liu C, Wang H, Wang Y, Du Q. Sleep restriction promotes brain oxidative stress and inflammation, and aggravates cognitive impairment in insulin-resistant mice. Psychoneuroendocrinology 2024; 166:107065. [PMID: 38718616 DOI: 10.1016/j.psyneuen.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024]
Abstract
Sleep deprivation and insulin resistance (IR) are two risk factors for Alzheimer's disease. As the population of people with IR increases and sleep restriction (SR) due to staying up late becomes the "new normal", it is necessary to investigate the effects and molecular pathogenesis of chronic SR on cognitive function in insulin resistance. In this study, 4-week-old mice were fed a high-fat diet (HFD) for 8 weeks to establish IR model, and then the mice were subjected to SR for 21 days, and related indicators were assessed, including cognitive capacity, apoptosis, oxidative stress, glial cell activation, inflammation, blood-brain barrier (BBB) permeability and adiponectin levels, for exploring the potential regulatory mechanisms. Compared with control group, IR mice showed impaired cognitive capacity, meanwhile, SR not only promoted Bax/Bcl2-induced hippocampal neuronal cell apoptosis and Nrf2/HO1- induced oxidative stress, but also increased microglia activation and inflammatory factor levels and BBB permeability, thus aggravating the cognitive impairment in IR mice. Consequently, changing bad living habits and ensuring sufficient sleep are important intervention strategies to moderate the aggravation of IR-induced cognitive impairment.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Ce Liu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou 510515, China; Division of Gastroenterology and Hepatology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China.
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| |
Collapse
|
5
|
Liu J, Niethard N, Lun Y, Dimitrov S, Ehrlich I, Born J, Hallschmid M. Slow-wave sleep drives sleep-dependent renormalization of synaptic AMPA receptor levels in the hypothalamus. PLoS Biol 2024; 22:e3002768. [PMID: 39163472 PMCID: PMC11364421 DOI: 10.1371/journal.pbio.3002768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/30/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
According to the synaptic homeostasis hypothesis (SHY), sleep serves to renormalize synaptic connections that have been potentiated during the prior wake phase due to ongoing encoding of information. SHY focuses on glutamatergic synaptic strength and has been supported by numerous studies examining synaptic structure and function in neocortical and hippocampal networks. However, it is unknown whether synaptic down-regulation during sleep occurs in the hypothalamus, i.e., a pivotal center of homeostatic regulation of bodily functions including sleep itself. We show that sleep, in parallel with the synaptic down-regulation in neocortical networks, down-regulates the levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the hypothalamus of rats. Most robust decreases after sleep were observed at both sites for AMPARs containing the GluA1 subunit. Comparing the effects of selective rapid eye movement (REM) sleep and total sleep deprivation, we moreover provide experimental evidence that slow-wave sleep (SWS) is the driving force of the down-regulation of AMPARs in hypothalamus and neocortex, with no additional contributions of REM sleep or the circadian rhythm. SWS-dependent synaptic down-regulation was not linked to EEG slow-wave activity. However, spindle density during SWS predicted relatively increased GluA1 subunit levels in hypothalamic synapses, which is consistent with the role of spindles in the consolidation of memory. Our findings identify SWS as the main driver of the renormalization of synaptic strength during sleep and suggest that SWS-dependent synaptic renormalization is also implicated in homeostatic control processes in the hypothalamus.
Collapse
Affiliation(s)
- Jianfeng Liu
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Yu Lun
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Ingrid Ehrlich
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
6
|
Mashahadi Z, Saadati H, Ghaheri Fard S. Early-life manipulation of the serotonergic system exacerbates the harmful effects of sleep deprivation on cognitive functions. Int J Dev Neurosci 2024. [PMID: 38984677 DOI: 10.1002/jdn.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Serotonin is a monoamine neurotransmitter that plays a main role in regulating physiological and cognitive functions. Serotonergic system dysfunction is involved in the etiology of various psychiatric and neurological disorders. Therefore, the present study was designed to investigate the effects of early-life serotonin depletion on cognitive disorders caused by sleep deprivation. Serotonin was depleted by para-chlorophenylalanine (PCPA, 100 mg/kg, s.c.) at postnatal days 10-20, followed by sleep deprivation-induced through the multiple platform apparatus for 24 h at PND 60. After the examination of the novel object recognition and passive avoidance memories, the hippocampi and prefrontal cortex were dissected to examine the brain-derived neurotrophic factor (BDNF) mRNA expression by PCR. Our findings showed that postnatal serotonin depletion and sleep deprivation impaired the novel object recognition and passive avoidance memories and changed the BDNF levels. In the same way, the serotonin depletion in early life before sleep deprivation exacerbated the harmful effects of sleep deprivation on cognitive function and BDNF levels. It can be claimed that the serotonergic system plays a main role in the modulation of sleep and cognitive functions.
Collapse
Affiliation(s)
- Zahra Mashahadi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri Fard
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Diao H, Li Y, Sun W, Zhang J, Wang M, Chen Y, Zhou F, Li X. REM sleep deprivation induced by the modified multi-platform method has detrimental effects on memory: A systematic review and meta-analysis. Behav Brain Res 2023; 454:114652. [PMID: 37652237 DOI: 10.1016/j.bbr.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
The modified multi-platform method (MMPM) is used to induce animal models of paradoxical sleep deprivation and impairs memory in rodents. However, variations in MMPM protocols have contributed to inconsistent conclusions across studies. This meta-analysis aimed to assess the variations of the MMPM and their effects on memory in rats and mice. A comprehensive search identified 60 studies, and 50 were included in our meta-analysis. Overall, the meta-analysis showed that the MMPM significantly reduced the percentage of time spent in target quadrants (I2 = 54 %, 95 % confidence interval [CI] = [-1.83, -1.18]) and the number of platform-area crossings (I2 = 26 %, 95 % CI = [-1.71, -1.07]) in the Morris water maze (MWM) and shortened the latency to entering the dark compartment in the passive avoidance task (I2 = 68 %, 95 % CI = [-1.36, -0.57]), but it increased the number of errors in the radial arm water maze (RAWM) (I2 = 59 %, 95 % CI = [1.29, 2.07]). Additionally, mice performed worse on the MWM, whereas rats performed worse on the passive avoidance task. More significant memory deficits were found in cross-learning and post-learning MMPM in the MWM and RAWM, respectively. This study provided evidence that the MMPM can be used in preclinical studies of memory deficits induced by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Huaqiong Diao
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiming Li
- Department of Chinese Medicine, Zibo Central Hospital, Shandong, China
| | - Wenjun Sun
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Chen
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fen Zhou
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoli Li
- Department of Encephalopathy, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
9
|
Ghaheri S, Panahpour H, Abdollahzadeh M, Saadati H. Adolescent enriched environment exposure alleviates cognitive impairment in sleep-deprived male rats: Role of hippocampal BDNF. Int J Dev Neurosci 2021; 82:133-145. [PMID: 34937120 DOI: 10.1002/jdn.10165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/07/2022] Open
Abstract
Developmental life experience has long-lasting influences on the brain and behavior. The present study aims to examine the long-term effects of the enriched environment (EE), which was imposed during the adolescence period of life, on their passive avoidance and recognition memories as well as anxiety-like behaviors and hippocampal brain-derived neurotrophic factor (BDNF) levels, in sleep-deprived male rats. In the present study, the male pups were separated from their mothers in postnatal day 21 (PND21) and were housed in the standard or EE for 40 days. In PND 61, the rats were allocated in four groups: control, SD (sleep deprivation), EE, and EE+SD groups. Sleep deprivation was induced in rats by a modified multiple platform model for 24 hours. Open field, novel object recognition memory, and passive avoidance memory tests were used to examine behavior and cognitive ability. The expression of hippocampal BDNF levels was determined by PCR. The results revealed that SD increased anxiety-like behaviors and impaired cognitive ability, while adolescent EE housing alleviated these changes. In addition, EE reversed SD-induced changes in hippocampal BDNF level. We also demonstrated that EE not only has beneficial effects on the cognitive functions of normal rats but also declined memory deficits induced by sleep deprivation. In conclusion, our results suggest that housing in EE during the adolescence period of life reduces cognitive impairment induced by SD. The increase of the BDNF level in the hippocampus is a possible mechanism to alleviate cognitive performance in sleep-deprived rats.
Collapse
Affiliation(s)
- Safa Ghaheri
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Morawska MM, Moreira CG, Ginde VR, Valko PO, Weiss T, Büchele F, Imbach LL, Masneuf S, Kollarik S, Prymaczok N, Gerez JA, Riek R, Baumann CR, Noain D. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson's disease. Sci Transl Med 2021; 13:eabe7099. [PMID: 34878820 DOI: 10.1126/scitranslmed.abe7099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marta M Morawska
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,ETH Zurich, Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Varun R Ginde
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Philipp O Valko
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sophie Masneuf
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Natalia Prymaczok
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Juan A Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Roland Riek
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| |
Collapse
|
11
|
Arora S, Dharavath RN, Bansal Y, Bishnoi M, Kondepudi KK, Chopra K. Neurobehavioral alterations in a mouse model of chronic partial sleep deprivation. Metab Brain Dis 2021; 36:1315-1330. [PMID: 33740181 DOI: 10.1007/s11011-021-00693-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
The night shift paradigm induces a state of chronic partial sleep deprivation (CPSD) and enhances the vulnerability to neuronal dysfunction. However, the specific neuronal impact of CPSD has not been thoroughly explored to date. In the current study, the night shift condition was mimicked in female Swiss albino mice. The classical sleep deprivation model, i.e., Modified Multiple Platform (MMP) method, was used for 8 h/day from Monday to Friday with Saturday and Sunday as a weekend off for nine weeks. Following nine weeks of night shift schedule, their neurobehavioral profile and physiological parameters were assessed along with the activity of the mitochondrial complexes, oxidative stress, serotonin levels, and inflammatory markers in the brain. Mice showed an overall hyperactive behavioral profile including hyperlocomotion, aggression, and stereotyped behavior accompanied by decreased activity of mitochondrial enzymes and serotonin levels, increased oxidative stress and inflammatory markers in whole brain homogenates. Collectively, the study points towards the occurrence of a hyperactive behavioral profile akin to mania and psychosis as a potential consequence of CPSD.
Collapse
Affiliation(s)
- Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, 140306, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
12
|
Pires GN, Oliveira TB, Mello VFF, Bezerra AG, Leenaars CHC, Ritskes-Hoitinga M, Tufik S, Andersen ML. Effects of sleep deprivation on maternal behaviour in animal models: A systematic review and meta-analysis. J Sleep Res 2021; 30:e13333. [PMID: 33719116 DOI: 10.1111/jsr.13333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/12/2023]
Abstract
Pregnancy is a period of numerous physical and emotional changes in women's lives, including alterations in sleep patterns and worsening of pre-existing sleep disturbances, which possibly lead to impaired postpartum maternal behaviour and mother-infant relationship. The effects of sleep deprivation during pregnancy in maternal behaviour have been evaluated in preclinical studies, but have provided inconsistent results. Thus, in the present study, we aimed to evaluate the effects of sleep deprivation during pregnancy on maternal behaviour of animals through a systematic review and meta-analyses. After a two-step selection process, six articles were included, all of them describing rat studies. The most frequently used method of sleep deprivation was rapid eye movement sleep restriction, using the multiple-platform method. Four meta-analyses were performed, none of them presenting significant impact of sleep deprivation on maternal behaviour, failing to reproduce the results observed in previous clinical studies. In conclusion, our results show a lack of translational applicability of animal models to evaluate the effects of sleep deprivation during pregnancy on maternal behaviour.
Collapse
Affiliation(s)
- Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Thainá B Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Victoria F F Mello
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Andréia G Bezerra
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Merel Ritskes-Hoitinga
- Systematic Review Centre for Laboratory (animal) Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands.,AUGUST, Department for Clinical Medicine, Aarhus University, Denmark
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Edalatyzadeh Z, Aghajani M, Imani A, Faghihi M, Sadeghniiat-Haghighi K, Askari S, Choopani S. Cardioprotective effects of acute sleep deprivation on ischemia/reperfusion injury. Auton Neurosci 2020; 230:102761. [PMID: 33310629 DOI: 10.1016/j.autneu.2020.102761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/08/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Modulation of sympathetic activity during acute sleep deprivation can produce various effects on body functions. We studied the effects of acute sleep deprivation before ischemia/reperfusion on myocardial injury in isolated rat hearts, and the role of sympathetic nervous system that may mediate these sleep deprivation induced effects. METHODS The animals were randomized into four groups (n = 11 per group): Ischemia- Reperfusion group (IR), Acute sleep deprivation group (SD), Control group for sleep deprivation (CON-SD) and Sympathectomy + ASD group (SYM-SD). In SD group, sleep deprivation paradigm was used 24 h prior to induction of ischemia/reperfusion. In SYM-SD group, the animals were chemically sympathectomized using 6-hydroxydopamine, 24 h before sleep deprivation. Then, the hearts of animals were perfused using Langendorff setup and were subjected to 30 min regional ischemia followed by 60 min of reperfusion. Throughout the experiment, the hearts were allowed to beat spontaneously and left ventricular developed pressure (LVDP) and rate pressure product (RPP) were recorded. At the end of study, infarct size and percentage of the area at risk were determined. RESULTS We found that SD increased LVDP and RPP, while reducing the myocardial infarct size. Moreover, sympathectomy reversed SD induced reduction in infarct size and showed no differences as compared to IR. CONCLUSION This study shows cardioprotective effects of acute sleep deprivation, which can be abolished by chemical sympathectomy in isolated hearts of rats.
Collapse
Affiliation(s)
- Zohreh Edalatyzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Aghajani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sahar Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Choopani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Brice KN, Hagen CW, Peterman JL, Figg JW, Braden PN, Chumley MJ, Boehm GW. Chronic sleep restriction increases soluble hippocampal Aβ-42 and impairs cognitive performance. Physiol Behav 2020; 226:113128. [PMID: 32791178 DOI: 10.1016/j.physbeh.2020.113128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
Currently, over 44 million people worldwide suffer from Alzheimer's disease (AD). A common feature of AD is disrupted sleep. Sleep is essential for many psychological and physiological functions, though 35.3% of adults report getting less than 7 hours per night. The present research examined whether chronic sleep restriction would elevate hippocampal amyloid-beta1-42 expression or alter cognitive ability in adult C57BL/6 mice. Chronic sleep restriction was associated with cognitive impairment and increased hippocampal amyloid-beta. Thus, chronic sleep loss may have a detrimental effect upon cognitive function, in part, via increasing amyloid-beta levels in the hippocampus, even in non-genetically modified mice.
Collapse
Affiliation(s)
- Kelly N Brice
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Christopher W Hagen
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Julia L Peterman
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - John W Figg
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Paige N Braden
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Michael J Chumley
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Gary W Boehm
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA.
| |
Collapse
|
15
|
Pires GN, Tufik S, Andersen M. Michel Jouvet and his Importance for Brazilian Preclinical Sleep Research. ACTA ACUST UNITED AC 2018; 10:181-182. [PMID: 29410751 PMCID: PMC5760053 DOI: 10.5935/1984-0063.20170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gabriel Natan Pires
- Departamento de Psicobiologia - Universidade Federal de São Paulo - São Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia - Universidade Federal de São Paulo - São Paulo, Brazil
| | - Monica Andersen
- Departamento de Psicobiologia - Universidade Federal de São Paulo - São Paulo, Brazil
| |
Collapse
|
16
|
Frau R, Bini V, Soggiu A, Scheggi S, Pardu A, Fanni S, Roncada P, Puligheddu M, Marrosu F, Caruso D, Devoto P, Bortolato M. The Neurosteroidogenic Enzyme 5α-Reductase Mediates Psychotic-Like Complications of Sleep Deprivation. Neuropsychopharmacology 2017; 42:2196-2205. [PMID: 28102229 PMCID: PMC5603808 DOI: 10.1038/npp.2017.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/18/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023]
Abstract
Acute sleep deprivation (SD) can trigger or exacerbate psychosis- and mania-related symptoms; the neurobiological basis of these complications, however, remains elusive. Given the extensive involvement of neuroactive steroids in psychopathology, we hypothesized that the behavioral complications of SD may be contributed by 5α-reductase (5αR), the rate-limiting enzyme in the conversion of progesterone into the neurosteroid allopregnanolone. We first tested whether rats exposed to SD may exhibit brain-regional alterations in 5αR isoenzymes and neuroactive steroid levels; then, we assessed whether the behavioral and neuroendocrine alterations induced by SD may be differentially modulated by the administration of the 5αR inhibitor finasteride, as well as progesterone and allopregnanolone. SD selectively enhanced 5αR expression and activity, as well as AP levels, in the prefrontal cortex; furthermore, finasteride (10-100 mg/kg, IP) dose-dependently ameliorated PPI deficits, hyperactivity, and risk-taking behaviors, in a fashion akin to the antipsychotic haloperidol and the mood stabilizer lithium carbonate. Finally, PPI deficits were exacerbated by allopregnanolone (10 mg/kg, IP) and attenuated by progesterone (30 mg/kg, IP) in SD-subjected, but not control rats. Collectively, these results provide the first-ever evidence that 5αR mediates a number of psychosis- and mania-like complications of SD through imbalances in cortical levels of neuroactive steroids.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy
| | - Valentina Bini
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy
| | - Alessio Soggiu
- ‘L. Spallanzani’ Institute,
Proteomics Section—Department of Veterinary Sciences and Public Health,
University of Milan, Milan, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental
Medicine, University of Siena, Siena, Italy,Department of Pharmacology and
Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, UT, USA
| | - Alessandra Pardu
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy
| | - Silvia Fanni
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy
| | - Paola Roncada
- ‘L. Spallanzani’ Institute,
Proteomics Section—Department of Veterinary Sciences and Public Health,
University of Milan, Milan, Italy
| | - Monica Puligheddu
- Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy,Department of Public Health, Section of
Neurology, Monserrato, Italy
| | - Francesco Marrosu
- Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy,Department of Public Health, Section of
Neurology, Monserrato, Italy
| | - Donatella Caruso
- Department of Pharmacological and
Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases,
University of Milan, Milan, Italy
| | - Paola Devoto
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy
| | - Marco Bortolato
- Department of Pharmacology and
Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, UT, USA,Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Skaggs Hall, Room 3916, 30S 2000
E, Salt Lake City
84112, UT, USA, Tel: 801 587 3352, Fax:
801 585 5111, E-mail:
| |
Collapse
|
17
|
Kamali AM, Noorafshan A, Karimi F, Karbalay-Doust S, Nami M. The Impact of Chronic Sleep Restriction on Neuronal Number and Volumetric Correlates of the Dorsal Respiratory Nuclei in a Rat Model. Sleep 2017; 40:3787185. [DOI: 10.1093/sleep/zsx072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
18
|
de Oliveira EM, Visniauskas B, Tufik S, Andersen ML, Chagas JR, Campa A. Serum Amyloid A Production Is Triggered by Sleep Deprivation in Mice and Humans: Is That the Link between Sleep Loss and Associated Comorbidities? Nutrients 2017; 9:nu9030311. [PMID: 28335560 PMCID: PMC5372974 DOI: 10.3390/nu9030311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/26/2023] Open
Abstract
Serum amyloid A (SAA) was recently associated with metabolic endotoxemia, obesity and insulin resistance. Concurrently, insufficient sleep adversely affects metabolic health and is an independent predisposing factor for obesity and insulin resistance. In this study we investigated whether sleep loss modulates SAA production. The serum SAA concentration increased in C57BL/6 mice subjected to sleep restriction (SR) for 15 days or to paradoxical sleep deprivation (PSD) for 72 h. Sleep restriction also induced the upregulation of Saa1.1/Saa2.1 mRNA levels in the liver and Saa3 mRNA levels in adipose tissue. SAA levels returned to the basal range after 24 h in paradoxical sleep rebound (PSR). Metabolic endotoxemia was also a finding in SR. Increased plasma levels of SAA were also observed in healthy human volunteers subjected to two nights of total sleep deprivation (Total SD), returning to basal levels after one night of recovery. The observed increase in SAA levels may be part of the initial biochemical alterations caused by sleep deprivation, with potential to drive deleterious conditions such as metabolic endotoxemia and weight gain.
Collapse
Affiliation(s)
- Edson M de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo SP 05509-000, Brazil.
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Jair R Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo SP 04024-002, Brazil.
| | - Ana Campa
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo SP 05509-000, Brazil.
| |
Collapse
|
19
|
Pires GN, Bezerra AG, Tufik S, Andersen ML. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: Systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 68:575-589. [DOI: 10.1016/j.neubiorev.2016.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
|
20
|
Xu X, Wang L, Zhang Y, Su T, Chen L, Zhang Y, Ma W, Xie Y, Wang T, Yang F, He L, Wang W, Fu X, Hao H, Ma Y. Effects of chronic sleep deprivation on glucose homeostasis in rats. Sleep Biol Rhythms 2016; 14:321-328. [PMID: 27738407 PMCID: PMC5037153 DOI: 10.1007/s41105-016-0061-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that chronic sleep disturbances resulted in metabolic disorders. The purpose of this study was to assess the relationship between chronic sleep deprivation (CSD) and the glucose homeostasis in rats. Twenty-four rats were randomly divided into CSD group and control (CON) group. The CSD rats were intervened by a modified multiple platform method (MMPM) to establish an animal model of chronic sleep disturbances. After 3-month intervention, all rats were subjected to an intraperitoneal glucose tolerance test (IPGTT) and an insulin tolerance test (ITT), and the body weight, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, lipid profile group, and homeostasis model assessment-IR (HOMA-IR) were measured. Both the CSD and CON groups had an attenuation of weight gain after 3-month intervention. The plasma glucose level of CSD group was higher than that of the CON group during the IPGTT (P < 0.01). The CSD rats showed a marked increase in HOMA-IR and ITT compared with the CON group (P < 0.01). There were no significant differences of AST, ALT, creatinine, and most lipid parameters between the CSD and CON groups (P > 0.05). The CSD has a marked effect on glucose homeostasis, comprising glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Xiaowen Xu
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Liang Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yan Zhang
- Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Tianjiao Su
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Liying Chen
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yan Zhang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Weifeng Ma
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yuanyuan Xie
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Tiantian Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Fan Yang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Li He
- Director of Division of Science and Technology, National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, 100050 China
| | - Wenjiao Wang
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Xuemei Fu
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Hongxia Hao
- Center of Health Care, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| | - Yuanzheng Ma
- Center of Orthopedics, The 309th Hospital of PLA, No. 17 Heishanhu Road, Haidian District, Beijing, 100091 China
| |
Collapse
|
21
|
Dias Abdo Agamme AL, Aguilar Calegare BF, Fernandes L, Costa A, Lagos P, Torterolo P, D'Almeida V. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 2015; 74:9-15. [PMID: 26456505 DOI: 10.1016/j.peptides.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8). We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus. In addition, compared to control, disturbances of the sleep-wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions. In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.
Collapse
Affiliation(s)
| | | | - Leandro Fernandes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alicia Costa
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Gonzalez-Castañeda RE, Galvez-Contreras AY, Martínez-Quezada CJ, Jauregui-Huerta F, Grcia-Estrada J, Ramos-Zuñiga R, Luquin S, Gonzalez-Perez O. Sex-related effects of sleep deprivation on depressive- and anxiety-like behaviors in mice. Exp Anim 2015; 65:97-107. [PMID: 26548630 PMCID: PMC4783655 DOI: 10.1538/expanim.15-0054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Anxiety and depressive symptoms are generated after paradoxical sleep deprivation (PSD).
However, it is not clear whether PSD produces differential effects between females and
males. The aim of this study was to assess the effect of PSD on anxiety- and
depressive-like behaviors between sexes. Male and female BALB/c mice were divided in three
groups: the control group, the 48-h PSD group and the 96-h PSD group. Immediately after
PSD protocols, the forced swimming and open field test were applied. Sucrose consumption
test was used to evaluate the middle-term effect of PSD. We found that corticosterone
serum levels showed significant differences in the 96-h PSD females as compared to 96-h
PSD males. In the open-field test, the 48-h and 96-h PSD females spent more time at the
periphery of the field, and showed high locomotion as compared to males. In the elevated
plus maze, the 48-h PSD females spent more time in closed arms than males, which is
compatible with anxiety-like behavior. The forced swim test indicated that the 96-h PSD
males spent more time swimming as compared to the 96-h PSD females. Remarkably, the 96-h
PSD males had lower sucrose intake than the 96-h PSD females, which suggest that male mice
have proclivity to develop a persistent depressive-like behavior late after PSD. In
conclusion, male mice showed a significant trend to depressive-like behaviors late after
sleep deprivation. Conversely, female have a strong tendency to display anxiety- and
depressive-like behaviors immediately after sleep deprivation.
Collapse
Affiliation(s)
- Rocio E Gonzalez-Castañeda
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Jalisco, 44340, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chronic sleep deprivation alters the myosin heavy chain isoforms in the masseter muscle in rats. Br J Oral Maxillofac Surg 2015; 53:430-5. [DOI: 10.1016/j.bjoms.2015.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/11/2015] [Indexed: 11/22/2022]
|
24
|
Kostyalik D, Vas S, Kátai Z, Kitka T, Gyertyán I, Bagdy G, Tóthfalusi L. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains. BMC Neurosci 2014; 15:120. [PMID: 25406958 PMCID: PMC4243313 DOI: 10.1186/s12868-014-0120-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022] Open
Abstract
Background Shortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet. Results Chronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis. Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5–9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD. Conclusion In conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence of the sub-chronic stress caused by the flower pot method. These data might support the antidepressant activity of SSRIs, and may allude that investigating the rebound period following the flower pot protocol could be useful to detect antidepressant drug response. Markov analysis is a suitable method to study the sleep pattern.
Collapse
Affiliation(s)
- Diána Kostyalik
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.
| | - Szilvia Vas
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary. .,MTA-SE, Neuropsychopharmacology and Neurochemistry Research Group, Budapest, Hungary.
| | - Zita Kátai
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.
| | - Tamás Kitka
- Department of Neurophysiology, Gedeon Richter Plc., Gyömrői út 19-21, Budapest, Hungary.
| | - István Gyertyán
- Department of Behavioural Pharmacology, Gedeon Richter Plc., Gyömrői út 19-21, Budapest, Hungary.
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary. .,MTA-SE, Neuropsychopharmacology and Neurochemistry Research Group, Budapest, Hungary.
| | - László Tóthfalusi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
25
|
Ma C, Wu G, Wang Z, Wang P, Wu L, Zhu G, Zhao H. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats. PLoS One 2014; 9:e107544. [PMID: 25226519 PMCID: PMC4167193 DOI: 10.1371/journal.pone.0107544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/11/2014] [Indexed: 12/17/2022] Open
Abstract
Objectives To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK) pathway in the temporomandibular joint (TMJ) of rats subjected to chronic sleep deprivation (CSD). Methods Rats were subjected to CSD using the modified multiple platform method (MMPM). The serum levels of corticosterone (CORT) and adrenocorticotropic hormone (ACTH) were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK) expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR) and Western blotting. Results The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group. Conclusion These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.
Collapse
Affiliation(s)
- Chuan Ma
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
- College of Stomatology, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan City, Shandong Province, China
| | - Gaoyi Wu
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Zhaoling Wang
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Peihuan Wang
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Longmei Wu
- cardiovascular medicine, He Bei medical University, Shijiazhuang City, Hebei Province, China
| | - Guoxiong Zhu
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Huaqiang Zhao
- College of Stomatology, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan City, Shandong Province, China
- * E-mail:
| |
Collapse
|
26
|
Noseda ACD, Rodrigues LS, Targa ADS, Aurich MF, Vital MABF, Da Cunha C, Lima MMS. Putative role of monoamines in the antidepressant-like mechanism induced by striatal MT2 blockade. Behav Brain Res 2014; 275:136-45. [PMID: 25218873 DOI: 10.1016/j.bbr.2014.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 01/13/2023]
Abstract
It has been observed that the secretion pattern of melatonin is modified in Parkinson's disease (PD). Hence, it is hypothesized that dysregulations of melatonin MT2 receptors may be involved in the installation of depression in PD patients. Together with recent evidence based on the use of the intranigral rotenone model of PD, have led to the hypothesis that modulating the striatal MT2 receptor could provide a more comprehensive understanding of the antidepressant properties triggered. To further investigate this issue, male Wistar rats were infused with intranigral rotenone (12μg/μL) and seven days later subjected to a rapid eye movement sleep deprivation (REMSD) for 24h. After, we injected within the striatum the MT2 selective agonist, 8-M-PDOT (10μg/μL), the MT2 selective antagonist, 4-P-PDOT (5μg/μL) or vehicle. Subsequently, they were tested in the forced swimming test and were allowed to perform the sleep rebound (REB). Then, the rats were re-tested, and the striatum, hippocampus and substantia nigra pars compacta (SNpc) were collected for neurochemical purposes. Results indicated substantial antidepressant effects promoted by the blockade of striatal MT2 receptors that were potentiated by REMSD. MT2 activation increased DA levels in the striatum and hippocampus, while MT2 blockade increase DA in the SNpc. 4-P-PDOT treatment of the rotenone REMSD group generated a decrement in 5-HT levels within the striatum, hippocampus and SNpc. However, increased 5-HT turnover was observed among these structures. Therefore, we demonstrated the neurochemical antidepressant effect induced by striatal MT2 blockage associated with REMSD in the rotenone model of PD.
Collapse
Affiliation(s)
- Ana Carolina D Noseda
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Mariana F Aurich
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria A B F Vital
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Cláudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
27
|
Almeida FR, Perry JC, Futuro-Neto HA, Almeida VR, Sebastião RM, Andersen ML, Tufik S, Campos RR, Bergamaschi CT. Cardiovascular function alterations induced by acute paradoxical sleep deprivation in rats. Clin Exp Hypertens 2014; 36:567-71. [PMID: 24678694 DOI: 10.3109/10641963.2014.881843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sleep loss has been implicated in triggering the hypertension. The goal of the present study was investigated the possible mechanisms underlying cardiovascular alterations after acute paradoxical sleep deprivation (PSD). Male Wistar rats were assigned in two experimental groups: (1) control and (2) PSD for 24 h using the modified single platform method. Paradoxical sleep deprived rats exhibited higher blood pressure, heart rate (HR) and impaired baroreceptor sensitivity. After pharmacological autonomic double blockade (propranolol and methylatropine administration), intrinsic heart rate was decreased after PSD. The PSD rats showed a reduction in the vagal tone without affecting sympathetic tone. Isoproterenol administration (0.001, 0.01 and 1 µg/kg) induced an increase in ΔHR responses in PSD group. Electrocardiographic analysis in response to β-adrenergic stimulation indicated that PSD contributed to ventricular cardiac arrhythmias. Our findings suggest that acute paradoxical sleep loss induce cardiovascular alterations, autonomic imbalance accompanied by impaired baroreflex sensitivity and increased arrhythmia susceptibility.
Collapse
Affiliation(s)
- F R Almeida
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo , SP , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zubedat S, Freed Y, Eshed Y, Cymerblit-Sabba A, Ritter A, Nachmani M, Harush R, Aga-Mizrachi S, Avital A. Plant-derived nanoparticle treatment with cocc 30c ameliorates attention and motor abilities in sleep-deprived rats. Neuroscience 2013; 253:1-8. [DOI: 10.1016/j.neuroscience.2013.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
29
|
More than hormones: sex differences in cardiovascular parameters after sleep loss in rats. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:34-8. [PMID: 23337035 DOI: 10.1016/j.pnpbp.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Although the influence of sex on sleep pattern and cardiovascular parameters is well known, knowledge regarding the effects of sleep loss on heart responses in both sexes is scarce. The present study investigated the effects of paradoxical sleep deprivation (PSD) and chronic sleep restriction (SR) on cardiovascular parameters and adrenocorticotropic hormone (ACTH) levels in male and female rats. Both groups were randomly assigned to PSD for 96 h, SR for 21 days or home-cage control. Mean arterial pressure (MAP), heart rate (HR), baroreflex sensitivity (bradycardia and tachycardia responses) and ACTH levels were evaluated. The results showed that PSD induced a significant increase in HR and ACTH levels in both sexes, although male rats presented higher levels of ACTH hormone compared to females. In addition to sex-specific responses, PSD decreased the tachycardia only in male rats. SR, induced a significant increase in MAP and decrease in bradycardia in both sexes. Male rats were more affected by sleep deprivation protocols than females for MAP, bradycardia response, and ACTH levels. The results showed that the effects of sleep loss on cardiovascular parameters are associated with the protocol of sleep deprivation and that sex can modulate these effects. We suggested this experimental model as a suitable tool for further investigations of the relationship between cardiovascular parameters and sleep.
Collapse
|
30
|
Alzoubi KH, Khabour OF, Tashtoush NH, Al-Azzam SI, Mhaidat NM. Evaluation of the effect of pentoxifylline on sleep-deprivation induced memory impairment. Hippocampus 2013; 23:812-9. [PMID: 23592546 DOI: 10.1002/hipo.22135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2013] [Indexed: 01/06/2023]
Abstract
In this study, we examined the ability of Pentoxifylline (PTX) to prevent sleep deprivation induced memory impairment probably through decreasing oxidative stress. Sleep deprivation was chronically induced 8 h/day for 6 weeks in rats using modified multiple platform model. Concurrently, PTX (100 mg/kg) was administered to animals on daily basis. After 6 weeks of treatment, behavioral studies were conducted to test the spatial learning and memory using the Radial Arm Water Maze. Additionally, the hippocampus was dissected; and levels/activities of antioxidant defense biomarkers glutathione reduced (GSH), glutathione oxidized (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), were assessed. The results show that chronic sleep deprivation impaired short- and long-term memories, which was prevented by chronic treatment with PTX. Additionally, PTX normalized sleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio (P < 0.05), and activities of GPx, catalase, and SOD (P < 0.05). In conclusion, chronic sleep deprivation induces memory impairment, and treatment with PTX prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | |
Collapse
|
31
|
Deurveilher S, Rusak B, Semba K. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1411-25. [PMID: 22492816 DOI: 10.1152/ajpregu.00678.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase ("3/1" protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the "3/1" CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.
Collapse
Affiliation(s)
- S Deurveilher
- Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
32
|
Kaushal N, Nair D, Gozal D, Ramesh V. Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice. Brain Res 2012; 1454:65-79. [PMID: 22498175 DOI: 10.1016/j.brainres.2012.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/13/2022]
Abstract
Sleep is an important physiological process underlying maintenance of physical, mental and emotional health. Consequently, sleep deprivation (SD) is associated with adverse consequences and increases the risk for anxiety, immune, and cognitive disorders. SD is characterized by increased energy expenditure responses and sleep rebound upon recovery that are regulated by homeostatic processes, which in turn are influenced by stress. Since all previous studies on SD were conducted in a setting of social isolation, the impact of the social contextual setting is unknown. Therefore, we used a relatively stress-free SD paradigm in mice to assess the impact of social isolation on sleep, wakefulness and delta electroencephalogram (EEG) power during non-rapid eye movement (NREM) sleep. Paired or isolated C57BL/6J adult chronically-implanted male mice were exposed to SD for 6h and telemetric polygraphic recordings were conducted, including 18 h recovery. Recovery from SD in the paired group showed a significant decrease in wake and significant increase in NREM sleep and rapid eye movement (REM), and a similar, albeit less robust response occurred in the isolated mice. Delta power during NREM sleep was increased in both groups immediately following SD, but paired mice exhibited significantly higher delta power throughout the dark period. The increase in body temperature and gross motor activity observed during the SD procedure was decreased during the dark period. In both open field and elevated plus maze tests, socially isolated mice showed significantly higher anxiety than paired mice. The homeostatic processes altered by SD are differentially affected in paired and isolated mice, suggesting that the social context of isolation stress may adversely affect the quantity and quality of sleep in mice.
Collapse
Affiliation(s)
- Navita Kaushal
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
33
|
Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav Brain Res 2011; 226:205-10. [PMID: 21944940 DOI: 10.1016/j.bbr.2011.09.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 12/18/2022]
Abstract
Sleep deprivation induces oxidative stress and impairs learning and memory processes. Vitamin E, on the other hand, is a strong antioxidant that has neuroprotective effect on the brain. In this study, we examined the potential protective effect of chronic administration of vitamin E on chronic sleep deprivation-induced cognitive impairment. In addition, possible molecular targets for vitamin E effects on chronic sleep deprivation-induced cognitive impairment were determined. Sleep deprivation was induced in rats using modified multiple platform model. Vitamin E (100mg/kg) was administered to animals by oral gavage. Behavioral study was conducted to test the spatial learning and memory using the radial arm water maze (RAWM). In addition, the hippocampus was dissected out and antioxidant markers including glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) were assessed. The results of this project revealed that chronic sleep deprivation impaired both (short- and long-term) memories (P<0.05), while vitamin E treatment prevented such effect. Additionally, vitamin E normalized chronic sleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio, and activity of catalase, SOD, and GPx. In conclusion, sleep deprivation induces memory impairment, and treatment with vitamin E prevented this impairment probably through its antioxidant action in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | | | | | | | | |
Collapse
|
34
|
Walsh CM, Booth V, Poe GR. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training. Learn Mem 2011; 18:422-34. [PMID: 21677190 DOI: 10.1101/lm.2099011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation-associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items.
Collapse
Affiliation(s)
- Christine M Walsh
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
35
|
de Souza L, Andersen ML, Smaili SS, Lopes GS, Ho PS, Papale LA, Tufik S. Age-related changes during a paradigm of chronic sleep restriction. Behav Brain Res 2010; 214:201-5. [PMID: 20580748 DOI: 10.1016/j.bbr.2010.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 11/17/2022]
Abstract
Fragmented and restricted sleep is a common problem for the human elderly. There is evidence that aging impairs sleep in animals as well. After sleep deprivation, older animals have less sleep rebound. Despite increasing complaints of reduced time for sleep in contemporary society, few studies have examined chronic sleep restriction protocols in animals. Therefore, the aim of the present study was to evaluate the effects of chronic sleep restriction on the sleep patterns of aged rats. Using the single platform method, 22-month-old male rats were submitted to 18 h of sleep restriction followed by 6 h of total sleep opportunity. The sleep-wake cycles of these rats were recorded for 6h/day throughout the 12-day procedure. The results showed that total sleep time and NREM sleep were reduced during the 12-day sleep restriction period. However, rebound REM sleep was only significant on day 6. A negative rebound was also seen, particularly during the last days of the chronic sleep restriction period. Furthermore, sleep latency and mean wake bout length progressively increased during the protocol. These findings indicate that older rats have an inability to restore their sleep patterns during extended sleep deprivation.
Collapse
Affiliation(s)
- Luciane de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino - 04024-002, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Martins PJF, Marques MS, Tufik S, D'Almeida V. Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol Endocrinol Metab 2010; 298:E726-34. [PMID: 20051529 DOI: 10.1152/ajpendo.00660.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several pieces of evidence support that sleep duration plays a role in body weight control. Nevertheless, it has been assumed that, after the identification of orexins (hypocretins), the molecular basis of the interaction between sleep and energy homeostasis has been provided. However, no study has verified the relationship between neuropeptide Y (NPY) and orexin changes during hyperphagia induced by sleep deprivation. In the current study we aimed to establish the time course of changes in metabolite, endocrine, and hypothalamic neuropeptide expression of Wistar rats sleep deprived by the platform method for a distinct period (from 24 to 96 h) or sleep restricted for 21 days (SR-21d). Despite changes in the stress hormones, we found no changes in food intake and body weight in the SR-21d group. However, sleep-deprived rats had a 25-35% increase in their food intake from 72 h accompanied by slight weight loss. Such changes were associated with increased hypothalamus mRNA levels of prepro-orexin (PPO) at 24 h followed by NPY at 48 h of sleep deprivation. Conversely, sleep recovery reduced the expression of both PPO and NPY, which rapidly brought the animals to a hypophagic condition. Our data also support that sleep deprivation rapidly increases energy expenditure and therefore leads to a negative energy balance and a reduction in liver glycogen and serum triacylglycerol levels despite the hyperphagia. Interestingly, such changes were associated with increased serum levels of glucagon, corticosterone, and norepinephrine, but no effects on leptin, insulin, or ghrelin were observed. In conclusion, orexin activation accounts for the myriad changes induced by sleep deprivation, especially the hyperphagia induced under stress and a negative energy balance.
Collapse
|
37
|
Kitka T, Katai Z, Pap D, Molnar E, Adori C, Bagdy G. Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Behav Brain Res 2009; 205:482-7. [PMID: 19665493 DOI: 10.1016/j.bbr.2009.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/24/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
The single platform-on-water (flower pot) method is extensively used for depriving rapid eye movement sleep (REMS). Detailed comparison of sleep-wake architecture, recorded during the rebound period after spending three days on either a small or large platform, could separate the effects of REMS deficit from other stress factors caused by the procedure. A further aim of the study was to find the most characteristic REMS parameter of the rebound originating from REMS deficit. Rats were kept on a small or large platform for 72 h. Their fronto-parietal electroencephalogram, electromyogram and motility were recorded during the 24 h rebound at the beginning of the passive phase. A similar period of a home cage group was also recorded. The most typical differences between the two rebound groups were the increased cumulative time and longer average duration of REMS episodes without significant change in the number of these episodes of the small platform animals during the passive phase. Results obtained by cosinor analysis were in accordance with the findings above. Since we did not find any difference in the average duration of REMS episodes comparing the large platform rebound group and the home cage group, we concluded that the increased mean duration of REMS episodes is a selective marker for the rebound caused by small platform sleep deprivation, while other changes in sleep architecture may be the consequence of stress and also some sleep deficit.
Collapse
Affiliation(s)
- Tamas Kitka
- Semmelweis University, Department of Pharmacodynamics, Nagyvarad ter 4, Budapest 1089, Hungary
| | | | | | | | | | | |
Collapse
|
38
|
Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau JL. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci Biobehav Rev 2009; 33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
|