1
|
Zhang GP, Liao JX, Liu YY, Zhu FQ, Huang HJ, Zhang WJ. Ion channel P2X7 receptor in the progression of cancer. Front Oncol 2024; 13:1297775. [PMID: 38273855 PMCID: PMC10808724 DOI: 10.3389/fonc.2023.1297775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
P2X7 receptor (P2X7) is a non-selective and ATP-sensitive ligand-gated cation channel. Studies have confirmed that it is expressed in a variety of cells and correlates with their function, frequently in immune cells and tumor cells. We found increased expression of this receptor in many tumor cells, and it has a role in tumor survival and progression. In immune cells, upregulation of the receptor has a double effect on tumor suppression as well as tumor promotion. This review describes the structure of P2X7 and its role in the tumor microenvironment and presents possible mechanisms of P2X7 in tumor invasion and metastasis. Understanding the potential of P2X7 for tumor treatment, we also present several therapeutic agents targeting P2X7 and their mechanisms of action. In conclusion, the study of P2X7 is an important guideline for the use of clinical tumor therapy and may be able to provide a new idea for tumor treatment, but considering the complexity of the biological effects of P2X7, the drugs should be used with caution in clinical practice.
Collapse
Affiliation(s)
- Guang-ping Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Critical Medicine, Ganzhou people’s Hospital, Ganzhou, Jiangxi, China
| | - Jun-xiang Liao
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hui-jin Huang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Hua SQ, Hu JL, Zou FL, Liu JP, Luo HL, Hu DX, Wu LD, Zhang WJ. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187:199-209. [PMID: 35850190 DOI: 10.1016/j.brainresbull.2022.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Different studies have confirmed P2X7 receptor-mediated inflammatory mediators play a key role in the development of pain. P2X7 receptor activation can induce the development of pain by mediating the release of inflammatory mediators. In view of the fact that P2X7 receptor is expressed in the nervous system and immune system, it is closely related to the stability and maintenance of the nervous system function. ATP activates P2X7 receptor, opens non-selective cation channels, activates multiple intracellular signaling, releases multiple inflammatory cytokines, and induces pain. At present, the role of P2X7 receptor in inflammatory response and pain has been widely recognized and affirmed. Therefore, in this paper, we discussed the pathological mechanism of P2X7 receptor-mediated inflammation and pain, focused on the internal relationship between P2X7 receptor and pain. Moreover, we also described the effects of some antagonists on pain relief by inhibiting the activities of P2X7 receptor. Thus, targeting to inhibit activation of P2X7 receptor is expected to become another potential target for the relief of pain.
Collapse
Affiliation(s)
- Shi-Qi Hua
- Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Jia-Ling Hu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Fei-Long Zou
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Li-Dong Wu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| |
Collapse
|
3
|
Nie L, Ma D, Quinn JP, Wang M. Src family kinases activity is required for transmitting purinergic P2X7 receptor signaling in cortical spreading depression and neuroinflammation. J Headache Pain 2021; 22:146. [PMID: 34863113 PMCID: PMC8903689 DOI: 10.1186/s10194-021-01359-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Purinergic P2X7 receptor plays an important role in migraine pathophysiology. Yet precise molecular mechanism underlying P2X7R signaling in migraine remains unclear. This study explores the hypothesis that P2X7 receptor transmits signaling to Src family kinases (SFKs) during cortical spreading depression (CSD) and neuroinflammation after CSD. METHODS CSD was recorded using electrophysiology in rats and intrinsic optical imaging in mouse brain slices. Cortical IL-1β and TNFα mRNA levels were detected using qPCR. Glutamate release from mouse brain slices was detected using glutamate assay. RESULTS The data showed that deactivation of SFKs by systemic injection of PP2 reduced cortical susceptibility to CSD in rats and CSD-induced IL-1β and TNF-α gene expression in rat ipsilateral cortices. Consistently, in mouse brain slices, inhibition of SFKs activity by saracatinib and P2X7 receptor by A740003 similarly reduced cortical susceptibility to CSD. When the interaction of P2X7 receptor and SFKs was disrupted by TAT-P2X7, a marked reduction of cortical susceptibility to CSD, IL-1β gene expression and glutamate release after CSD induction were observed in mouse brain slices. The reduced cortical susceptibility to CSD by TAT-P2X7 was restored by NMDA, and disrupting the Fyn-NMDA interaction using TAT-Fyn (39-57) but not disrupting Src-NMDA receptor interaction using TAT-Src (40-49) reduced cortical susceptibility to CSD. Furthermore, activation of P2X7 receptor by BzATP restored the TAT-Fyn (39-57)-reduced cortical susceptibility to CSD. CONCLUSION This study reveals that SFKs activity transmits P2X7 receptor signaling to facilitate CSD propagation via glutamatergic pathway and promote neuroinflammation, which is of particular relevance to migraine.
Collapse
Affiliation(s)
- Lingdi Nie
- Department of Biological Sciences, Centre for Neuroscience, Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123 P. R. China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, L69 7ZB UK
| | - Dongqing Ma
- Department of Biological Sciences, Centre for Neuroscience, Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123 P. R. China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, L69 7ZB UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, L69 7ZB UK
| | - Minyan Wang
- Department of Biological Sciences, Centre for Neuroscience, Xi’an Jiaotong-Liverpool University (XJTLU), 111 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123 P. R. China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, L69 7ZB UK
| |
Collapse
|
4
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
5
|
Zhao YF, Tang Y, Illes P. Astrocytic and Oligodendrocytic P2X7 Receptors Determine Neuronal Functions in the CNS. Front Mol Neurosci 2021; 14:641570. [PMID: 33642994 PMCID: PMC7906075 DOI: 10.3389/fnmol.2021.641570] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
P2X7 receptors are members of the ATP-gated cationic channel family with a preferential localization at the microglial cells, the resident macrophages of the brain. However, these receptors are also present at neuroglia (astrocytes, oligodendrocytes) although at a considerably lower density. They mediate necrosis/apoptosis by the release of pro-inflammatory cytokines/chemokines, reactive oxygen species (ROS) as well as the excitotoxic (glio)transmitters glutamate and ATP. Besides mediating cell damage i.e., superimposed upon chronic neurodegenerative processes in Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, and amyotrophic lateral sclerosis, they may also participate in neuroglial signaling to neurons under conditions of high ATP concentrations during any other form of neuroinflammation/neurodegeneration. It is a pertinent open question whether P2X7Rs are localized on neurons, or whether only neuroglia/microglia possess this receptor-type causing indirect effects by releasing the above-mentioned signaling molecules. We suggest as based on molecular biology and functional evidence that neurons are devoid of P2X7Rs although the existence of neuronal P2X7Rs cannot be excluded with absolute certainty.
Collapse
Affiliation(s)
- Ya-Fei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
7
|
Zhang WJ, Hu CG, Zhu ZM, Luo HL. Effect of P2X7 receptor on tumorigenesis and its pharmacological properties. Biomed Pharmacother 2020; 125:109844. [PMID: 32004973 DOI: 10.1016/j.biopha.2020.109844] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
The occurrence and development of tumors is a multi-factor, multi-step, multi-gene pathological process, and its treatment has been the most difficult problem in the field of medicine today. Therefore, exploring the relevant factors involved in the pathogenesis of tumors, improving the diagnostic rate, treatment rate, and prognosis survival rate of tumors have become an urgent problem to be solved. A large number of studies have shown that the P2X7 receptor (P2X7R) and the tumor microenvironment play an important role in regulating the growth, apoptosis, migration and invasion of tumor cells. P2X7R is an ATP ligand-gated cationic channel receptor, which exists in most tissues of the human body. The main function of P2X7R is to regulate the relevant cells (such as macrophages, lymphocytes, and glial cells) to release damaging factors and induce apoptosis and cell death. In recent years, with continuous research and exploration of P2X7R, it has been found that P2X7R exists on the surface of most tumor cells and plays an important role in tumor pathogenesis. The activation of the P2X7R can open the ion channels on the tumor cell membrane (sodium ion, calcium ion influx and potassium ion outflow), trigger rearrangement of the cytoskeleton and changes in membrane fluidity, allow small molecule substances to enter the cell, activate enzymes and kinases in related signaling pathways in cells (such as PKA, PKC, ERK1/2, AKT, and JNK), thereby affecting the development of tumor cells, and can also indirectly affect the growth, apoptosis and migration of tumor cells through tumor microenvironment. At present, P2X7R has been widely recognized for its important role in tumorigenesis and development. In this paper, we give a comprehensive description of the structure and function of the P2X7R gene. We also clarified the concept of tumor microenvironment and its effect on tumors, discussed the relevant pathological mechanisms in the development of tumors, and revealed the intrinsic relationship between P2X7R and tumors. We explored the pharmacological properties of P2X7R antagonists or inhibitors in reducing its expression as targeted therapy for tumors.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Ce-Gui Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| |
Collapse
|
8
|
Wang Z, Li L, Yang R, Xu X, Liang S. P2X receptors mediated abnormal interaction between satellite glial cells and neurons in visceral pathological changes. Cell Biol Int 2019; 43:1346-1352. [PMID: 31228306 DOI: 10.1002/cbin.11195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/24/2023]
Abstract
The adenosine triphosphate (ATP)-gated P2X receptor cation channel family consists of permeable ligand-gated ion channels that expand on the binding of extracellular adenosine 5'-ATP. ATP-gated P2X receptors are trimer ion channels that assemble homo or isomer from seven cloned subunits. P2X receptors are discovered mostly in mammalian and are being found in an increasing number of non-vertebrates, such as zebrafish, bullfrog, and ameba. P2X receptors are involved in many physiological processes, including regulation of heart rhythm and contractility, and regulation of pain, especially chronic pain and glia integration. This review summarizes the current studies on the regulation of P2X receptors in abnormal neuronal-glial interaction and the pathological changes in viscera, especially in myocardial ischemia.
Collapse
Affiliation(s)
- Zilin Wang
- Undergraduate student of class 156 of Nanchang University Queen Marry University of London Joint programme, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
9
|
Naveed M, Zhou QG, Han F. Cerebrovascular inflammation: A critical trigger for neurovascular injury? Neurochem Int 2019; 126:165-177. [PMID: 30890409 DOI: 10.1016/j.neuint.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
The cerebrovascular system is not only inert bystandard that support the metabolic demands of the brain but also elicit the barrier functions against risk factors mediated neurovascular injury. The onsets of cerebrovascular inflammation are considered as stimuli that can provoke the host defense system and trigger the development of neurological disorders. Homeostasis of the brain function is regulated by the movement of endothelial, glial, and neuronal cells within the neurovascular unit (NVU), which acts as a "platform" for the coordinated action of anti- and pro-inflammatory mechanisms. The cerebrovascular system plays an integral role in the inflammatory response by either producing or expressing a variety of cytokines, adhesion molecules, metalloproteinases, and serine proteases. Excessive inflammatory cytokine production can further be affecting the blood-brain barrier (BBB) integrity and lead to brain tissue damage. In this review, we summarize the more recent evidence highlighting the importance of cerebrovascular injury in terms of risk prediction, and the mechanisms mediating the upregulation of inflammatory mediators in cerebrovascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China; Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China.
| |
Collapse
|
10
|
Retamal J, Reyes A, Ramirez P, Bravo D, Hernandez A, Pelissier T, Villanueva L, Constandil L. Burst-Like Subcutaneous Electrical Stimulation Induces BDNF-Mediated, Cyclotraxin B-Sensitive Central Sensitization in Rat Spinal Cord. Front Pharmacol 2018; 9:1143. [PMID: 30364099 PMCID: PMC6191473 DOI: 10.3389/fphar.2018.01143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
Intrathecal administration of brain derived neurotrophic factor (BDNF) induces long-term potentiation (LTP) and generates long-lasting central sensitization in spinal cord thus mimicking chronic pain, but the relevance of these observations to chronic pain mechanisms is uncertain. Since C-fiber activation by a high-frequency subcutaneous electrical stimulation (SES) protocol causes spinal release of BDNF and induces spinal cord LTP, we propose that application of such protocol would be a sufficient condition for generating long-lasting BDNF-mediated central sensitization. Results showed that application of burst-like SES to rat toes produced (i) rapid induction of hyperalgesia that lasted for more than 3 weeks, (ii) early increase of C-reflex activity followed by increased wind-up scores lasting for more than 1 week, and (iii) early increase followed by late decrease in BDNF protein levels and phosphorylated TrkB that lasted for more than 1 week. These changes were prevented by the TrkB antagonist cyclotraxin-B administered shortly before SES, while hyperalgesia was reversed by cyclotraxin-B administered 3 days after SES. Results suggest that mechanisms underlying central sensitization first involve BDNF release of probably neuronal origin, followed by brief increased expression of likely glial BDNF and pTrkB that could switch early phase sensitization into late one.
Collapse
Affiliation(s)
- Jeffri Retamal
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Andrea Reyes
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Paulina Ramirez
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - David Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandro Hernandez
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Teresa Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Villanueva
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| | - Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| |
Collapse
|
11
|
Li P, Zhang Q, Xiao Z, Yu S, Yan Y, Qin Y. Activation of the P2X 7 receptor in midbrain periaqueductal gray participates in the analgesic effect of tramadol in bone cancer pain rats. Mol Pain 2018; 14:1744806918803039. [PMID: 30198382 PMCID: PMC6176534 DOI: 10.1177/1744806918803039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Cancer pain is a well-known serious complication in metastatic or terminal cancer patients. Current pain management remains unsatisfactory. The activation of spinal and supraspinal P2X7 receptors plays a crucial role in the induction and maintenance mechanisms of various kinds of acute or chronic pain. The midbrain periaqueductal gray is a vital supraspinal site of the endogenous descending pain-modulating system. Tramadol is a synthetic, centrally acting analgesic agent that exhibits considerable efficacy in clinically relieving pain. The purpose of this study was to determine whether the activation of P2X7 receptor in the ventrolateral region of the periaqueductal gray (vlPAG) participates in the analgesic mechanisms of tramadol on bone cancer pain in rats. The bone cancer pain rat model was established by intratibial cell inoculation of SHZ-88 mammary gland carcinoma cells. The analgesic effects of different doses of tramadol (10, 20, and 40 mg/kg) were assessed by measuring the mechanical withdrawal threshold and thermal withdrawal latency values in rats by using an electronic von Frey anesthesiometer and radiant heat stimulation, respectively. Alterations in the number of P2X7 receptor-positive cells and P2X7 protein levels in vlPAG were separately detected by using immunohistochemistry and Western blot assay. The effect of intra-vlPAG injection of A-740003 (100 nmol), a selective competitive P2X7 receptor antagonist, on the analgesic effect of tramadol was also observed. Results The expression of P2X7 receptor in the vlPAG on bone cancer pain rats was mildly elevated, and the tramadol (10, 20, and 40 mg/kg) dose dependently relieved pain-related behaviors in bone cancer pain rats and further upregulated the expression of P2X7 receptor in the vlPAG. The intra-vlPAG injection of A-740003 pretreatment partly but significantly antagonized the analgesic effect of tramadol on bone cancer pain rats. Conclusions The injection of tramadol can dose dependently elicit analgesic effect on bone cancer pain rats by promoting the expression of the P2X7 receptor in vlPAG.
Collapse
Affiliation(s)
- Pengtao Li
- 1 Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Quan Zhang
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China.,3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China.,3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shouyang Yu
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Yan
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China.,3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Qin
- 3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
12
|
Mayhew J, Graham BA, Biber K, Nilsson M, Walker FR. Purinergic modulation of glutamate transmission: An expanding role in stress-linked neuropathology. Neurosci Biobehav Rev 2018; 93:26-37. [PMID: 29959963 DOI: 10.1016/j.neubiorev.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 02/04/2023]
Abstract
Chronic stress has been extensively linked to disturbances in glutamatergic signalling. Emerging from this field of research is a considerable number of studies identifying the ability of purines at the pre-, post-, and peri-synaptic levels to tune glutamatergic neurotransmission. While the evidence describing purinergic control of glutamate has continued to grow, there has been relatively little attention given to how chronic stress modulates purinergic functions. The available research on this topic has demonstrated that chronic stress can not only disturb purinergic receptors involved in the regulation of glutamate neurotransmission, but also perturb glial-dependent purinergic signalling. This review will provide a detailed examining of the complex literature relating to glutamatergic-purinergic interactions with a focus on both neuronal and glial contributions. Once these detailed interactions have been described and contextualised, we will integrate recent findings from the field of stress research.
Collapse
Affiliation(s)
- J Mayhew
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - K Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, 79104 Freiburg, Germany; Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - M Nilsson
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
13
|
Effects of palmatine on rats with comorbidity of diabetic neuropathic pain and depression. Brain Res Bull 2018; 139:56-66. [PMID: 29427595 DOI: 10.1016/j.brainresbull.2018.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/25/2022]
Abstract
Diabetic neuropathic pain (DNP) is one of the common complications of diabetes. Depression (DP) is also one of the common complications of diabetes. P2X7 receptors play an important role in the transmission of nociceptive signal and are associated with depressive illness. In the study, the hyperalgesia, allodynia and depressive behaviours of rats with comorbidity of DNP and DP were confirmed by the thermal withdrawal latency (TWL) test, mechanical withdrawal threshold (MWT) test, sucrose preference test (SPT), immobility time of forced swimming test (IMFST) and open-field test (OFT). The change in expression of the P2X7 receptor of the hippocampus was observed through RT-PCR, qPCR, Western blotting and immunohistochemical staining methods The results showed that palmatine treatment can alleviate the hyperalgesia, allodynia and depressive behaviours of rats with comorbidity of DNP and DP. Meanwhile, the expression of P2X7 receptors, GFAP, TNF-α and IL-1β in the hippocampus of the rats with comorbidity of DNP and DP was significantly increased compared with the control rats, and palmatine treatment could decrease the expression. Furthermore, the enhanced phosphorylation of ERK1/2 in the hippocampus of rats with DNP and DP was decreased noticeably by palmatine treatment. The results of this study suggest that palmatine can alleviate the comorbidity of DNP and DP by inhibiting the expression of P2X7 receptors in the hippocampus, and its action may be related to suppression of the phosphorylation of ERK1/2 and the release of TNF-α and IL-1β in the hippocampus.
Collapse
|
14
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
15
|
Lescai F, Als TD, Li Q, Nyegaard M, Andorsdottir G, Biskopstø M, Hedemand A, Fiorentino A, O'Brien N, Jarram A, Liang J, Grove J, Pallesen J, Eickhardt E, Mattheisen M, Bolund L, Demontis D, Wang AG, McQuillin A, Mors O, Wang J, Børglum AD. Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder. Transl Psychiatry 2017; 7:e1034. [PMID: 28195573 PMCID: PMC5438033 DOI: 10.1038/tp.2017.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bipolar disorder affects about 1% of the world's population, and its estimated heritability is about 75%. Only few whole genome or whole-exome sequencing studies in bipolar disorder have been reported, and no rare coding variants have yet been robustly identified. The use of isolated populations might help finding variants with a recent origin, more likely to have drifted to higher frequency by chance. Following this approach, we investigated 28 bipolar cases and 214 controls from the Faroe Islands by whole exome sequencing, and the results were followed-up in a British sample of 2025 cases and 1358 controls. Seventeen variants in 16 genes in the single-variant analysis, and 3 genes in the gene-based statistics surpassed exome-wide significance in the discovery phase. The discovery findings were supported by enrichment analysis of common variants from genome-wide association studies (GWAS) data and interrogation of protein-protein interaction networks. The replication in the British sample confirmed the association with NOS1 (missense variant rs79487279) and NCL (gene-based test). A number of variants from the discovery set were not present in the replication sample, including a novel PITPNM2 missense variant, which is located in a highly significant schizophrenia GWAS locus. Likewise, PIK3C2A identified in the gene-based analysis is located in a combined bipolar and schizophrenia GWAS locus. Our results show support both for existing findings in the literature, as well as for new risk genes, and identify rare variants that might provide additional information on the underlying biology of bipolar disorder.
Collapse
Affiliation(s)
- F Lescai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - T D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Q Li
- BGI-Shenzhen, Shenzhen, China
| | - M Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - G Andorsdottir
- Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - M Biskopstø
- Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - A Hedemand
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - A Fiorentino
- Division of Psychiatry, University College London, London, UK
| | - N O'Brien
- Division of Psychiatry, University College London, London, UK
| | - A Jarram
- Division of Psychiatry, University College London, London, UK
| | - J Liang
- BGI-Shenzhen, Shenzhen, China
| | - J Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- BiRC—Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - J Pallesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - E Eickhardt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - M Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - L Bolund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Aarhus University Hospital, Risskov, Aarhus, Denmark
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - A G Wang
- Mental Health Centre Amager, Copenhagen, Denmark
| | | | - O Mors
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Aarhus University Hospital, Risskov, Aarhus, Denmark
| | - J Wang
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - A D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH—The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- iSEQ—Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Castro J, Cooney MF. Intravenous Magnesium in the Management of Postoperative Pain. J Perianesth Nurs 2017; 32:72-76. [DOI: 10.1016/j.jopan.2016.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
17
|
Swanson DM, Savall BM, Coe KJ, Schoetens F, Koudriakova T, Skaptason J, Wall J, Rech J, Deng X, De Angelis M, Everson A, Lord B, Wang Q, Ao H, Scott B, Sepassi K, Lovenberg TW, Carruthers NI, Bhattacharya A, Letavic MA. Identification of (R)-(2-Chloro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyridin-2-yl)-4-methyl-6,7-dihydro-1H-imidazo[4,5-c]pyridin-5(4H)-yl)methanone (JNJ 54166060), a Small Molecule Antagonist of the P2X7 receptor. J Med Chem 2016; 59:8535-48. [DOI: 10.1021/acs.jmedchem.6b00989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Devin M. Swanson
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Brad M. Savall
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Kevin J. Coe
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Freddy Schoetens
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Tatiana Koudriakova
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Judith Skaptason
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Jessica Wall
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Jason Rech
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Xiahou Deng
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Meri De Angelis
- Janssen Research & Development, Discovery Sciences, A Division of Janssen-Cilag, Jarama 75, 45007 Toledo, Spain
| | - Anita Everson
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Brian Lord
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Qi Wang
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Hong Ao
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Brian Scott
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Kia Sepassi
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Timothy W. Lovenberg
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Nicholas I. Carruthers
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Anindya Bhattacharya
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Michael A. Letavic
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| |
Collapse
|
18
|
Kuan YH, Shyu BC. Nociceptive transmission and modulation via P2X receptors in central pain syndrome. Mol Brain 2016; 9:58. [PMID: 27230068 PMCID: PMC4880968 DOI: 10.1186/s13041-016-0240-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
19
|
Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016; 64:1772-87. [PMID: 27219534 DOI: 10.1002/glia.23001] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- LLC. Neuroscience Drug Discovery, Janssen Research & Development, 3210 Merryfield Row, San Diego, California
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, AV Groningen, The Netherlands
| |
Collapse
|
20
|
Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S, Xue Y, Zhang C, Yi Z, Zhang X, Li G, Liang S. Long noncoding NONRATT021972 siRNA normalized abnormal sympathetic activity mediated by the upregulation of P2X7 receptor in superior cervical ganglia after myocardial ischemia. Purinergic Signal 2016; 12:521-35. [PMID: 27215605 DOI: 10.1007/s11302-016-9518-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies showed that the upregulation of the P2X7 receptor in cervical sympathetic ganglia was involved in myocardial ischemic (MI) injury. The dysregulated expression of long noncoding RNAs (lncRNAs) participates in the onset and progression of many pathological conditions. The aim of this study was to investigate the effects of a small interfering RNA (siRNA) against the NONRATT021972 lncRNA on the abnormal changes of cardiac function mediated by the up-regulation of the P2X7 receptor in the superior cervical ganglia (SCG) after myocardial ischemia. When the MI rats were treated with NONRATT021972 siRNA, their increased systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), low-frequency (LF) power, and LF/HF ratio were reduced to normal levels. However, the decreased high-frequency (HF) power was increased. GAP43 and tyrosine hydroxylase (TH) are markers of nerve sprouting and sympathetic nerve fibers, respectively. We found that the TH/GAP43 value was significantly increased in the MI group. However, it was reduced after the MI rats were treated with NONRATT021972 siRNA. The serum norepinephrine (NE) and epinephrine (EPI) concentrations were decreased in the MI rats that were treated with NONRATT021972 siRNA. Meanwhile, the increased P2X7 mRNA and protein levels and the increased p-ERK1/2 expression in the SCG were also reduced. NONRATT021972 siRNA treatment inhibited the P2X7 agonist BzATP-activated currents in HEK293 cells transfected with pEGFP-P2X7. Our findings suggest that NONRATT021972 siRNA could decrease the upregulation of the P2X7 receptor and improve the abnormal changes in cardiac function after myocardial ischemia.
Collapse
Affiliation(s)
- Guihua Tu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
- Institute of Life Science of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
21
|
Xu H, He L, Liu C, Tang L, Xu Y, Xiong M, Yang M, Fan Y, Hu F, Liu X, Ding L, Gao Y, Xu C, Li G, Liu S, Wu B, Zou L, Liang S. LncRNA NONRATT021972 siRNA attenuates P2X7 receptor expression and inflammatory cytokine production induced by combined high glucose and free fatty acids in PC12 cells. Purinergic Signal 2016; 12:259-68. [PMID: 26865268 DOI: 10.1007/s11302-016-9500-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/03/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy (DNP) is a frequent chronic complication of diabetes mellitus with potentially life-threatening outcomes. High glucose and elevated free fatty acids (FFAs) have been recently recognized as major causes of nervous system damage in diabetes. Our previous study has indicated extracellular stimuli, such as high glucose and/or FFA stress, may activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway and induce a p38 MAPK-dependent sensitization of the P2X7 receptor and release of inflammatory factors in PC12 cells, while the mechanisms underlying remain to be elucidated. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes, including activation of a series of pathway signalings. Here, we showed combined high D-glucose and FFAs (HGHF) induced an increment of lncRNA-NONRATT021972 (NONCODE ID, nc021972) in PC12 cells. Nc021972 small interference RNA (siRNA) alleviated HGHF-induced activation of p38 MAPK, expression of the P2X7 receptor, and [Ca(2+)]i increment upon P2X7 receptor activation. Further experiments showed that there existed a crosstalk between nc021972 and the p38 MAPK signaling pathway. Inhibition of p38 MAPK signaling decreased nc021972-induced expression of the P2X7 receptor and [Ca(2+)]i increment upon P2X7 receptor activation. Also, nc021972 siRNA inhibited HGHF-induced PC12 release of TNF-α and IL-6 and rescued decreased cell viability mediated by the P2X7 receptor. Therefore, inhibition of nc021972 may serve as a novel therapeutic strategy for diabetes complicated with nervous inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Luling He
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changle Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lan Tang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yonghu Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Mengqi Xiong
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Mei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yongfang Fan
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Fangfang Hu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xingzi Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Ding
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
22
|
Trans-resveratrol attenuates high fatty acid-induced P2X7 receptor expression and IL-6 release in PC12 cells: possible role of P38 MAPK pathway. Inflammation 2015; 38:327-37. [PMID: 25348860 DOI: 10.1007/s10753-014-0036-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic neuropathy (DNP) is the most common chronic complication of diabetes. Elevated free fatty acids (FFAs) have been recently recognized as major causes of inflammation and are relevant to the functional changes of nerve system in diabetes. Trans-resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have anti-inflammation properties and may exert a neuroprotective effect on neuronal damage in diabetes, while the mechanisms underlying are largely unknown. Our previous study on differential PC12 cells cultured with high FFAs has shown chronic FFAs overload increased PC12 interleukin (IL)-6 release mediated by P2X7 receptor, a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP); a high FFA-induced activation of P38 mitogen-activated protein kinase (MAPK) pathway was pointed to be a potential underlying mechanism. Data from this study indicated that RESV, in a dose-dependent manner, reduced high FFA-induced IL-6 release by impeding the activation of P2X7 receptor, as shown by the results that both high FFA-elevated P2X7 receptor messenger RNA (mRNA) and protein expression as well as high FFA-evoked [Ca(2+)]i in response to 3'-O-(4-benzoyl) benzoyl-ATP (a selective P2X7 receptor agonist) were significantly attenuated. Meanwhile, high FFA-induced activation of P38 MAPK, an essential prerequisite for high FFA-activated P2X7 receptor and subsequent IL-6 release, was also dose-dependently abrogated by RESV. Furthermore, RESV may hamper the activation of P38a MAPK (one paramount P38 isoform) via forming hydrogen bonding with Thr175 residue, surrounding the two residues (Thy180 and Tyr182) essential for canonical activation of P38a MAPK. Taken together, RESV could inhibit high FFA-induced inflammatory IL-6 release mediated by P2X7 receptor through deactivation of P38 MAPK signaling pathway. All these results outline the potential mechanisms involved in the neuroprotective roles of RESV and highlight the clinical application of RESV in treatment of inflammation in relation to DNP.
Collapse
|
23
|
ATPergic signalling during seizures and epilepsy. Neuropharmacology 2015; 104:140-53. [PMID: 26549853 DOI: 10.1016/j.neuropharm.2015.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Much progress has been made over the last few decades in the identification of new anti-epileptic drugs (AEDs). However, 30% of epilepsy patients suffer poor seizure control. This underscores the need to identify alternative druggable neurotransmitter systems and drugs with novel mechanisms of action. An emerging concept is that seizure generation involves a complex interplay between neurons and glial cells at the tripartite synapse and neuroinflammation has been proposed as one of the main drivers of epileptogenesis. The ATP-gated purinergic receptor family is expressed throughout the brain and is functional on neurons and glial cells. ATP is released in high amounts into the extracellular space after increased neuronal activity and during chronic inflammation and cell death to act as a neuro- and gliotransmitter. Emerging work shows pharmacological targeting of ATP-gated purinergic P2 receptors can potently modulate seizure generation, inflammatory processes and seizure-induced brain damage. To date, work showing the functional contribution of P2 receptors has been mainly performed in animal models of acute seizures, in particular, by targeting the ionotropic P2X7 receptor subtype. Other ionotropic P2X and metabotropic P2Y receptor family members have also been implicated in pathological processes following seizures such as the P2X4 receptor and the P2Y12 receptor. However, during epilepsy, the characterization of P2 receptors was mostly restricted to the study of expressional changes of the different receptor subtypes. This review summarizes the work to date on ATP-mediated signalling during seizures and the functional impact of targeting the ATP-gated purinergic receptors on seizures and seizure-induced pathology. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
24
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
25
|
Mayhew J, Beart PM, Walker FR. Astrocyte and microglial control of glutamatergic signalling: a primer on understanding the disruptive role of chronic stress. J Neuroendocrinol 2015; 27:498-506. [PMID: 25737228 DOI: 10.1111/jne.12273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
It is now well established that chronic stress can induce significant structural remodelling of astrocytes and microglia. Until recently, however, the full significance of these morphological disturbances has remained unclear. Clues to the significance of astroglial re-organisation following stress are beginning to emerge from a compelling literature describing how astrocytes contribute to glutamatergic neurotransmission. The present review briefly summarises these two fields of research, identifies points of overlap and, in doing so, pin-points future research directions for stress neurobiology. Ultimately, understanding how chronic stress can disrupt the interactions of astrocytes and microglia with neurones has the potential in the future to improve the development of therapeutics designed to treat stress-related illnesses such as depression.
Collapse
Affiliation(s)
- J Mayhew
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - P M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic., Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
26
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
27
|
Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull 2014; 110:68-75. [PMID: 25522867 DOI: 10.1016/j.brainresbull.2014.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord neurons located in laminae I-III respond to nociceptive stimuli and participate in the transmission of painful information to the brain. In the present study we evaluated if nociceptive laminae I-III neurons are affected by oxidative stress damage in a model of diabetic neuropathic pain (DNP), the streptozotocin-induced diabetic rat (STZ rat). Additionally, we evaluated the effects of a preventive antioxidant treatment with epigallocatechin-gallate (EGCG) in nociceptive neuronal activation and behavioural signs of DNP. Three days after diabetes induction, a treatment protocol of STZ rats with an aqueous solution of EGCG in the drinking water was initiated. Ten weeks after the onset of treatment, the spinal cords were immunoreacted against validated markers of oxidative stress damage (8-hydroxy-2'-deoxyguanosine; 8-OHdG) and of nociceptive neuronal activation (Fos). Mechanical hypersensitivity was assessed before and after EGCG treatment. Untreated STZ rats presented increased levels of 8-OHdG immunoreaction, higher numbers of Fos-immunoreacted neurons and high levels of co-localization of 8-OHdG and Fos in laminae I-III. Treatment with EGCG normalized the increase of the above mentioned parameters and ameliorated mechanical hypersensitivity. The present study shows that nociceptive neurons in spinal cord laminae I-III exhibit oxidative stress damage during diabetic neuropathy, which probably affects ascending pain transmission during DNP. The neurobiological mechanisms and translational perspectives of the beneficial effects of a preventive and sustained EGCG treatment in DNP need to be evaluated in the future.
Collapse
Affiliation(s)
- D Raposo
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - C Morgado
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - P Pereira-Terra
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - I Tavares
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal.
| |
Collapse
|
28
|
Chronic stress induces prolonged suppression of the P2X7 receptor within multiple regions of the hippocampus: a cumulative threshold spectra analysis. Brain Behav Immun 2014; 42:69-80. [PMID: 24989856 DOI: 10.1016/j.bbi.2014.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/15/2014] [Accepted: 05/24/2014] [Indexed: 02/07/2023] Open
Abstract
A number of studies have identified that mutations in the P2X7 receptor occur with a significantly higher incidence in individuals with major depression. Consistent with these findings, a number of preclinical studies have identified that mice in which the P2X7 receptor has been deleted exhibit a higher level of resilience-like behaviour to acutely aversive situations. At present, however, no studies have examined changes in P2X7 receptor expression in otherwise healthy animals exposed to persistently stressful situations. This is significant as several lines of evidence have demonstrated that it is exposure to persistently aversive, rather than acutely aversive, situations that is associated with the emergence of mood disturbance. Accordingly, the objective of the current study was to examine whether chronic exposure to restraint stress was associated with alterations in the expression of P2X7 within the hippocampal formation. The study involved three principal groups: acute stress (1 session), chronic stress (21 sessions, 1 per day) and a chronic stress with recovery group (21 sessions, 1 per day followed by 7days of no stress) and appropriate control groups. The results of the analysis indicate that all forms of stress, regardless of the duration, provoked a reduction in P2X7 receptor expression. Comparative analysis on normalised data indicated that the magnitude of the P2X7 reduction was significantly greater in the chronic stress relative to the acute stress group. We additionally found that there was a gradual rebound in P2X7 expression, in two of nine regions examined, in animals that were allowed to recover for 7days following the final stress session. Collectively, these findings provide the first evidence that exposure to chronic restraint stress produces a pronounced and relatively persistent suppression of the P2X7 receptor within the hippocampus.
Collapse
|
29
|
Lord B, Aluisio L, Shoblock JR, Neff RA, Varlinskaya EI, Ceusters M, Lovenberg TW, Carruthers N, Bonaventure P, Letavic MA, Deak T, Drinkenburg W, Bhattacharya A. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther 2014; 351:628-41. [PMID: 25271258 DOI: 10.1124/jpet.114.218487] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the central nervous system, the ATP-gated Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is expressed in glial cells and modulates neurophysiology via release of gliotransmitters, including the proinflammatory cytokine interleukin (IL)-1β. In this study, we characterized JNJ-42253432 [2-methyl-N-([1-(4-phenylpiperazin-1-yl)cyclohexyl]methyl)-1,2,3,4-tetrahydroisoquinoline-5-carboxamide] as a centrally permeable (brain-to-plasma ratio of 1), high-affinity P2X7 antagonist with desirable pharmacokinetic and pharmacodynamic properties for in vivo testing in rodents. JNJ-42253432 is a high-affinity antagonist for the rat (pKi 9.1 ± 0.07) and human (pKi 7.9 ± 0.08) P2X7 channel. The compound blocked the ATP-induced current and Bz-ATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium)]-induced release of IL-1β in a concentration-dependent manner. When dosed in rats, JNJ-42253432 occupied the brain P2X7 channel with an ED50 of 0.3 mg/kg, corresponding to a mean plasma concentration of 42 ng/ml. The compound blocked the release of IL-1β induced by Bz-ATP in freely moving rat brain. At higher doses/exposure, JNJ-42253432 also increased serotonin levels in the rat brain, which is due to antagonism of the serotonin transporter (SERT) resulting in an ED50 of 10 mg/kg for SERT occupancy. JNJ-42253432 reduced electroencephalography spectral power in the α-1 band in a dose-dependent manner; the compound also attenuated amphetamine-induced hyperactivity. JNJ-42253432 significantly increased both overall social interaction and social preference, an effect that was independent of stress induced by foot-shock. Surprisingly, there was no effect of the compound on either neuropathic pain or inflammatory pain behaviors. In summary, in this study, we characterize JNJ-42253432 as a novel brain-penetrant P2X7 antagonist with high affinity and selectivity for the P2X7 channel.
Collapse
Affiliation(s)
- Brian Lord
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Leah Aluisio
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - James R Shoblock
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Robert A Neff
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Elena I Varlinskaya
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Marc Ceusters
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Timothy W Lovenberg
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Nicholas Carruthers
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Pascal Bonaventure
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Michael A Letavic
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Terrence Deak
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Wilhelmus Drinkenburg
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| | - Anindya Bhattacharya
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.)
| |
Collapse
|
30
|
Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L, Fraser I, Nepomuceno D, Neff RA, Welty N, Lovenberg TW, Bonaventure P, Wickenden AD, Letavic MA. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 2014; 170:624-40. [PMID: 23889535 DOI: 10.1111/bph.12314] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist. EXPERIMENTAL APPROACH We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1β release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain. KEY RESULTS JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL(-1) (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg(-1) ) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test. CONCLUSION AND IMPLICATIONS JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Neuroscience Therapeutic Area, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiol Dis 2014; 70:162-78. [PMID: 24971933 PMCID: PMC4148180 DOI: 10.1016/j.nbd.2014.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/04/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022] Open
Abstract
In this study the role of P2Y12 receptors (P2Y12R) was explored in rodent models of inflammatory and neuropathic pain and in acute thermal nociception. In correlation with their activity to block the recombinant human P2Y12R, the majority of P2Y12R antagonists alleviated mechanical hyperalgesia dose-dependently, following intraplantar CFA injection, and after partial ligation of the sciatic nerve in rats. They also caused an increase in thermal nociceptive threshold in the hot plate test. Among the six P2Y12R antagonists evaluated in the pain studies, the selective P2Y12 receptor antagonist PSB-0739 was most potent upon intrathecal application. P2Y12R mRNA and IL-1β protein were time-dependently overexpressed in the rat hind paw and lumbar spinal cord following intraplantar CFA injection. This was accompanied by the upregulation of TNF-α, IL-6 and IL-10 in the hind paw. PSB-0739 (0.3 mg/kg i.t.) attenuated CFA-induced expression of cytokines in the hind paw and of IL-1β in the spinal cord. Subdiaphragmatic vagotomy and the α7 nicotinic acetylcholine receptor antagonist MLA occluded the effect of PSB-0739 (i.t.) on pain behavior and peripheral cytokine induction. Denervation of sympathetic nerves by 6-OHDA pretreatment did not affect the action of PSB-0739. PSB-0739, in an analgesic dose, did not influence motor coordination and platelet aggregation. Genetic deletion of the P2Y12R in mice reproduced the effect of P2Y12R antagonists on mechanical hyperalgesia in inflammatory and neuropathic pain models, on acute thermal nociception and on the induction of spinal IL-1β. Here we report the robust involvement of the P2Y12R in inflammatory pain. The anti-hyperalgesic effect of P2Y12R antagonism could be mediated by the inhibition of both central and peripheral cytokine production and involves α7-receptor mediated efferent pathways. Pharmacological blockade of P2Y12 receptors alleviates inflammatory and neuropathic pain. Central inhibition of P2Y12 receptors attenuates cytokine production in the spinal cord. Central P2Y12 receptor inhibition attenuates cytokine production in the inflamed hind paw. α7-Receptors mediate the effect of P2Y12 receptor blockade on hyperalgesia and cytokine level. Genetic deletion of P2Y12 receptors alleviates inflammatory, neuropathic and acute pain.
Collapse
|
32
|
Gölöncsér F, Sperlágh B. Effect of genetic deletion and pharmacological antagonism of P2X7 receptors in a mouse animal model of migraine. J Headache Pain 2014; 15:24. [PMID: 24885962 PMCID: PMC4016653 DOI: 10.1186/1129-2377-15-24] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Purine receptors participate in peripheral and central sensitization and are associated with migraine headache. We investigated the role of P2X7 receptor (P2X7) in a nitroglycerin (NTG)-induced mouse model of migraine. METHODS Intraperitoneal NTG injection (15 mg/kg) triggered thermal hyperalgesia in the hindpaws of wild-type C57BL/6J mice, followed by the induction of c-fos in upper cervical spinal cord and trigeminal nucleus caudalis. The effect of genetic deletion of P2X7 and the selective P2X7 antagonist Brilliant Blue G (BBG) were examined on hyperalgesia and c-fos induction. RESULTS NTG decreased the paw withdrawal threshold in both wild-type and P2X7 knockout mice. Nevertheless, subacute BBG treatment (50 mg/kg/day i.p.) completely prevented the effect of NTG in wild-type, but not in knockout mice. Whereas P2X7 deficiency differentially affected the expression of c-fos, the average number of fos-immuno-reactive neurons in trigeminal nucleus caudalis, but not in upper cervical spinal cord was lower in BBG-treated wild-type mice after NTG treatment. CONCLUSIONS Our results show that P2X7 receptors might participate in the pathogenesis of migraine, although upregulation of other P2X receptors probably compensate for the loss of its action in knockout mice. The data also suggest the therapeutic potential of P2X7 antagonists for the treatment of migraine.
Collapse
Affiliation(s)
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083, Budapest, Szigony u,, 43, Hungary.
| |
Collapse
|
33
|
Koncz I, Szász BK, Szabó SI, Kiss JP, Mike A, Lendvai B, Sylvester Vizi E, Zelles T. The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca(2+)]i increases in CA1 pyramidal cells in acute hippocampal slices. Brain Res Bull 2014; 104:42-51. [PMID: 24742525 DOI: 10.1016/j.brainresbull.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Kainate (KA), used for modelling neurodegenerative diseases, evokes excitotoxicity. However, the precise mechanism of KA-evoked [Ca(2+)]i increase is unexplored, especially in acute brain slice preparations. We used [Ca(2+)]i imaging and patch clamp electrophysiology to decipher the mechanism of KA-evoked [Ca(2+)]i rise and its inhibition by the tricyclic antidepressant desipramine (DMI) in CA1 pyramidal cells in rat hippocampal slices and in cultured hippocampal cells. The effect of KA was dose-dependent and relied totally on extracellular Ca(2+). The lack of effect of dl-2-amino-5-phosphonopentanoic acid (AP-5) and abolishment of the response by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggested the involvement of non-N-methyl-d-aspartate receptors (non-NMDARs). The predominant role of the Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the initiation of the Ca(2+) response was supported by the inhibitory effect of the selective AMPAR antagonist GYKI 53655 and the ineffectiveness of 1-naphthyl acetylspermine (NASPM), an inhibitor of the Ca(2+)-permeable AMPARs. The voltage-gated Ca(2+) channels (VGCC), blocked by ω-Conotoxin MVIIC+nifedipine+NiCl2, contributed to the [Ca(2+)]i rise. VGCCs were also involved, similarly to AMPAR current, in the KA-evoked depolarisation. Inhibition of voltage-gated Na(+) channels (VGSCs; tetrodotoxin, TTX) did not affect the depolarisation of pyramidal cells but blocked the depolarisation-evoked action potential bursts and reduced the Ca(2+) response. The tricyclic antidepressant DMI inhibited the KA-evoked [Ca(2+)]i rise in a dose-dependent manner. It directly attenuated the AMPA-/KAR current, but its more potent inhibition on the Ca(2+) response supports additional effect on VGCCs, VGSCs and Na(+)/Ca(2+) exchangers. The multitarget action on decisive players of excitotoxicity holds out more promise in clinical therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- István Koncz
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Bernadett K Szász
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilárd I Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Arpád Mike
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Hungary
| | - E Sylvester Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
34
|
Changshui X, Bo FSY, Shuangmei L, Huangui X, Yun GGL, Hong X, Xiaoli T, Qicheng Z, Chaoran Z, Bing W, Lichao P, Miaomiao S, Qin W, Shangdong L. Puerarin inhibits acute nociceptive responses via the P2X3 receptor in rat dorsal root ganglia. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajpp2013.3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Chrovian CC, Rech JC, Bhattacharya A, Letavic MA. P2X7 antagonists as potential therapeutic agents for the treatment of CNS disorders. PROGRESS IN MEDICINAL CHEMISTRY 2014; 53:65-100. [PMID: 24418608 DOI: 10.1016/b978-0-444-63380-4.00002-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of P2X7 antagonists to treat inflammatory disorders has garnered considerable interest in recent years. An increasing number of literature reports support the role of P2X7 in inflammatory pathways of the peripheral and central nervous systems (CNSs). A number of CNS indications such as neuropsychiatric and neurodegenerative disorders and neuropathic pain have been linked to a neuroinflammatory response, and clinical studies have shown that inflammatory biomarkers can be mitigated by modulating P2X7. Recent scientific and patent literature describing novel P2X7 antagonists has indicated their use in CNS disorders. In addition, several reports have disclosed the results of administering P2X7 antagonists in pre-clinical models of CNS disease or investigating brain uptake. This review describes small molecule P2X7 antagonists that have first appeared in the literature since 2009 and have potential therapeutic utility in the CNS, or for which new data have emerged implicating their use in CNS indications.
Collapse
Affiliation(s)
| | - Jason C Rech
- Janssen Research and Development, LLC, San Diego, CA, USA
| | | | | |
Collapse
|
36
|
Takeda M, Ikeda M, Takahashi M, Kanazawa T, Nasu M, Matsumoto S. Suppression of ATP-induced excitability in rat small-diameter trigeminal ganglion neurons by activation of GABAB receptor. Brain Res Bull 2013; 98:155-62. [PMID: 24004472 DOI: 10.1016/j.brainresbull.2013.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate whether a GABAB receptor agonist could modulate ATP-activated neuronal excitability of nociceptive TRG neurons using perforated whole-cell patch-clamp and immunohistochemical techniques. Immunohistochemical analysis revealed that 86% of P2X3 receptor-immunoreactive, small-diameter TRG neurons co-expressed GABAB receptor. Under voltage-clamp conditions (Vh=-60mV), application of ATP activated the inward current in acutely isolated rat TRG neurons in a dose-dependent manner (10-50 μM) and this current could be blocked by pyridoxal-phosphate-6-azophenyl-27,47-disulfonic acid (PPADS) (10 μM), a selective P2 purinoreceptor antagonist. The peak amplitude of ATP-activated currents was significantly inhibited after application of GABAB receptor agonist, baclofen (10-50 μM), in a concentration-dependent and reversible manner. The baclofen-induced inhibition of ATP-activated current was abolished by co-application of 3-amino-2 (4-chlorophenyl)-2hydroxypropysufonic acid) saclofen, a GABAB receptor antagonist (50 μM). Under current-clamp conditions, application of 20 μM ATP significantly depolarized the membrane potential resulting in increased mean action potential frequencies, and these ATP-induced effects were significantly inhibited by baclofen and these effects were antagonized by co-application of saclofen. Together, the results suggested that GABAB receptor activation could inhibit the ATP-induced excitability of small-diameter TRG neurons activated through the P2X3 receptor. Thus, the interaction between P2X3 and GABAB receptors of small-diameter TRG neuronal cell bodies is a potential therapeutic target for the treatment of trigeminal nociception.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Non-invasive brain stimulation (rTMS and tDCS) in patients with aphasia: Mode of action at the cellular level. Brain Res Bull 2013; 98:30-5. [DOI: 10.1016/j.brainresbull.2013.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
|
38
|
Tu G, Li G, Peng H, Hu J, Liu J, Kong F, Liu S, Gao Y, Xu C, Xu X, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Liang S. P2X(7) inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 2013; 96:71-85. [PMID: 23688519 DOI: 10.1016/j.brainresbull.2013.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022]
Abstract
Purinergic signaling has been found to participate in the regulation of cardiovascular function. In this study, using a rat myocardial ischemic injury model, the sympathoexcitatory reflex mediated by P2X7 receptor via sensory-sympathetic coupling between cervical dorsal root ganglia (DRG) nerves and stellate ganglia (SG) nerves was explored. Our results showed that the systolic blood pressure, heart rate, serum cardiac enzymes concentrations, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) concentrations were increased, and the expression levels of P2X7 mRNA and protein in DRG and SG were up-regulated after myocardial ischemic injury. Administration of brilliant blue G (BBG), a selective P2X7 antagonist, decreased the elevation of systolic blood pressure, heart rate, serum cardiac enzyme, IL-6 and TNF-α, and inhibited the up-regulated expression of P2X7 mRNA and protein in DRG and SG after myocardial ischemic injury. Retrograde tracing test showed that there were calcitonin gene-related peptide sensory nerves and substance P sensory nerves sprouting from DRG to SG, which played an important role in the development of myocardial ischemic injury. The up-regulated P2X7 receptor expression levels on the surface membrane of satellite glial cells contributed to the activation of sensory-sympathetic coupling, which in turn facilitated the sympathoexcitatory reflex. BBG can inhibit the activation of satellite glial cells and interrupt the generation of sensory-sympathetic coupling in the cervical sympathetic ganglia after the myocardial ischemic injury. Taken together, these findings may provide a new therapeutic approach for treating coronary heart disease, hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Guihua Tu
- Department of Physiology, Information Engineering College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|