1
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
2
|
Harrison LM, Tasker JG. Multiplexed Membrane Signaling by Glucocorticoids. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100390. [PMID: 38075196 PMCID: PMC10703063 DOI: 10.1016/j.coemr.2022.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Glucocorticoids exert pleiotropic effects either by a relatively slow mechanism involving binding to cytosolic/nuclear receptors and regulation of gene expression or by rapid activation of a putative membrane receptor and membrane signal transduction. Rapid glucocorticoid actions are initiated at the membrane and recruit intracellular signaling pathways that engage multiple downstream cellular targets, including lipid and gas intercellular messengers, membrane neurotransmitter receptor trafficking, nuclear glucocorticoid receptor activation and trafficking, and more. Thus, membrane glucocorticoid signaling diverges into a multiplexed array of signaling pathways to simultaneously regulate highly diverse cellular functions, giving these steroid hormones a broad range of rapid regulatory capabilities. In this review, we provide a brief overview of the growing body of knowledge of the cell signaling mechanisms of rapid glucocorticoid actions in the brain.
Collapse
Affiliation(s)
- Laura M Harrison
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
3
|
Jaszczyk A, Juszczak GR. Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 2021; 126:113-145. [PMID: 33727030 DOI: 10.1016/j.neubiorev.2021.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
The review integrates different experimental approaches including biochemistry, c-Fos expression, microdialysis (glutamate, GABA, noradrenaline and serotonin), electrophysiology and fMRI to better understand the effect of elevated level of glucocorticoids on the brain activity and metabolism. The available data indicate that glucocorticoids alter the dynamics of neuronal activity leading to context-specific changes including both excitation and inhibition and these effects are expected to support the task-related responses. Glucocorticoids also lead to diversification of available sources of energy due to elevated levels of glucose, lactate, pyruvate, mannose and hydroxybutyrate (ketone bodies), which can be used to fuel brain, and facilitate storage and utilization of brain carbohydrate reserves formed by glycogen. However, the mismatch between carbohydrate supply and utilization that is most likely to occur in situations not requiring energy-consuming activities lead to metabolic stress due to elevated brain levels of glucose. Excessive doses of glucocorticoids also impair the production of energy (ATP) and mitochondrial oxidation. Therefore, glucocorticoids have both adaptive and maladaptive effects consistently with the concept of allostatic load and overload.
Collapse
Affiliation(s)
- Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland.
| |
Collapse
|
4
|
Pedro JR, Moura LIF, Valério-Fernandes Â, Baptista FI, Gaspar JM, Pinheiro BS, Lemos C, Kaufmann FN, Morgado C, Silva-Santos CSD, Tavares I, Ferreira SG, Carvalho E, Ambrósio AF, Cunha RA, Duarte JMN, Köfalvi A. Transient gain of function of cannabinoid CB 1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Res Bull 2020; 161:106-115. [PMID: 32428627 DOI: 10.1016/j.brainresbull.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Here we aimed to unify some previous controversial reports on changes in both cannabinoid CB1 receptor (CB1R) expression and glucose metabolism in the forebrain of rodent models of diabetes. We determined how glucose metabolism and its modulation by CB1R ligands evolve in the frontal cortex of young adult male Wistar rats, in the first 8 weeks of streptozotocin-induced type-1 diabetes (T1D). We report that frontocortical CB1R protein density was biphasically altered in the first month of T1D, which was accompanied with a reduction of resting glucose uptake ex vivo in acute frontocortical slices that was normalized after eight weeks in T1D. This early reduction of glucose uptake in slices was also restored by ex vivo treatment with both the non-selective CB1R agonists, WIN55212-2 (500 nM) and the CB1R-selective agonist, ACEA (3 μM) while it was exacerbated by the CB1R-selective antagonist, O-2050 (500 nM). These results suggest a gain-of-function for the cerebrocortical CB1Rs in the control of glucose uptake in diabetes. Although insulin and IGF-1 receptor protein densities remained unaffected, phosphorylated GSKα and GSKβ levels showed different profiles 2 and 8 weeks after T1D induction in the frontal cortex. Altogether, the biphasic response in frontocortical CB1R density within a month after T1D induction resolves previous controversial reports on forebrain CB1R levels in T1D rodent models. Furthermore, this study also hints that cannabinoids may be useful to alleviate impaired glucoregulation in the diabetic cortex.
Collapse
Affiliation(s)
- Joana Reis Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liane I F Moura
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ângela Valério-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana M Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bárbara S Pinheiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carla Morgado
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla S da Silva-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Arkansas Children's Research Institute, and Department of Geriatrics, University of Arkansas for Medical Sciences, Arkansas 72205, United States
| | - António F Ambrósio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Attila Köfalvi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
5
|
Moura LIF, Lemos C, Ledent C, Carvalho E, Köfalvi A. Chronic insulinopenia/hyperglycemia decreases cannabinoid CB 1 receptor density and impairs glucose uptake in the mouse forebrain. Brain Res Bull 2019; 147:101-109. [PMID: 30721768 DOI: 10.1016/j.brainresbull.2019.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
Both endocannabinoids and insulin regulate peripheral and cerebral glucose homeostasis via convergent signaling pathways that are impacted by diabetes. Here we asked how glucose metabolism and important facets of insulin signaling are affected in the forebrain of cannabinoid CB1 receptor knockout mice (CB1R-KO) and their wild-type (WT) littermates, seven weeks after the induction of insulinopenia/hyperglycemia (diabetes) with intraperitoneal streptozotocin injection. Sham-injected animals served as control. Diabetes caused milder weight loss in the WT mice compared to the phenotypically ˜11% leaner CB1R-KO, while hyperglycemia was similar. Resting [3H]deoxyglucose uptake was significantly reduced by ˜20% in acute ex vivo frontocortical and hippocampal slices obtained from both the sham-injected CB1R-KO and the diabetic WT mice. Surprisingly, the third cohort, the diabetic CB1R-KO showed no further impairment in glucose uptake, as compared to the sham-injected CB1R-KO. Depolarization-induced [3H]deoxyglucose uptake was proportional to the respective resting values only in the cortex in all four cohorts. The dissipative metabolism of [14C]-U-glucose remained largely unaffected in all cohorts of animals. However, diabetes reduced cortical CB1R density by ˜20%, as assessed by Western blotting. Albeit the changes in insulin signaling did not reflect the glucose uptake profile in each cohort, there were significant interactions between diabetes and genotype. In conclusion, a chronic decrease or lack of CB1R expression reduces glucose uptake in the mouse brain. Additionally, diabetes failed to cause further impairment in cerebral glucose uptake in the CB1R-KO. These suggest that diabetic encephalopathy may be in part associated with lower CB1R expression.
Collapse
Affiliation(s)
- Liane I F Moura
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Experimental Psychiatry Unit, Center for Psychiatry and Psychotherapy, Medical University Innsbruck, Austria
| | | | - Eugénia Carvalho
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Arkansas Children's Research Institute, Little Rock, Arkansas 72202, United States; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Arkansas 72205, United States
| | - Attila Köfalvi
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
6
|
Moreira-Silva D, Carrettiero DC, Oliveira ASA, Rodrigues S, Dos Santos-Lopes J, Canas PM, Cunha RA, Almeida MC, Ferreira TL. Anandamide Effects in a Streptozotocin-Induced Alzheimer's Disease-Like Sporadic Dementia in Rats. Front Neurosci 2018; 12:653. [PMID: 30333717 PMCID: PMC6176656 DOI: 10.3389/fnins.2018.00653] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation - one of the hallmarks of AD -, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ). Our hypothesis is that AEA could interact with HSP70, modulating the level of p-tau and synaptic proteins, preventing STZ-induced cognitive impairments. Thirty days after receiving bilateral icv injections of AEA or STZ or both, the cognitive performance of adult male Wistar rats was evaluated in the object recognition test, by the escape latency in the elevated plus maze (EPM), by the tone and context fear conditioning as well as in prepulse inhibition tests. Subsequently, the animals were euthanized and their brains were removed for histological analysis or for protein quantification by Western Blotting. The behavioral results showed that STZ impaired recognition, plus maze and tone fear memories but did not affect contextual fear memory and prepulse inhibition. Moreover, AEA prevented recognition and non-associative emotional memory impairments induced by STZ, but did not influence tone fear conditioning. STZ increased the brain ventricular area and this enlargement was prevented by AEA. Additionally, STZ reduced the levels of p-tau (Ser199/202) and increased p-tau (Ser396), although AEA did not affect these alterations. HSP70 was found diminished only by STZ, while BAG2 levels were decreased by STZ and AEA. Synaptophysin, syntaxin and CB1 receptor levels were reduced by STZ, but only syntaxin was recovered by AEA. Altogether, albeit AEA failed to modify some AD-like neurochemical alterations, it partially prevented STZ-induced cognitive impairments, changes in synaptic markers and ventricle enlargement. This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Daniel Moreira-Silva
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Adriele S A Oliveira
- Center for Natural and Human Sciences, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Samanta Rodrigues
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Joyce Dos Santos-Lopes
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Paula M Canas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Maria C Almeida
- Center for Natural and Human Sciences, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Tatiana L Ferreira
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
7
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
8
|
Balsevich G, Petrie GN, Hill MN. Endocannabinoids: Effectors of glucocorticoid signaling. Front Neuroendocrinol 2017; 47:86-108. [PMID: 28739508 DOI: 10.1016/j.yfrne.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease.
Collapse
Affiliation(s)
- Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Sidibeh CO, Pereira MJ, Lau Börjesson J, Kamble PG, Skrtic S, Katsogiannos P, Sundbom M, Svensson MK, Eriksson JW. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine 2017; 55:839-852. [PMID: 27858284 PMCID: PMC5316391 DOI: 10.1007/s12020-016-1172-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.
Collapse
Affiliation(s)
- Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Prasad G Kamble
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- AstraZeneca R&D, Mölndal, Sweden
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Miederer I, Uebbing K, Röhrich J, Maus S, Bausbacher N, Krauter K, Weyer-Elberich V, Lutz B, Schreckenberger M, Urban R. Effects of tetrahydrocannabinol on glucose uptake in the rat brain. Neuropharmacology 2017; 117:273-281. [PMID: 28219717 DOI: 10.1016/j.neuropharm.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/24/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022]
Abstract
Δ9-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [18F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.
Collapse
Affiliation(s)
- I Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - K Uebbing
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| | - J Röhrich
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| | - S Maus
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - N Bausbacher
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - K Krauter
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| | - V Weyer-Elberich
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 69, 55131 Mainz, Germany
| | - B Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - M Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - R Urban
- Institute of Legal Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Am Pulvertum 3, 55131 Mainz, Germany
| |
Collapse
|