1
|
Gomez GT, Shi L, Fohner AE, Chen J, Yang Y, Fornage M, Duggan MR, Peng Z, Daya GN, Tin A, Schlosser P, Longstreth WT, Kalani R, Sharma M, Psaty BM, Nevado-Holgado AJ, Buckley NJ, Gottesman RF, Lutsey PL, Jack CR, Sullivan KJ, Mosley T, Hughes TM, Coresh J, Walker KA. Plasma proteome-wide analysis of cerebral small vessel disease identifies novel biomarkers and disease pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24314972. [PMID: 39417098 PMCID: PMC11483013 DOI: 10.1101/2024.10.07.24314972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebral small vessel disease (SVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although conditions such as hypertension are known to contribute to SVD, little is known about the diverse set of subclinical biological processes and molecular mediators that may also influence the development and progression of SVD. To better understand the mechanisms underlying SVD and to identify novel SVD biomarkers, we used a large-scale proteomic platform to relate 4,877 plasma proteins to MRI-defined SVD characteristics within 1,508 participants of the Atherosclerosis Risk in Communities (ARIC) Study cohort. Our proteome-wide analysis of older adults (mean age: 76) identified 13 WMH-associated plasma proteins involved in synaptic function, endothelial integrity, and angiogenesis, two of which remained associated with late-life WMH volume when measured nearly 20 years earlier, during midlife. We replicated the relationship between 9 candidate proteins and WMH volume in one or more external cohorts; we found that 11 of the 13 proteins were associated with risk for future dementia; and we leveraged publicly available proteomic data from brain tissue to demonstrate that a subset of WMH-associated proteins was differentially expressed in the context of cerebral atherosclerosis, pathologically-defined Alzheimer's disease, and cognitive decline. Bidirectional two-sample Mendelian randomization analyses examined the causal relationships between candidate proteins and WMH volume, while pathway and network analyses identified discrete biological processes (lipid/cholesterol metabolism, NF-kB signaling, hemostasis) associated with distinct forms of SVD. Finally, we synthesized these findings to identify two plasma proteins, oligodendrocyte myelin glycoprotein (OMG) and neuronal pentraxin receptor (NPTXR), as top candidate biomarkers for elevated WMH volume and its clinical manifestations.
Collapse
|
2
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Taheri N, Sarrand J, Soyfoo MS. Neuromyelitis Optica: Pathogenesis Overlap with Other Autoimmune Diseases. Curr Allergy Asthma Rep 2023; 23:647-654. [PMID: 37889429 DOI: 10.1007/s11882-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW Neuromyelitis optica (NMO) is an auto-immune disease essentially depicted by optic neuritis and transverse myelitis. Per se, NMO was initially believed to be a sub-type of multiple sclerosis with typical demyelinating cerebral lesions and optic nerve inflammation. More recently, corroborating lignes of evidence have strengthened the concept of the spectrum of diseases associated with NMO and more specifically with the role of anti-aquaporin-4 antibodies in the pathogenesis of disease. RECENT FINDINGS In this article, we review the recent pathogenic findings in NMO and more interestingly the newly discovered role of anti-aquaporin-4 antibodies as key players in triggering cerebral lesions. The concept of spectrum of diseases associated with NMO is also discussed. These recent findings have paved in the further understanding of the pathogenesis underlying NMO and new treatments are currently being developed targeting anti-aquaporin-4 antibodies.
Collapse
Affiliation(s)
- Nadim Taheri
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Julie Sarrand
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Muhammad S Soyfoo
- Department of Rheumatology, Hopital Universitaire de Bruxelles, HUB, ULB, 808 Route de Lennik, 1070, Brussels, Belgium.
| |
Collapse
|
4
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Yilmaz S, Öner P. Low α-N-acetylgalactosaminidase plasma concentration correlates with the presence and severity of the bipolar affective disorder. World J Biol Psychiatry 2023; 24:187-194. [PMID: 36102137 DOI: 10.1080/15622975.2022.2124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Believing that a neurodevelopmental pathology may cause bipolar affective disorder (BAD), we aimed to measure the concentrations of α-N-acetylgalactosaminidase (α-NAGAL), a lysosomal enzyme. METHODS The study included 32 patients with BAD and 32 healthy controls. The Young Mania Rating Scale was used to measure the severity of the disease. Serum α-N-acetylgalactosaminidase concentrations were measured in all blood samples using the human α-N-acetylgalactosaminidase ELISA Kit. RESULTS A statistically significant difference was found in the α-NAGAL values between the groups. The mean α-NAGAL values of BAD patients are lower than the mean α-NAGAL values of the control group. A strong negative and statistically significant relationship was found between the α-NAGAL values of patients with BAD and their Young Mania Rating Scale scores. And a positive strong correlation was found between the age of onset of the disease and α-NAGAL levels. CONCLUSIONS Low α-N-acetylgalactosaminidase concentrations may cause the accumulation of some glycoproteins in the lysosomes in the brain during the gestational period, producing the clinical symptoms of BAD. α-N-acetylgalactosaminidase deficiency may not be the only cause of BAD, but it may be an important factor in the aetiology of this disease.
Collapse
Affiliation(s)
| | - Pınar Öner
- Elaziğ Fethi Sekin City Hospital, Elaziğ, Turkey
| |
Collapse
|
6
|
Quagliata M, Nuti F, Real-Fernandez F, Kirilova Kirilova K, Santoro F, Carotenuto A, Papini AM, Rovero P. Glucopeptides derived from myelin-relevant proteins and hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin cross-react with multiple sclerosis specific antibodies: A step forward in the identification of native autoantigens in multiple sclerosis. J Pept Sci 2023:e3475. [PMID: 36597597 DOI: 10.1002/psc.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed β-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Institute of Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Kalina Kirilova Kirilova
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- University of Burgos, Burgos, Spain
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Abstract
OBJECTIVES Using a neurodevelopmental approach to examine the aetiology, we predicted an enzyme deficiency to exist at the cellular level and aimed to measure α-N-acetylgalactosaminidase (α-NAGAL) blood levels. METHODS The study included 32 patients diagnosed with schizophrenia and 30 healthy controls. The positive and negative syndrome scale (PANSS) was applied to the patients with schizophrenia. Serum α-NAGAL concentrations were measured in blood samples taken from all participants using the human alpha-N-acetylgalactosaminidase ELISA Kit. RESULTS The mean α-NAGAL values of schizophrenic patients are lower than the mean α-NAGAL values of the control group (p = 0.000 < 0.001). Correlation analysis showed that there was a significant relationship between α-NAGAL values and PANSS scores of patients with schizophrenia. PANSS total (r = -0.708, p = 0.000 < 0.001), PANSS positive (r = -0.627, p = 0.000 < 0.001), PANSS negative (r = -0.386, p = 0.029 < 0.05). And a positive moderate correlation was found between the age of onset of the disease and α-NAGAL levels (r = 0.529, p = 0.002 < 0.05). CONCLUSIONS Based on the neurodevelopmental hypothesis, the low α-NAGAL concentrations this study found might cause accumulation of glycoproteins in the lysosomes in the central nervous system during the gestational period and then might result in the clinical symptoms of schizophrenia. α-NAGAL may be an important factor in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Seda Yılmaz
- Elazığ Medical Park Hospital, Istinye University, Elazığ, Turkey
| | - Pınar Öner
- Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| |
Collapse
|
8
|
Myatich A, Haque A, Sole C, Banik NL. Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury. Neural Regen Res 2022; 18:940-946. [PMID: 36254972 PMCID: PMC9827778 DOI: 10.4103/1673-5374.355749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injuries affect nearly five to ten individuals per million every year. Spinal cord injury causes damage to the nerves, muscles, and the tissue surrounding the spinal cord. Depending on the severity, spinal injuries are linked to degeneration of axons and myelin, resulting in neuronal impairment and skeletal muscle weakness and atrophy. The protection of neurons and promotion of myelin regeneration during spinal cord injury is important for recovery of function following spinal cord injury. Current treatments have little to no effect on spinal cord injury and neurogenic muscle loss. Clemastine, an Food and Drug Administration-approved antihistamine drug, reduces inflammation, protects cells, promotes remyelination, and preserves myelin integrity. Recent clinical evidence suggests that clemastine can decrease the loss of axons after spinal cord injury, stimulating the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes that are capable of myelination. While clemastine can aid not only in the remyelination and preservation of myelin sheath integrity, it also protects neurons. However, its role in neurogenic muscle loss remains unclear. This review discusses the pathophysiology of spinal cord injury, and the role of clemastine in the protection of neurons, myelin, and axons as well as attenuation of skeletal muscle loss following spinal cord injury.
Collapse
Affiliation(s)
- Ali Myatich
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA,Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA,Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA,Correspondence to: Azizul Haque, ; Naren L. Banik, .
| | - Christopher Sole
- Department of Health and Human Performance, The Citadel, Charleston, SC, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA,Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA,Correspondence to: Azizul Haque, ; Naren L. Banik, .
| |
Collapse
|
9
|
Development of Neurogenic Detrusor Overactivity after Thoracic Spinal Cord Injury Is Accompanied by Time-Dependent Changes in Lumbosacral Expression of Axonal Growth Regulators. Int J Mol Sci 2022; 23:ijms23158667. [PMID: 35955811 PMCID: PMC9368817 DOI: 10.3390/ijms23158667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment.
Collapse
|
10
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
11
|
Zhu S, Bäckström D, Forsgren L, Trupp M. Alterations in Self-Aggregating Neuropeptides in Cerebrospinal Fluid of Patients with Parkinsonian Disorders. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1169-1189. [PMID: 35253777 PMCID: PMC9198747 DOI: 10.3233/jpd-213031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Parkinson’s disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) present with similar movement disorder symptoms but distinct protein aggregates upon pathological examination. Objective: Discovery and validation of candidate biomarkers in parkinsonian disorders for differential diagnosis of subgroup molecular etiologies. Methods: Untargeted liquid chromatography (LC)-mass spectrometry (MS) proteomics was used for discovery profiling in cerebral spinal fluid (CSF) followed by LC-MS/MS based multiple reaction monitoring for validation of candidates. We compared clinical variation within the parkinsonian cohort including PD subgroups exhibiting tremor dominance (TD) or postural instability gait disturbance and those with detectable leukocytes in CSF. Results: We have identified candidate peptide biomarkers and validated related proteins with targeted quantitative multiplexed assays. Dopamine-drug naïve patients at first diagnosis exhibit reduced levels of signaling neuropeptides, chaperones, and processing proteases for packaging of self-aggregating peptides into dense core vesicles. Distinct patterns of biomarkers were detected in the parkinsonian disorders but were not robust enough to offer a differential diagnosis. Different biomarker changes were detected in male and female patients with PD. Subgroup specific candidate biomarkers were identified for TD PD and PD patients with leukocytes detected in CSF. Conclusion: PD, MSA, and PSP exhibit overlapping as well as distinct protein biomarkers that suggest specific molecular etiologies. This indicates common sensitivity of certain populations of selectively vulnerable neurons in the brain, and distinct therapeutic targets for PD subgroups. Our report validates a decrease in CSF levels of self-aggregating neuropeptides in parkinsonian disorders and supports the role of native amyloidogenic proteins in etiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - David Bäckström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Zhang Q, Li Y, Zhuo Y. Synaptic or Non-synaptic? Different Intercellular Interactions with Retinal Ganglion Cells in Optic Nerve Regeneration. Mol Neurobiol 2022; 59:3052-3072. [PMID: 35266115 PMCID: PMC9016027 DOI: 10.1007/s12035-022-02781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Axons of adult neurons in the mammalian central nervous system generally fail to regenerate by themselves, and few if any therapeutic options exist to reverse this situation. Due to a weak intrinsic potential for axon growth and the presence of strong extrinsic inhibitors, retinal ganglion cells (RGCs) cannot regenerate their axons spontaneously after optic nerve injury and eventually undergo apoptosis, resulting in permanent visual dysfunction. Regarding the extracellular environment, research to date has generally focused on glial cells and inflammatory cells, while few studies have discussed the potentially significant role of interneurons that make direct connections with RGCs as part of the complex retinal circuitry. In this study, we provide a novel angle to summarize these extracellular influences following optic nerve injury as "intercellular interactions" with RGCs and classify these interactions as synaptic and non-synaptic. By discussing current knowledge of non-synaptic (glial cells and inflammatory cells) and synaptic (mostly amacrine cells and bipolar cells) interactions, we hope to accentuate the previously neglected but significant effects of pre-synaptic interneurons and bring unique insights into future pursuit of optic nerve regeneration and visual function recovery.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Bhanja SK, Goel A, Mehra M, Bag S, Kharchec SD, Malakar D, Dash B. Microarray analysis and PCR validation of genes associated with facultative parthenogenesis in Meleagris gallopavo (Turkey). Theriogenology 2022; 186:86-94. [DOI: 10.1016/j.theriogenology.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
14
|
Jia Y, Wang X, Chen Y, Qiu W, Ge W, Ma C. Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease. Mol Neurobiol 2021; 58:4007-4027. [PMID: 33904022 DOI: 10.1007/s12035-021-02356-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/10/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The earliest neuropathology of AD appears in entorhinal cortex (EC) regions. Therapeutic strategies and preventive measures to protect against entorhinal degeneration would be of substantial value in the early stages of AD. In this study, transcriptome based on the Illumina RNA-seq and proteome based on TMT-labelling were performed for RNA and protein profiling on AD EC samples and non-AD control EC samples. Immunohistochemistry was used to validate proteins expressions. After integrated analysis, 57 genes were detected both in transcriptome and proteome data, including 51 in similar altering trends (7 upregulated, 44 downregulated) and 6 in inverse trends when compared AD vs. control. The top 6 genes (GABRG2, CACNG3, CACNB4, GABRB2, GRIK2, and SLC17A6) within the 51 genes were selected and related to "ion transport". Correlation analysis demonstrated negative relationship of protein expression level with the neuropathologic changes. In conclusion, the integrate transcriptome and proteome analysis provided evidence for dysregulation of ion transport across brain regions in AD, which might be a critical signaling pathway that initiates pathology. This study might provide new insight into the earliest changes occurring in the EC of AD and novel targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yangjie Jia
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
15
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
16
|
Atiq Hassan, Nasir N, Muzammil K. Treatment Strategies to Promote Regeneration in Experimental Spinal Cord Injury Models. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Bergqvist C, Hemery F, Ferkal S, Wolkenstein P. Neurofibromatosis I and multiple sclerosis. Orphanet J Rare Dis 2020; 15:186. [PMID: 32664938 PMCID: PMC7362462 DOI: 10.1186/s13023-020-01463-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is one of the most common autosomal dominant genetic disorders with a birth incidence as high as 1:2000. It is caused by mutations in the NF1 gene on chromosome 17 which encodes neurofibromin, a regulator of neuronal differentiation. While NF1 individuals are predisposed to develop benign and malignant nervous system tumors, various non-tumoral neurological conditions including multiple sclerosis (MS) have also been reported to occur more frequently in NF1. The number of epidemiologic studies on MS in NF1 individuals is very limited. The aim of this study was to determine the estimated population proportion of MS in NF1 patients followed in our Referral Centre for Neurofibromatosis using the Informatics for Integrated Biology and the Bedside (i2b2) platform to extract information from the hospital’s electronic health records. We found a total 1507 patients with confirmed NF1, aged 18 years (y) and above (mean age 39.2y, range 18-88y; 57% women). Five NF1 individuals were found to have MS, yielding an estimated population proportion of 3.3 per 1000 (0.0033, 95% Confidence Interval 0.0014–0.0077). The median age at diagnosis was 45 y (range 28–49 y). Three patients had relapsing-remitting MS and two patients had secondary progressive MS. Patients with NF1 were found to be twice more likely to develop MS than the general population in France (odds ratio 2.2), however this result was not statistically significant (95% Confidence Interval 0.91–5.29). Our results show that patients with NF1 might have a slight increased tendency to develop MS; however, due to the small sample size of our study, the results may not be sufficiently powered to detect this rare association. Large-scale epidemiological studies based on nationwide datasets are needed to confirm our findings. These findings further emphasize the need for a focused follow-up of patients with NF1, as early detection and management of MS can prevent further neurological disability.
Collapse
Affiliation(s)
- Christina Bergqvist
- Faculty of Medicine, Universite Paris-Est Creteil , Créteil, France.,Department of Dermatology, Hopital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - François Hemery
- Department of Medical Informatics, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux Paris (AP-HP), Créteil, France
| | - Salah Ferkal
- Department of Dermatology, Hopital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France.,INSERM, Centre d'Investigation Clinique 006, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux Paris (AP-HP), Referral Center of Neurofibromatosis, Créteil, France
| | - Pierre Wolkenstein
- Faculty of Medicine, Universite Paris-Est Creteil , Créteil, France. .,Department of Dermatology, Hopital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France. .,INSERM, Centre d'Investigation Clinique 006, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux Paris (AP-HP), Referral Center of Neurofibromatosis, Créteil, France.
| |
Collapse
|
19
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
20
|
Panganiban RA, Park HR, Sun M, Shumyatcher M, Himes BE, Lu Q. Genome-wide CRISPR screen identifies suppressors of endoplasmic reticulum stress-induced apoptosis. Proc Natl Acad Sci U S A 2019; 116:13384-13393. [PMID: 31213543 PMCID: PMC6613086 DOI: 10.1073/pnas.1906275116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensing misfolded proteins in the endoplasmic reticulum (ER), cells initiate the ER stress response and, when overwhelmed, undergo apoptosis. However, little is known about how cells prevent excessive ER stress response and cell death to restore homeostasis. Here, we report the identification and characterization of cellular suppressors of ER stress-induced apoptosis. Using a genome-wide CRISPR library, we screen for genes whose inactivation further increases ER stress-induced up-regulation of C/EBP homologous protein 10 (CHOP)-the transcription factor central to ER stress-associated apoptosis. Among the top validated hits are two interacting components of the polycomb repressive complex (L3MBTL2 [L(3)Mbt-Like 2] and MGA [MAX gene associated]), and microRNA-124-3 (miR-124-3). CRISPR knockout of these genes increases CHOP expression and sensitizes cells to apoptosis induced by multiple ER stressors, while overexpression confers the opposite effects. L3MBTL2 associates with the CHOP promoter in unstressed cells to repress CHOP induction but dissociates from the promoter in the presence of ER stress, whereas miR-124-3 directly targets the IRE1 branch of the ER stress pathway. Our study reveals distinct mechanisms that suppress ER stress-induced apoptosis and may lead to a better understanding of diseases whose pathogenesis is linked to overactive ER stress response.
Collapse
Affiliation(s)
- Ronald A Panganiban
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Hae-Ryung Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Maoyun Sun
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115;
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| |
Collapse
|
21
|
Selek S, Esrefoglu M, Meral I, Bulut H, Caglar HG, Sonuc G, Yildiz C, Teloglu ES, Dogan N, Yuce B, Tiftik E, Bayindir N. Effects of Oenothera biennis L. and Hypericum perforatum L. extracts on some central nervous system myelin proteins, brain histopathology and oxidative stress in mice with experimental autoimmune encephalomyelitis. Biotech Histochem 2019; 94:75-83. [PMID: 30957550 DOI: 10.1080/10520295.2018.1482001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of Oenothera biennis L. and Hypericum perforatum L. extracts on brain tissue histopathology, myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) in mice with experimental autoimmune encephalomyelitis (EAE). Forty-seven C57BL/6J mice were divided into the following groups: multiple sclerosis (MS), control (healthy mice), MS + H. perforatum treated (MS + HP), MS + O. biennis treated (MS + OB). All groups except the control group were immunized by EAE methods. Two weeks after the immunization, the mice in the MS + HP group were fed normal food containing 18 - 21 g/kg H. perforatum extract, the mice in MS + OB group were fed normal food containing 18 - 21 g/kg O. biennis extract, and the mice in control and MS groups were fed normal food for six weeks. Brain tissue samples were collected from all mice for histopathological and biochemical analysis. Clinical signs of the disease were scored using functional systems scores (FSS) daily. The H. perforatum and O. biennis extracts ameliorated the increased brain tissue MOG and MBP values for animals with MS. H. perforatum and O. biennis extract decreased the TOS and OSI values for brain tissue and increased TAS levels in brain tissue of animals with MS. In addition, H. perforatum and O. biennis extracts decreased the clinical signs at the end of the experiment compared to the beginning of extract administration. We found that myelin was lost in MS group vs. control group. H. perforatum and O. biennis extract treatments decreased the amount of myelin loss in the MS + HP and MS + OB groups. We also observed amyloid deposition on vascular walls, in the cytoplasm of the neurons and in the intercellular space in the MS group. O. biennis and H. perforatum treated groups exhibited neither abnormal amyloid deposition nor obvious cell infiltration. The beneficial effects of O. biennis and H. perforatum for attenuating myelin loss and amyloid deposition suggest their therapeutic utility for treatment of MS.
Collapse
Affiliation(s)
- S Selek
- a Departments of Medical Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - M Esrefoglu
- b Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| | - I Meral
- c Physiology Faculty of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - H Bulut
- a Departments of Medical Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - H G Caglar
- a Departments of Medical Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - G Sonuc
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - C Yildiz
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - E S Teloglu
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - N Dogan
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - B Yuce
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - E Tiftik
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - N Bayindir
- b Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| |
Collapse
|
22
|
Borisow N, Mori M, Kuwabara S, Scheel M, Paul F. Diagnosis and Treatment of NMO Spectrum Disorder and MOG-Encephalomyelitis. Front Neurol 2018; 9:888. [PMID: 30405519 PMCID: PMC6206299 DOI: 10.3389/fneur.2018.00888] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are autoantibody mediated chronic inflammatory diseases. Serum antibodies (Abs) against the aquaporin-4 water channel lead to recurrent attacks of optic neuritis, myelitis and/or brainstem syndromes. In some patients with symptoms of NMOSD, no AQP4-Abs but Abs against myelin-oligodendrocyte-glycoprotein (MOG) are detectable. These clinical syndromes are now frequently referred to as "MOG-encephalomyelitis" (MOG-EM). Here we give an overview on current recommendations concerning diagnosis of NMOSD and MOG-EM. These include antibody and further laboratory testing, MR imaging and optical coherence tomography. We discuss therapeutic options of acute attacks as well as longterm immunosuppressive treatment, including azathioprine, rituximab, and immunoglobulins.
Collapse
Affiliation(s)
- Nadja Borisow
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Wu F, Kong L, Zhu Y, Zhou Q, Jiang X, Chang M, Zhou Y, Cao Y, Xu K, Wang F, Tang Y. The Influence of Myelin Oligodendrocyte Glycoprotein on White Matter Abnormalities in Different Onset Age of Drug-Naïve Depression. Front Psychiatry 2018; 9:186. [PMID: 29867609 PMCID: PMC5962804 DOI: 10.3389/fpsyt.2018.00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 01/11/2023] Open
Abstract
Neurophysiological mechanisms of white matter abnormalities in the earlier onset major depressive disorder (eoMDD, onset age ≤25 years old) differ from that in the later onset MDD (loMDD, onset age >25 years old). Myelin oligodendrocyte glycoprotein (MOG) is an important factor influencing white matter development. The influence of MOG on white matter in MDD of different age onset need to be explored. We compared MOG plasma concentrations and diffusion tensor imaging (DTI) data in 35 first-episode medication-naïve MDD patients (23 eoMDD, 12 loMDD), and 32 healthy controls (HC, 17 younger, 15 older). MOG was significantly higher in eoMDD and lower in loMDD compared with HC. Mean diffusivity (MD) values were significantly increased in inferior fronto-occipital fasciculus (IFOF) in eoMDD, and decreased in loMDD. In both younger and older groups, MOG correlated positively with IFOF MD values. Abnormal MOG has different influence in MDD of different age onset, which is linked to MOG's overly active effect on abnormal white matter in eoMDD and markedly weak effect in loMDD cases. Abnormal MOG would be an important factor in white matter damage in MDD; the influence of MOG differs with onset age.
Collapse
Affiliation(s)
- Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qian Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Shanghai Mental Health Center, Shanghai, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Cao
- Shenyang Mental Health Center, Shenyang, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Peterson SL, Nguyen HX, Mendez OA, Anderson AJ. Complement Protein C3 Suppresses Axon Growth and Promotes Neuron Loss. Sci Rep 2017; 7:12904. [PMID: 29018286 PMCID: PMC5635131 DOI: 10.1038/s41598-017-11410-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The inflammatory response to spinal cord injury (SCI) involves localization and activation of innate and adaptive immune cells and proteins, including the complement cascade. Complement C3 is important for the classical, alternative, and lectin pathways of complement activation, and its cleavage products C3a and C3b mediate several functions in the context of inflammation, but little is known about the potential functions of C3 on regeneration and survival of injured neurons after SCI. We report that 6 weeks after dorsal hemisection with peripheral conditioning lesion, C3-/- mice demonstrated a 2-fold increase in sensory axon regeneration in the spinal cord in comparison to wildtype C3+/+ mice. In vitro, addition of C3 tripled both myelin-mediated neurite outgrowth inhibition and neuron loss versus myelin alone, and ELISA experiments revealed that myelin serine proteases cleave C3 to generate active fragments. Addition of purified C3 cleavage products to cultured neurons suggested that C3b is responsible for the growth inhibitory and neurotoxic or anti-adhesion activities of C3. These data indicate that C3 reduces neurite outgrowth and neuronal viability in vitro and restricts axon regeneration in vivo, and demonstrate a novel, non-traditional role for this inflammatory protein in the central nervous system.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Oscar A Mendez
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA. .,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
25
|
Boghdadi AG, Teo L, Bourne JA. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Mol Neurobiol 2017; 55:1831-1846. [PMID: 28229330 DOI: 10.1007/s12035-017-0433-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
The limited capacity for the central nervous system (CNS) to repair itself was first described over 100 years ago by Spanish neuroscientist Ramon Y. Cajal. However, the exact mechanisms underlying this failure in neuronal regeneration remain unclear and, as such, no effective therapeutics yet exist. Numerous studies have attempted to elucidate the biochemical and molecular mechanisms that inhibit neuronal repair with increasing evidence suggesting that several inhibitory factors and repulsive guidance cues active during development actually persist into adulthood and may be contributing to the inhibition of repair. For example, in the injured adult CNS, there are various inhibitory factors that impede the outgrowth of neurites from damaged neurons. One of the most potent of these neurite outgrowth inhibitors is the group of proteins known as the myelin-associated inhibitors (MAIs), present mainly on the membranes of oligodendroglia. Several studies have shown that interfering with these proteins can have positive outcomes in CNS injury models by promoting neurite outgrowth and improving functional recovery. As such, the MAIs, their receptors, and downstream effectors are valid drug targets for the treatment of CNS injury. This review will discuss the current literature on MAIs in the context of CNS development, plasticity, and injury. Molecules that interfere with the MAIs and their receptors as potential candidates for the treatment of CNS injury will additionally be introduced in the context of preclinical and clinical trials.
Collapse
Affiliation(s)
- Anthony G Boghdadi
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - Leon Teo
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk (Building 75), Clayton, VIC, 3800, Australia.
| |
Collapse
|
26
|
Liu JT, Zhang S, Gu B, Li HN, Wang SY, Zhang SY. Methotrexate combined with methylprednisolone for the recovery of motor function and differential gene expression in rats with spinal cord injury. Neural Regen Res 2017; 12:1507-1518. [PMID: 29089998 PMCID: PMC5649473 DOI: 10.4103/1673-5374.215263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce inflammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint™ precision cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene expression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.
Collapse
Affiliation(s)
- Jian-Tao Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Si Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Bing Gu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Hua-Nan Li
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shuo-Yu Wang
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shui-Yin Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| |
Collapse
|
27
|
Feng N, Hao G, Yang F, Qu F, Zheng H, Liang S, Jin Y. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis. Exp Ther Med 2016; 11:1595-1600. [PMID: 27168778 PMCID: PMC4840788 DOI: 10.3892/etm.2016.3089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/14/2016] [Indexed: 11/30/2022] Open
Abstract
Cerebral ischemia, which may lead to cerebral hypoxia and damage of the brain tissue, is a leading cause of human mortality and adult disability. Mesenchymal stem cells (MSCs) are a class of adult progenitor cells with the ability to differentiate into multiple cell types. The transplantation of bone marrow-derived MSCs is a potential therapeutic strategy for cerebral ischemia. However, the underlying mechanism has yet to be elucidated. In the present study, primary MSCs were isolated from healthy rats, labeled and transplanted into the brains of middle cerebral artery occlusion rat models. The location of the labeled MSCs in the rat brains were determined by fluorescent microscopy, and the neurological functions of the rats were scored. Immunohistochemical analyses demonstrated that the protein expression levels of myelin-associated inhibitors of regeneration, including Nogo-A, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein, were decreased following transplantation of the bone marrow-derived MSCs. Furthermore, the mRNA expression levels of Capase-3 and B-cell lymphoma 2, as determined by reverse transcription-quantitative polymerase chain reactions, were downregulated and upregulated, respectively, in the MSC-transplanted rats; thus suggesting that neural apoptosis was inhibited. The results of the present study suggested that the transplantation of bone marrow-derived MSCs was able to promote the functional recovery of the central nervous system following cerebral ischemia. Accordingly, inhibitors targeting myelin-associated inhibitors and apoptosis may be of clinical significance for cerebral ischemia in the future.
Collapse
Affiliation(s)
- Nianping Feng
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guang Hao
- Department of Neurology, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Fenggang Yang
- Department of Neurology, Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Fujun Qu
- Department of Pharmacy, Second Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haihong Zheng
- Animal Experiment Center, Second Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Songlan Liang
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yonghua Jin
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
28
|
Xu CJ, Wang JL, Jin WL. The Neural Stem Cell Microenvironment: Focusing on Axon Guidance Molecules and Myelin-Associated Factors. J Mol Neurosci 2015; 56:887-897. [PMID: 25757451 DOI: 10.1007/s12031-015-0538-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Neural stem cells (NSCs) could produce various cell phenotypes in the subventricular zone (SVZ) and dentate gyrus of the hippocampus in the central nervous system (CNS), where neurogenesis has been determined to occur. The extracellular microenvironment also influences the behaviors of NSCs during development and at CNS injury sites. Our previous study indicates that myelin, a component of the CNS, could regulate the differentiation of NSCs in vitro. Recent reports have implicated three myelin-derived inhibitors, NogoA, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp), as well as several axon guidance molecules as regulators of NSC survival, proliferation, migration, and differentiation. However, the molecular mechanisms underlying the behavior of NSCs are not fully understood. In this study, we summarize the current literature on the effects of different extrinsic factors on NSCs and discuss possible mechanisms, as well as future possible clinical applications.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, University town, Cha Shan, Zhejiang, 325035, China.
| | - Jun-Ling Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. .,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| |
Collapse
|
29
|
Zhang HL, Wang J, Tang L. Sema4D knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. Cell Biochem Biophys 2014; 68:489-96. [PMID: 23949850 DOI: 10.1007/s12013-013-9727-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Semaphorin4D (Sema4D) belongs to Semaphorins family and is secreted and membrane-bound protein. Its function on angiogenesis and axon regeneration makes it an ideal therapeutic target for spinal cord injury (SCI). Here we examined Sema4D expression profile by real-time PCR and western blot and found Sema4D was upregulated after SCI. In vitro study showed Sema4D was not only expressed in oligodendrocytes but also in endothelial cells (ECs). Hypoxia can mimic Sema4D upregulation in both cell lines. Moreover, overexpression of Sema4D through lentivirus in ECs promoted tube formation. However, Sema4D overexpression in oligodendrocytes precursor cells (OPCs) inhibited neuron myelination in neuron-oligodendrocyte co-culture system. Therefore, Sema4D knockdown in OPCs was applied in SCI rats. The results indicated that Sema4D knockdown significantly promoted functional recovery with blood-brain barrier score. Taken together, our data suggest that specific Sema4D knockdown in oligodendrocytes without disturbing its angiogenesis effect can be a beneficial strategy for SCI treatment.
Collapse
Affiliation(s)
- Hong-Lei Zhang
- Department of Spine Surgery, Liaocheng People's Hospital Affiliated to Taishan Medical University, Liaocheng, 252000, Shandong Province, China
| | | | | |
Collapse
|
30
|
Sedzik J, Jastrzebski JP, Grandis M. Glycans of myelin proteins. J Neurosci Res 2014; 93:1-18. [PMID: 25213400 DOI: 10.1002/jnr.23462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023]
Abstract
Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan. The MAG has 10 glycosylation sites; the glycoprotein OMgp has 11 glycosylation sites. Aside from P0, no comprehensive data are available on other myelin glycoproteins. Here we review and analyze all published data on the physicochemical structure of the glycans linked to P0, PMP22, MOG, and MAG. Most data concern bovine P0, whose glycan moieties have an MW ranging from 1,294.56 Da (GP3) to 2,279.94 Da (GP5). The pI of glycosylated P0 protein varies from pH 9.32 to 9.46. The most charged glycan is MS2 containing three sulfate groups and one glucuronic acid; whereas the least charged one is the BA2 residue. All glycans contain one fucose and one galactose. The most mannose rich are the glycans MS2 and GP4, each of them has four mannoses; OPPE1 contains five N-acetylglucosamines and one sulfated glucuronic acid; GP4 contains one sialic acid. Furthermore, human P0 variants causing both gain and loss of glycosylation have been described and cause peripheral neuropathies with variable clinical severity. In particular, the substitution T(95) →M is a very common in Europe and is associated with a late-onset axonal neuropathy. Although peripheral myelin is made up largely of glycoproteins, mutations altering glycosylation have been described only in P0. This attractive avenue of research requires further study.
Collapse
Affiliation(s)
- Jan Sedzik
- Royal Institute of Technology, Department of Chemical Engineering, Protein Crystallization Facility, Stockholm, Sweden; National Institute of Physiological Sciences, Department of Neuroscience and Bioinformatics, Okazaki, Japan
| | | | | |
Collapse
|
31
|
Saadoun S, Waters P, Owens GP, Bennett JL, Vincent A, Papadopoulos MC. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol Commun 2014; 2:35. [PMID: 24685353 PMCID: PMC3977893 DOI: 10.1186/2051-5960-2-35] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/09/2014] [Indexed: 11/29/2022] Open
Abstract
Introduction Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. Results MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. Conclusions These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients.
Collapse
|
32
|
Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 2014; 27:31-8. [PMID: 24608164 DOI: 10.1016/j.conb.2014.02.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/22/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
Abstract
There are multiple barriers to axonal growth after CNS injury. Myelin-associated inhibitors represent one group of barriers extrinsic to the injured neurons. Nogo, MAG and OMgp are three prototypical myelin inhibitors that signal through multiple neuronal receptors to exert growth inhibition. Targeting myelin inhibition alone modulates the compensatory sprouting of uninjured axons but the effect on the regeneration of injured axons is limited. Meanwhile, modulating sprouting, a naturally occurring repair mechanism, may be a more attainable therapeutic goal for promoting functional repair after CNS injury in the near term.
Collapse
|
33
|
Miki T, Yokoyama T, Kusaka T, Suzuki S, Ohta KI, Warita K, Wang ZY, Ueki M, Sumitani K, Bellinger FP, Tamai M, Liu JQ, Yakura T, Takeuchi Y. Early postnatal repeated maternal deprivation causes a transient increase in OMpg and BDNF in rat cerebellum suggesting precocious myelination. J Neurol Sci 2014; 336:62-7. [DOI: 10.1016/j.jns.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/20/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
34
|
Stiefel KM, Torben-Nielsen B, Coggan JS. Proposed evolutionary changes in the role of myelin. Front Neurosci 2013; 7:202. [PMID: 24265603 PMCID: PMC3820973 DOI: 10.3389/fnins.2013.00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/13/2013] [Indexed: 12/30/2022] Open
Abstract
Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later "Mesozoic marine revolution," marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis.
Collapse
Affiliation(s)
- Klaus M. Stiefel
- The MARCS Institute, Sydney, University of Western SydneyNSW, Australia
| | - Benjamin Torben-Nielsen
- The Blue Brain Project, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland
- Department of Neurobiology, Hebrew University of Jerusalem, Edmond J. Safra CampusJerusalem, Israel
| | | |
Collapse
|
35
|
Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res 2013; 76:1-9. [PMID: 23562792 DOI: 10.1016/j.neures.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery.
Collapse
Affiliation(s)
- Sarina Kundi
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
36
|
Zhao CF, Liu Y, Que HP, Yang SG, Liu ZQ, Weng XC, Hui HD, Liu SJ. SCIRR39 Promotes Differentiation of Oligodendrocyte Precursor Cells and Regulates Expression of Myelin-Associated Inhibitory Factors. J Mol Neurosci 2013; 50:533-41. [DOI: 10.1007/s12031-013-9983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022]
|
37
|
Pandey S, Alcaro MC, Scrima M, Peroni E, Paolini I, Di Marino S, Barbetti F, Carotenuto A, Novellino E, Papini AM, D'Ursi AM, Rovero P. Designed glucopeptides mimetics of myelin protein epitopes as synthetic probes for the detection of autoantibodies, biomarkers of multiple sclerosis. J Med Chem 2012; 55:10437-47. [PMID: 23167575 DOI: 10.1021/jm301031r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that CSF114(Glc) detects diagnostic autoantibodies in multiple sclerosis sera. We report herein a bioinformatic analysis of myelin proteins and CSF114(Glc), which led to the identification of five sequences. These glucopeptides were synthesized and tested in enzymatic assays, showing a common minimal epitope. Starting from that, we designed an optimized sequence, SP077, showing a higher homology with both CSF114(Glc) and the five sequences selected using the bioinformatic approach. SP077 was synthesized and tested on 50 multiple sclerosis patients' sera, and was able to detect higher antibody titers as compared to CSF114(Glc). Finally, the conformational properties of SP077 were studied by NMR spectroscopy and structure calculations. Thus, the immunological activity of SP077 in the recognition of specific autoantibodies in multiple sclerosis patients' sera may be ascribed to both the optimized design of its epitopic region and the superior surface interacting properties of its C-terminal region.
Collapse
Affiliation(s)
- Shashank Pandey
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry Ugo Schiff, University of Florence, I-50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Elias PZ, Spector M. Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor. J Tissue Eng Regen Med 2012; 9:137-50. [PMID: 23038669 DOI: 10.1002/term.1621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/18/2012] [Accepted: 08/25/2012] [Indexed: 02/06/2023]
Abstract
Injuries and diseases of the central nervous system (CNS) have the potential to cause permanent loss of brain parenchyma, with severe neurological consequences. Cavitary defects in the brain may afford the possibility of treatment with biomaterials that fill the lesion site while delivering therapeutic agents. This study examined the treatment of penetrating brain injury (PBI) in a rat model with collagen biomaterials and a soluble Nogo receptor (sNgR) molecule. sNgR was aimed at neutralizing myelin proteins that hinder axon regeneration by inducing growth cone collapse. Scaffolds containing sNgR were implanted in the brains of adult rats 1 week after injury and analysed 4 weeks or 8 weeks later. Histological analysis revealed that the scaffolds filled the lesion sites, remained intact with open pores and were infiltrated with cells and extracellular matrix. Immunohistochemical staining demonstrated the composition of the cellular infiltrate to include macrophages, astrocytes and vascular endothelial cells. Isolated regions of the scaffold borders showed integration with surrounding viable brain tissue that included neurons and oligodendrocytes. While axon regeneration was not detected in the scaffolds, the cellular infiltration and vascularization of the lesion site demonstrated a modification of the injury environment with implications for regenerative strategies.
Collapse
Affiliation(s)
- Paul Z Elias
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, USA
| | | |
Collapse
|
39
|
Chen Y, Hor HH, Tang BL. AMIGO is expressed in multiple brain cell types and may regulate dendritic growth and neuronal survival. J Cell Physiol 2012; 227:2217-29. [DOI: 10.1002/jcp.22958] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Gerin CG, Madueke IC, Perkins T, Hill S, Smith K, Haley B, Allen SA, Garcia RP, Paunesku T, Woloschak G. Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 2011; 65:1255-81. [DOI: 10.1002/syn.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Abstract
Failure of oligodendrocyte precursor cell (OPC) differentiation has been recognized as the leading cause for the failure of myelin regeneration in diseases such as multiple sclerosis (MS). One explanation for the failure of OPC differentiation in MS is the presence of inhibitory molecules in demyelinated lesions. So far only a few inhibitory substrates have been identified in MS lesions. Semaphorin 3A (Sema3A), a secreted member of the semaphorin family, can act as repulsive guidance cue for neuronal and glial cells in the CNS. Recent studies suggest that Sema3A is also expressed in active MS lesions. However, the implication of Sema3A expression in MS lesions remains unclear as OPCs are commonly present in chronic demyelinated lesions. In the present study we identify Sema3A as a potent, selective, and reversible inhibitor of OPC differentiation in vitro. Furthermore, we show that administration of Sema3A into demyelinating lesions in the rat CNS results in a failure of remyelination. Our results imply an important role for Sema3A in the differentiation block occurring in MS lesions.
Collapse
|
42
|
Lee JK, Zheng B. Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Exp Neurol 2011; 235:33-42. [PMID: 21596039 DOI: 10.1016/j.expneurol.2011.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 04/19/2011] [Accepted: 05/01/2011] [Indexed: 12/15/2022]
Abstract
Myelin-associated inhibitors of axon growth, including Nogo, MAG and OMgp, have been the subject of intense research. A myriad of experimental approaches have been applied to investigate the potential of targeting these molecules to promote axonal repair after spinal cord injury. However, there are still conflicting results on their role in axon regeneration and therefore a lack of a cohesive mechanism on how these molecules can be targeted to promote axon repair. One major reason may be the lack of a clear definition of axon regeneration in the first place. Nevertheless, recent data from genetic studies in mice indicate that the roles of these molecules in CNS axon repair may be more intricate than previously envisioned.
Collapse
Affiliation(s)
- Jae K Lee
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA.
| | | |
Collapse
|
43
|
Lee X, Hu Y, Zhang Y, Yang Z, Shao Z, Qiu M, Pepinsky B, Miller RH, Mi S. Oligodendrocyte differentiation and myelination defects in OMgp null mice. Mol Cell Neurosci 2011; 46:752-61. [PMID: 21352918 DOI: 10.1016/j.mcn.2011.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022] Open
Abstract
OMgp is selectively expressed in CNS by oligodendrocyte. However, its potential role(s) in oligodendrocyte development and myelination remain unclear. We show that OMgp null mice are hypomyelinated in their spinal cords, resulting in slower ascending and descending conduction velocities compared to wild-type mice. Consistent with the hypomyelination, in the MOG induced EAE model, OMgp null mice show a more severe EAE clinical disease and slower nerve conduction velocity compared to WT animals. The contribution of OMgp to oligodendrocyte differentiation and myelination was verified using cultured oligodendrocytes from null mice. Oligodendrocytes isolated from OMgp null mice show a significant decrease in the number of MBP(+) cells and in myelination compared to wild-type mice. The dramatic effects of the OMgp KO in oligodendrocyte maturation in vivo and in vitro reveal a new and important function for OMgp in regulating CNS myelination.
Collapse
Affiliation(s)
- Xinhua Lee
- Biogen Idec Inc, 14 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, Galanaud D, Armand L, Lehericy S, Lubetzki C, Zalc B, Bottlaender M. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-¹¹C]-2-(4'-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol 2011; 69:673-80. [PMID: 21337603 DOI: 10.1002/ana.22320] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 09/13/2010] [Accepted: 09/17/2010] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Imaging of myelin tracts in vivo would greatly improve the monitoring of demyelinating diseases such as multiple sclerosis (MS). To date, no imaging technique specifically targets demyelination and remyelination. Recently, amyloid markers related to Congo red have been shown to bind to central nervous system (CNS) myelin. Here we questioned whether the thioflavine-T derivative 2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (PIB), which also binds to amyloid plaques, could serve as a myelin marker. METHODS PIB fixation to myelin was studied by fluorescence in the normal and dysmyelinating mouse brain, as well as in the postmortem brain of MS patients. Positron emission tomography (PET) experiments were conducted using [¹¹C]PIB in baboons and in a proof of concept clinical study in 2 MS patients. RESULTS Applied directly on tissue sections or after intraperitoneal injection, PIB stained CNS myelin, and the decrease in the level of fixation paralleled the amount of myelin loss in a dysmyelinating mutant. In normally myelinated areas of postmortem MS brain, demyelinated and remyelinated lesions were clearly distinguishable by the differential intensity of labeling observed with PIB. PET using intravenously injected radiolabeled [¹¹C]PIB imaged CNS myelin in baboons and humans. In MS patients, the dynamic analysis of PET acquisitions allowed quantitative assessment of demyelination. INTERPRETATION PIB could be used as an imaging marker to quantify myelin loss and repair in demyelinating diseases.
Collapse
Affiliation(s)
- Bruno Stankoff
- Inserm, U975, Paris, France; Faculty of Medicine, Pierre and Marie Curie University, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Védrine SM, Vourc'h P, Tabagh R, Mignon L, Höfflin S, Cherpi-Antar C, Mbarek O, Paubel A, Moraine C, Raynaud M, Andres CR. A functional tetranucleotide (AAAT) polymorphism in an Alu element in the NF1 gene is associated with mental retardation. Neurosci Lett 2011; 491:118-21. [PMID: 21236316 DOI: 10.1016/j.neulet.2011.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/30/2010] [Accepted: 01/06/2011] [Indexed: 11/29/2022]
Abstract
Mental retardation (MR) is frequent in neurofibromatosis type 1 (NF1). Allele 5 of a tetranucleotide polymorphism in an Alu element (GXAlu) localized in intron 27b of the NF1 gene has previously been associated with autism. We considered that the microsatellite GXAlu could also represent a risk factor in MR without autism. We developed a rapid method for genotyping by non-denaturing HPLC and assayed the allelic variation of GXAlu marker on in vitro gene expression in Cos-7 cells. A French population of 157 individuals (68 non syndromic non familial MR (NS-MR) patients diagnosed in the University Hospital of Tours; 89 controls) was tested in a case-control assay. We observed a significant association (χ(2)=7.96; p=0.005) between alu4 carriers (7 AAAT repeats) and MR (OR: 7.86; 95% C.I.: 2.13-28.9). The relative in vitro expression of a reporter gene encoding chloramphenicol acetyl transferase (CAT) was higher for alu4 and alu5, suggesting a regulation effect for these alleles on gene expression in vivo. Our results showed an association with a polymorphism regulating the NF1 gene or other genes during brain development.
Collapse
|
46
|
Oligodendrocyte myelin glycoprotein does not influence node of ranvier structure or assembly. J Neurosci 2010; 30:14476-81. [PMID: 20980605 DOI: 10.1523/jneurosci.1698-10.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte myelin glycoprotein (OMgp) is expressed by both neurons and oligodendrocytes in the CNS. It has been implicated in growth cone collapse and neurite outgrowth inhibition by signaling through the Nogo receptor and paired Ig-like receptor B (PirB). OMgp was also reported to be an extracellular matrix (ECM) protein surrounding CNS nodes of Ranvier and proposed to function as (1) an inhibitor of nodal collateral sprouting and (2) an important contributor to proper nodal and paranodal architecture. However, we show here that the anti-OMgp antiserum used in previous studies to define the functions of OMgp at nodes is not specific. Among all reported nodal ECM components, the antiserum exhibited strong cross-reactivity against versican V2 isoform, a chondroitin sulfate proteoglycan. Furthermore, the OMgp antiserum labeled OMgp-null nodes, but not nodes from versican V2-deficient mice, and preadsorption of the OMgp antiserum with recombinant versican V2 blocked nodal labeling. Analysis of CNS nodes in OMgp-null mice failed to reveal any nodal or paranodal defects, or increased nodal collateral sprouting, indicating that OMgp does not participate in CNS node of Ranvier assembly or maintenance. We successfully identified a highly specific anti-OMgp antibody and observed OMgp staining in white matter only after initiation of myelination. OMgp immunoreactivity decorated the surface of mature myelinated axons, but was excluded from compact myelin and nodes. Together, our results strongly argue against the nodal localization of OMgp and its proposed functions at nodes, and reveal OMgp's authentic localization relative to nodes and myelin.
Collapse
|
47
|
MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 2010; 30:6825-37. [PMID: 20484625 DOI: 10.1523/jneurosci.6239-09.2010] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional recovery after adult CNS damage is limited in part by myelin inhibitors of axonal regrowth. Three molecules, Nogo-A, MAG, and OMgp, are produced by oligodendrocytes and share neuronal receptor mechanisms through NgR1 and PirB. While each has an axon-inhibitory role in vitro, their in vivo interactions and relative potencies have not been defined. Here, we compared mice singly, doubly, or triply mutant for these three myelin inhibitor proteins. The myelin extracted from Nogo-A mutant mice is less inhibitory for axons than is that from wild-type mice, but myelin lacking MAG and OMgp is indistinguishable from control. However, myelin lacking all three inhibitors is less inhibitory than Nogo-A-deficient myelin, uncovering a redundant and synergistic role for all three proteins in axonal growth inhibition. Spinal cord injury studies revealed an identical in vivo hierarchy of these three myelin proteins. Loss of Nogo-A allows corticospinal and raphespinal axon growth above and below the injury, as well as greater behavioral recovery than in wild-type or heterozygous mutant mice. In contrast, deletion of MAG and OMgp stimulates neither axonal growth nor enhanced locomotion. The triple-mutant mice exhibit greater axonal growth and improved locomotion, consistent with a principal role for Nogo-A and synergistic actions for MAG and OMgp, presumably through shared receptors. These data support the hypothesis that targeting all three myelin ligands, as with NgR1 decoy receptor, provides the optimal chance for overcoming myelin inhibition and improving neurological function.
Collapse
|
48
|
Dou F, Huang L, Yu P, Zhu H, Wang X, Zou J, Lu P, Xu XM. Temporospatial expression and cellular localization of oligodendrocyte myelin glycoprotein (OMgp) after traumatic spinal cord injury in adult rats. J Neurotrauma 2010; 26:2299-311. [PMID: 19580419 DOI: 10.1089/neu.2009.0954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to permanent neurological deficits, which, in part, is due to the inability of mature axons to regenerate in the mammalian central nervous system (CNS). The oligodendrocyte myelin glycoprotein (OMgp) is one of the myelin-associated inhibitors of neurite outgrowth in the CNS. To date, limited information is available concerning its expression following SCI, possibly due to the lack of a reliable antibody against it. Here we report the generation of a highly specific OMgp polyclonal antibody from the rabbit. Using this antibody, we found that OMgp was almost exclusively expressed in the CNS. Following a moderately contusive SCI using a New York University impactor (10 g rod dropped from a height of 12.5 mm), both OMgp mRNA and protein levels were elevated at 1 and 7 days post-SCI, respectively, and peaked at 28 days compared to those of the sham-operated controls. Spatially, OMgp was expressed throughout the entire rostrocaudal extension of a 10 mm long spinal segment with the highest expression seen at the injury epicenter. OMgp was exclusively localized in neurons and oligodendrocytes in the normal and sham-operated controls with an increased expression found in these cells following SCI. OMgp was not expressed in astrocytes or microglia in all groups. Thus, our study has provided evidence for temporospatial expression and cellular localization of OMgp following SCI and suggested that this molecule may contribute to the overall inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Fangfang Dou
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gil V, Bichler Z, Lee JK, Seira O, Llorens F, Bribian A, Morales R, Claverol-Tinture E, Soriano E, Sumoy L, Zheng B, Del Río JA. Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon. ACTA ACUST UNITED AC 2009; 20:1769-79. [PMID: 19892785 DOI: 10.1093/cercor/bhp246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona E-08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee JK, Case LC, Chan AF, Zhu Y, Tessier-Lavigne M, Zheng B. Generation of an OMgp allelic series in mice. Genesis 2009; 47:751-6. [PMID: 19672953 PMCID: PMC2788017 DOI: 10.1002/dvg.20557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The very limited ability to regenerate axons after injury in the mature mammalian central nervous system (CNS) has been partly attributed to the growth restrictive nature of CNS myelin. Oligodendrocyte myelin glycoprotein (OMgp) was identified as a major myelin-derived inhibitor of axon growth. However, its role in axon regeneration in vivo is poorly understood. Here we describe the generation and molecular characterization of an OMgp allelic series. With a single gene targeting event and Cre/FLP mediated recombination, we generated an OMgp null allele with a LacZ reporter, one without a reporter gene, and an OMgp conditional allele. This allelic series will aid in the study of OMgp in adult CNS axon regeneration using mouse models of spinal cord injury. The conditional allele will overcome developmental compensation when employed with an inducible Cre, and allows for the study of temporal and tissue/cell type-specific roles of OMgp in CNS injury-induced axonal plasticity.
Collapse
Affiliation(s)
- Jae K Lee
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California 92093-0691, USA
| | | | | | | | | | | |
Collapse
|