1
|
Yu Q, Ruan M, Chen Y, Wang C. Advances in neuroscience research and big data's analysis on anxiety disorder. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e1692. [PMID: 39390772 DOI: 10.1002/wcs.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 10/12/2024]
Abstract
Anxiety disorder is a complex disease with the influence of environmental and genetic factors and multimolecular participation, and it is also one of the most common mental disorders. The causes of disorders are not clear but may include a variety of social, psychological, and biological factors. Therefore, neither genetics, neurobiology, nor neuroimaging can independently explain the pathological mechanism. By searching the Web of Science databases, Derwent Innovation Patent database, ClinicalTrials.gov database, and Cortellis database, we analyze the current situation of papers, patents, clinical trials, and drugs of anxiety disorder. Second, the existing literature was reviewed to summarize the neurophysiological mechanism, brain imaging, gene, anti-anxiety drugs, and other aspects of anxiety disorders. This article reviews the research status of anxiety disorders. The heterogeneity of the disease, lack of treatment effectiveness, and gaps in translational medicine still present barriers to further advancement. Thus, in-depth explorations of the underlying biological mechanisms of anxiety disorders, the detection and intervention of biological targets, and further developments based on existing intervention strategies will drive future research on anxiety disorders. This article is categorized under: Neuroscience > Clinical.
Collapse
Affiliation(s)
- Qianmei Yu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Meihua Ruan
- Shanghai Institute of Nutrition and Health, Shanghai Information Center for Life Sciences, Chinese Academy of Science, Shanghai, China
| | - Yongjun Chen
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Hermann A, Benke C, Blecker CR, de Haas B, He Y, Hofmann SG, Iffland JR, Jengert-Stahl J, Kircher T, Leinweber K, Linka M, Mulert C, Neudert MK, Noll AK, Melzig CA, Rief W, Rothkopf C, Schäfer A, Schmitter CV, Schuster V, Stark R, Straube B, Zimmer RI, Kirchner L. Study protocol TransTAM: Transdiagnostic research into emotional disorders and cognitive-behavioral therapy of the adaptive mind. BMC Psychiatry 2024; 24:657. [PMID: 39369190 PMCID: PMC11456249 DOI: 10.1186/s12888-024-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Emotional disorders such as depression and anxiety disorders share substantial similarities in their etiology and treatment. In recent decades, these commonalities have been increasingly recognized in classification systems and treatment programs crossing diagnostic boundaries. METHODS To examine the prospective effects of different transdiagnostic markers on relevant treatment outcomes, we plan to track a minimum of N = 200 patients with emotional disorders during their routine course of cognitive behavioral therapy at two German outpatient clinics. We will collect a wide range of transdiagnostic markers, ranging from basic perceptual processes and self-report measures to complex behavioral and neurobiological indicators, before entering therapy. Symptoms and psychopathological processes will be recorded before entering therapy, between the 20th and 24th therapy session, and at the end of therapy. DISCUSSION Our results could help to identify transdiagnostic markers with high predictive power, but also provide deeper insights into which patient groups with which symptom clusters are less likely to benefit from therapy, and for what reasons. TRIAL REGISTRATION The trial was preregistered at the German Clinical Trial Register (DRKS-ID: DRKS00031206; 2023-05-09).
Collapse
Affiliation(s)
- Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany.
| | - Christoph Benke
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Carlo R Blecker
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Jona R Iffland
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
| | - Johanna Jengert-Stahl
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Marcel Linka
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
| | - Christoph Mulert
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Ann-Kathrin Noll
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Christiane A Melzig
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Constantin Rothkopf
- Institute of Psychology, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Axel Schäfer
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Christina V Schmitter
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Verena Schuster
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Raphaela I Zimmer
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Lukas Kirchner
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
3
|
Feurer C, Jimmy J, Uribe M, Shankman SA, Langenecker SA, Craske MG, Ajilore O, Phan KL, Klumpp H. Brain activity during reappraisal and associations with psychotherapy response in social anxiety and major depression: a randomized trial. Psychol Med 2024:1-11. [PMID: 38775085 DOI: 10.1017/s0033291724001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) is an effective treatment for patients with social anxiety disorder (SAD) or major depressive disorder (MDD), yet there is variability in clinical improvement. Though prior research suggests pre-treatment engagement of brain regions supporting cognitive reappraisal (e.g. dorsolateral prefrontal cortex [dlPFC]) foretells CBT response in SAD, it remains unknown if this extends to MDD or is specific to CBT. The current study examined associations between pre-treatment neural activity during reappraisal and clinical improvement in patients with SAD or MDD following a trial of CBT or supportive therapy (ST), a common-factors comparator arm. METHODS Participants were 75 treatment-seeking patients with SAD (n = 34) or MDD (n = 41) randomized to CBT (n = 40) or ST (n = 35). Before randomization, patients completed a cognitive reappraisal task during functional magnetic resonance imaging. Additionally, patients completed clinician-administered symptom measures and a self-report cognitive reappraisal measure before treatment and every 2 weeks throughout treatment. RESULTS Results indicated that pre-treatment neural activity during reappraisal differentially predicted CBT and ST response. Specifically, greater trajectories of symptom improvement throughout treatment were associated with less ventrolateral prefrontal cortex (vlPFC) activity for CBT patients, but more vlPFC activity for ST patients. Also, less baseline dlPFC activity corresponded with greater trajectories of self-reported reappraisal improvement, regardless of treatment arm. CONCLUSIONS If replicated, findings suggest individual differences in brain response during reappraisal may be transdiagnostically associated with treatment-dependent improvement in symptom severity, but improvement in subjective reappraisal following psychotherapy, more broadly.
Collapse
Affiliation(s)
- Cope Feurer
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jagan Jimmy
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Melissa Uribe
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Scott A Langenecker
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Michelle G Craske
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, Los Angeles, CA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Mazurka R, Cunningham S, Hassel S, Foster JA, Nogovitsyn N, Fiori LM, Strother SC, Arnott SR, Frey BN, Lam RW, MacQueen GM, Milev RV, Rotzinger S, Turecki G, Kennedy SH, Harkness KL. Relation of hippocampal volume and SGK1 gene expression to treatment remission in major depression is moderated by childhood maltreatment: A CAN-BIND-1 report. Eur Neuropsychopharmacol 2024; 78:71-80. [PMID: 38128154 DOI: 10.1016/j.euroneuro.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Preclinical research implicates stress-induced upregulation of the enzyme, serum- and glucocorticoid-regulated kinase 1 (SGK1), in reduced hippocampal volume. In the current study, we tested the hypothesis that greater SGK1 mRNA expression in humans would be associated with lower hippocampal volume, but only among those with a history of prolonged stress exposure, operationalized as childhood maltreatment (physical, sexual, and/or emotional abuse). Further, we examined whether baseline levels of SGK1 and hippocampal volume, or changes in these markers over the course of antidepressant treatment, would predict treatment outcomes in adults with major depression [MDD]. We assessed SGK1 mRNA expression from peripheral blood, and left and right hippocampal volume at baseline, as well as change in these markers over the first 8 weeks of a 16-week open-label trial of escitalopram as part of the Canadian Biomarker Integration Network in Depression program (MDD [n = 161] and healthy comparison participants [n = 91]). Childhood maltreatment was assessed via contextual interview with standardized ratings. In the full sample at baseline, greater SGK1 expression was associated with lower hippocampal volume, but only among those with more severe childhood maltreatment. In individuals with MDD, decreases in SGK1 expression predicted lower remission rates at week 16, again only among those with more severe maltreatment. Decreases in hippocampal volume predicted lower week 16 remission for those with low childhood maltreatment. These results suggest that both glucocorticoid-related neurobiological mechanisms of the stress response and history of childhood stress exposure may be critical to understanding differential treatment outcomes in MDD. ClinicalTrials.gov: NCT01655706 Canadian Biomarker Integration Network for Depression Study.
Collapse
Affiliation(s)
- Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | | | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nikita Nogovitsyn
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Laura M Fiori
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roumen V Milev
- Departments of Psychiatry and Psychology, And Providence Care Hospital, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
5
|
Yan H, Han Y, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Altered resting-state cerebellar-cerebral functional connectivity in patients with panic disorder before and after treatment. Neuropharmacology 2023; 240:109692. [PMID: 37652260 DOI: 10.1016/j.neuropharm.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
The study aimed to investigate the functional connectivity (FC) between the cerebellum and intrinsic cerebral networks in patients with panic disorder (PD), and to observe changes in the cerebellar-cerebral FC following pharmacotherapy. Fifty-four patients with PD and 54 healthy controls (HCs) underwent clinical assessments and functional magnetic resonance imaging scans before and after a 5-week paroxetine treatment. Seed-based cerebellar-cerebral FC was compared between the PD and HC groups, as well as between patients with PD before and after treatment. Additionally, the correlations between FC and clinical features of PD were analyzed. Compared to HCs, patients with PD had altered cerebellar-cerebral FC in the default mode, affective-limbic, and sensorimotor networks. Moreover, a negative correlation between cerebellar-insula disconnection and the severity of depressive symptoms in patients with PD (Pearson correlation, r = -0.424, p = 0.001, Bonferroni corrected) was found. After treatment, most of the enhanced FCs observed in patients with PD at baseline returned to levels similar to those observed in HCs. However, the reduced FC at baseline did not significantly change after treatment. The findings suggest that patients with PD have specific deficits in resting-state cerebellar-cerebral FC and that paroxetine may improve PD by restoring the balance of cerebellar-cerebral FC. These findings emphasize the crucial involvement of cerebellar-cerebral FC in the neuropsychological mechanisms underlying PD and in the potential pharmacological mechanisms of paroxetine for treating PD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Zhang X, Zhang L, Yu F, Zhang W. Can Brain Activities of Guided Metaphorical Restructuring Predict Therapeutic Changes? Neuroscience 2023; 531:39-49. [PMID: 37689232 DOI: 10.1016/j.neuroscience.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The present study examined whether brain activities of metaphorical restructuring could predict improvements in emotion and general self-efficacy (GSES). Sixty-two anxious graduates were randomly assigned to either the metaphor group (n = 31) or the literal group (n = 31). After completing the pretest (T1), the participants were first presented with micro-counseling dialogues (MCD) to guide metaphorical or literal restructuring, and their functional brain activities were simultaneously recorded. They then completed the posttest (T2) and 1 week's follow-up (T3). It was found that (1) compared with the literal group, the metaphor group had more insightful experiences, a greater increase in positive affect and GSES at T2, and a greater decrease in psychological distress at T2 and T3; (2) the metaphor group showed a greater activation in the left inferior frontal gyrus (IFG) and bilateral temporal gyrus, and further activation in the left hippocampus positively predicted T2 GSES scores while that in the IFG and left hippocampus positively predicted the reduction slope of distress over the three time points. One important limitation is that the results should be interpreted with caution when generalizing to clinical anxiety samples due to the participants were graduate students with anxiety symptoms rather than clinical sample. These results indicated that metaphor restructuring produced greater symptom improvements, and activation in the hippocampus and IFG could predict these symptom improvements. This suggests that the activation of the two regions during the restructuring intervention may be a neural marker for symptom improvements.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lu Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yu
- Department of Psychology, Hebei Normal University, Shijiazhuang 050010, China
| | - Wencai Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Yan H, Han Y, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Breaking the Fear Barrier: Aberrant Activity of Fear Networks as a Prognostic Biomarker in Patients with Panic Disorder Normalized by Pharmacotherapy. Biomedicines 2023; 11:2420. [PMID: 37760861 PMCID: PMC10525800 DOI: 10.3390/biomedicines11092420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Panic disorder (PD) is a prevalent type of anxiety disorder. Previous studies have reported abnormal brain activity in the fear network of patients with PD. Nonetheless, it remains uncertain whether pharmacotherapy can effectively normalize these abnormalities. This longitudinal resting-state functional magnetic resonance imaging study aimed to investigate the spontaneous neural activity in patients with PD and its changes after pharmacotherapy, with a focus on determining whether it could predict treatment response. The study included 54 drug-naive patients with PD and 54 healthy controls (HCs). Spontaneous neural activity was measured using regional homogeneity (ReHo). Additionally, support vector regression (SVR) was employed to predict treatment response from ReHo. At baseline, PD patients had aberrant ReHo in the fear network compared to HCs. After 4 weeks of paroxetine treatment (20 mg/day), a significant increase in ReHo was observed in the left fusiform gyrus, which had shown reduced ReHo before treatment. The SVR analysis showed significantly positive correlations (p < 0.0001) between the predicted and actual reduction rates of the severity of anxiety and depressive symptoms. Here, we show patients with PD had abnormal spontaneous neural activities in the fear networks. Furthermore, these abnormal spontaneous neural activities can be partially normalized by pharmacotherapy and serve as candidate predictors of treatment response. Gaining insight into the trajectories of brain activity normalization following treatment holds the potential to provide vital insights for managing PD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar 161006, China;
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (H.Y.); (Y.H.); (X.S.); (J.Z.)
| |
Collapse
|
8
|
Picó-Pérez M, Fullana MA, Albajes-Eizagirre A, Vega D, Marco-Pallarés J, Vilar A, Chamorro J, Felmingham KL, Harrison BJ, Radua J, Soriano-Mas C. Neural predictors of cognitive-behavior therapy outcome in anxiety-related disorders: a meta-analysis of task-based fMRI studies. Psychol Med 2023; 53:3387-3395. [PMID: 35916600 DOI: 10.1017/s0033291721005444] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive-behavior therapy (CBT) is a well-established first-line intervention for anxiety-related disorders, including specific phobia, social anxiety disorder, panic disorder/agoraphobia, generalized anxiety disorder, obsessive-compulsive disorder, and posttraumatic stress disorder. Several neural predictors of CBT outcome for anxiety-related disorders have been proposed, but previous results are inconsistent. METHODS We conducted a systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) studies investigating whole-brain predictors of CBT outcome in anxiety-related disorders (17 studies, n = 442). RESULTS Across different tasks, we observed that brain response in a network of regions involved in salience and interoception processing, encompassing fronto-insular (the right inferior frontal gyrus-anterior insular cortex) and fronto-limbic (the dorsomedial prefrontal cortex-dorsal anterior cingulate cortex) cortices was strongly associated with a positive CBT outcome. CONCLUSIONS Our results suggest that there are robust neural predictors of CBT outcome in anxiety-related disorders that may eventually lead (probably in combination with other data) to develop personalized approaches for the treatment of these mental disorders.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Opticks Security, Barcelona, Spain
| | - Daniel Vega
- Psychiatry and Mental Health Department, Consorci Sanitari de l'Anoia & Fundació Sanitària d'Igualada, Igualada, Barcelona, Spain
- Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal & Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Ana Vilar
- Institut de Neuropsiquiatria i Addiccions, Hospital de Dia Infanto Juvenil Litoral Mar, Parc de Salut Mar, Barcelona, Spain
| | - Jacobo Chamorro
- Anxiety Unit, Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain
| | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Ben J Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Zhuang Y, Guo L, Huang W, Bo G, Zhang J, Zhu Z, Feng Y. Altered resting-state hippocampal functional connectivity in breast cancer survivors with chemotherapy-induced amenorrhea. Brain Behav 2023; 13:e3039. [PMID: 37157937 PMCID: PMC10275533 DOI: 10.1002/brb3.3039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Amenorrhea induced decrease of hormones is associated with cognitive impairment. This study aimed to evaluate hippocampal functional connectivity patterns in chemotherapy-induced amenorrhea (CIA) breast cancer (BC) patients, to evaluate the relationship between the functional connectivity features and hormone levels. METHOD Neuropsychological test, functional magnetic resonance imaging, and assessment of hormone levels were conducted in 21 premenopausal BC patients before chemotherapy (t0 ) and 1 week after completing chemotherapy (t1 ). Twenty matched healthy controls (HC) were also included and underwent the same assessments at similar time intervals. Mixed effect analysis and paired t-test were used to compare differences in brain functional connectivity. RESULTS Voxel-based paired t-tests revealed increased functional connectivity of the right and left hippocampus with the left fusiform gyrus, inferior and middle temporal gyrus, inferior occipital gyrus, left lingual gyrus, and parahippocampal gyrus after chemotherapy (p < .001) in CIA patients. Repeated measures analysis revealed significant group-by-time interactions in the left hippocampus with the bilateral fusiform gyrus, right parahippocampal gyrus, left inferior temporal gyrus, and left inferior occipital gyrus (p < .001). Premenopausal BC patients had no significant differences in cognitive function compared with HC at baseline. However, the CIA patients had high levels of self-rating depression scale, self-rating anxiety scale, total cholesterol, and triglycerides. Further, the CIA patients showed significant differences in hormone and fasting plasma glucose levels and cognitive performances between t0 and t1 (p < .05). Functional connectivity changes between the left hippocampus and the left inferior occipital gyrus was negatively correlated with E2 and luteinizing hormone changes (p < .05). CONCLUSION The CIA patients had cognitive dysfunction mainly in memory and visual mobility. Chemotherapy may affect hippocampal-posterior cortical circuit which mediates visual processing in CIA patients. Moreover, E2 may be involved in this process.
Collapse
Affiliation(s)
- Yingying Zhuang
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Lili Guo
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Wei Huang
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Genji Bo
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Jiandong Zhang
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Zhaohuan Zhu
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| | - Yun Feng
- Department of Medical ImagingMedical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuChina
| |
Collapse
|
10
|
Han Y, Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Can the aberrant occipital-cerebellum network be a predictor of treatment in panic disorder? J Affect Disord 2023; 331:207-216. [PMID: 36965626 DOI: 10.1016/j.jad.2023.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND This study aimed to detect altered brain activation pattern of patients with panic disorder (PD) and its changes after treatment. The possibilities of diagnosis and prediction of treatment response based on the aberrant brain activity were tested. METHODS Fifty-four PD patients and 54 healthy controls (HCs) were recruited. Clinical assessment and resting-state functional magnetic resonance imaging scans were conducted. Then, patients received a 4-week paroxetine treatment and underwent a second clinical assessment and scan. The fractional amplitude of low-frequency fluctuations (fALFF) was measured. Support vector machine (SVM) and support vector regression (SVR) analyses were conducted. RESULTS Lower fALFF values in the right calcarine/lingual gyrus and left lingual gyrus/cerebellum IV/V, whereas higher fALFF values in right cerebellum Crus II were observed in patients related to HCs at baseline. After treatment, patients with PD exhibited significant clinical improvement, and the abnormal lower fALFF values in the right lingual gyrus exhibited a great increase. The abnormal fALFF at pretreatment can distinguish patients from HCs with 80 % accuracy and predict treatment response which was reflected in the significant correlation between the predicted and actual treatment responses. LIMITATIONS The impacts of ethnic, cultural, and other regional differences on PD were not considered for it was a single-center study. CONCLUSIONS The occipital-cerebellum network played an important role in the pathophysiology of PD and should be a part of the fear network. The abnormal fALFF values in patients with PD at pretreatment could serve as biomarkers of PD and predict the early treatment response of paroxetine.
Collapse
Affiliation(s)
- Yiding Han
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
11
|
Individual- and Connectivity-Based Real-Time fMRI Neurofeedback to Modulate Emotion-Related Brain Responses in Patients with Depression: A Pilot Study. Brain Sci 2022; 12:brainsci12121714. [PMID: 36552173 PMCID: PMC9775232 DOI: 10.3390/brainsci12121714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Individual real-time functional magnetic resonance imaging neurofeedback (rtfMRI NF) might be a promising adjuvant in treating depressive symptoms. Further studies showed functional variations and connectivity-related changes in the dorsolateral prefrontal cortex (dlPFC) and the insular cortex. OBJECTIVES The aim of this pilot study was to investigate whether individualized connectivity-based rtfMRI NF training can improve symptoms in depressed patients as an adjunct to a psychotherapeutic programme. The novel strategy chosen for this was to increase connectivity between individualized regions of interest, namely the insula and the dlPFC. METHODS Sixteen patients diagnosed with major depressive disorder (MDD, ICD-10) and 19 matched healthy controls (HC) participated in a rtfMRI NF training consisting of two sessions with three runs each, within an interval of one week. RtfMRI NF was applied during a sequence of negative emotional pictures to modulate the connectivity between the dlPFC and the insula. The MDD REAL group was divided into a Responder and a Non-Responder group. Patients with an increased connectivity during the second NF session or during both the first and the second NF session were identified as "MDD REAL Responder" (N = 6). Patients that did not show any increase in connectivity and/or a decreased connectivity were identified as "MDD REAL Non-Responder" (N = 7). RESULTS Before the rtfMRI sessions, patients with MDD showed higher neural activation levels in ventromedial PFC and the insula than HC; by contrast, HC revealed increased hemodynamic activity in visual processing areas (primary visual cortex and visual association cortex) compared to patients with MDD. The comparison of hemodynamic responses during the first compared to during the last NF session demonstrated significantly increased BOLD-activation in the medial orbitofrontal cortex (mOFC) in patients and HC, and additionally in the lateral OFC in patients with MDD. These findings were particularly due to the MDD Responder group, as the MDD Non-Responder group showed no increase in this region during the last NF run. There was a decrease of neural activation in emotional processing brain regions in both groups in the last NF run compared to the first: HC showed differences in the insula, parahippocampal gyrus, basal ganglia, and cingulate gyrus. Patients with MDD demonstrated deceased responses in the parahippocampal gyrus. There was no significant reduction of BDI scores after NF training in patients. CONCLUSIONS Increased neural activation in the insula and vmPFC in MDD suggests an increased emotional reaction in patients with MDD. The activation of the mOFC could be associated with improved control-strategies and association-learning processes. The increased lOFC activation could indicate a stronger sensitivity to failed NF attempts in MDD. A stronger involvement of visual processing areas in HC may indicate better adaptation to negative emotional stimuli after repeated presentation. Overall, the rtfMRI NF had an impact on neurobiological mechanisms, but not on psychometric measures in patients with MDD.
Collapse
|
12
|
Silva LDG, Aprigio D, Marinho V, Teixeira S, Di Giacomo J, Gongora M, Budde H, Nardi AE, Bittencourt J, Cagy M, Basile LF, Orsini M, Ribeiro P, Velasques B. The Computer Simulation for Triggering Anxiety in Panic Disorder Patients Modulates the EEG Alpha Power during an Oddball Task. NEUROSCI 2022; 3:332-346. [PMID: 39483371 PMCID: PMC11523734 DOI: 10.3390/neurosci3020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2024] Open
Abstract
AIM The present study investigated the differences between the Panic Disorder (PD) patients groups' and healthy controls for the EEG alpha dynamics under the frontal cortex and reaction time during the oddball task. MATERIAL AND METHODS The reaction time during the oddball paradigm concomitant to EEG alpha power was tested in nine PD patients and ten healthy controls before and after a computer simulation presentation. RESULTS The findings revealed a decrease in EEG alpha power in PD patients concerning the control group (p ≤ 0.0125). However, both groups demonstrated an increased cortical oscillation after the computer simulation, except for the Fp1 electrode during M3 moment in the experimental group. The experimental group has a fast reaction time compared to healthy individuals during the oddball task (p = 0.002). CONCLUSIONS We propose that the decrease in EEG alpha power in the PD patients may indicate an increase in processing related to an anxiogenic stimulus and interference of the anxiety state that compromises the inhibitory control. The reaction time task reveals cognitive symptoms in the experimental group, which may be related to the faster reactivity and high impulsivity to stimuli.
Collapse
Affiliation(s)
- Luiza Di Giorgio Silva
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (L.D.G.S.); (D.A.); (M.G.); (J.B.); (B.V.)
| | - Danielle Aprigio
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (L.D.G.S.); (D.A.); (M.G.); (J.B.); (B.V.)
| | - Victor Marinho
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba 64202-020, Brazil;
| | - Silmar Teixeira
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba 64202-020, Brazil;
| | - Jesse Di Giacomo
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (J.D.G.); (P.R.)
| | - Mariana Gongora
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (L.D.G.S.); (D.A.); (M.G.); (J.B.); (B.V.)
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (J.D.G.); (P.R.)
- Institute of Applied Neuroscience, Rio de Janeiro 22290-140, Brazil
| | - Henning Budde
- Faculty of Human Sciences, Medical School Hamburg, 20457 Hamburg, Germany;
| | - Antonio E Nardi
- Laboratory of Panic & Respiration, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil;
| | - Juliana Bittencourt
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (L.D.G.S.); (D.A.); (M.G.); (J.B.); (B.V.)
- Institute of Applied Neuroscience, Rio de Janeiro 22290-140, Brazil
- Department of Physiotherapy Rio de Janeiro, Veiga de Almeida University, Rio de Janeiro 20271-901, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro 20271-901, Brazil;
| | - Luis Fernando Basile
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo 01246-904, Brazil;
| | - Marco Orsini
- Master's Program, Vassouras University, Vassouras 27700-000, Brazil;
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (J.D.G.); (P.R.)
- Institute of Applied Neuroscience, Rio de Janeiro 22290-140, Brazil
| | - Bruna Velasques
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro 22290-140, Brazil; (L.D.G.S.); (D.A.); (M.G.); (J.B.); (B.V.)
- Institute of Applied Neuroscience, Rio de Janeiro 22290-140, Brazil
| |
Collapse
|
13
|
Manzler CA, Radoman M, Khorrami KJ, Gorka SM. Association between startle reactivity to uncertain threats and structural brain volume. Psychophysiology 2022; 59:e14074. [PMID: 35579909 PMCID: PMC10080733 DOI: 10.1111/psyp.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Sensitivity to uncertain threat (U-threat) is a clinically important individual difference factor in multiple psychopathologies. Recent studies have implicated a specific frontolimbic circuit as a key network involved in the anticipation of aversive stimuli. In particular, the insula, thalamus, and dorsal anterior cingulate cortex (dACC) have recently been found to be robustly activated by anticipation of U-threat. However, no study to date has examined the association between U-threat reactivity and structural brain volume. In the present study, we utilized a pooled sample of 186 young adult volunteers who completed a structural MRI scan and the well-validated No-Predictable-Unpredictable (NPU) threat of electric shock task. Startle eyeblink potentiation was collected during the NPU task as an objective index of aversive reactivity. ROI-based analyses revealed that increased startle reactivity to U-threat was associated with reduced gray matter volume in the right insula and bilateral thalamus, but not the dACC. These results add to a growing literature implicating the insula and thalamus as core nodes involved in individual differences in U-threat reactivity.
Collapse
Affiliation(s)
- Charles A Manzler
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Milena Radoman
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kia J Khorrami
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephanie M Gorka
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Baumel WT, Lu L, Huang X, Drysdale AT, Sweeny JA, Gong Q, Sylvester CM, Strawn JR. Neurocircuitry of Treatment in Anxiety Disorders. Biomark Neuropsychiatry 2022; 6. [PMID: 35756886 PMCID: PMC9222661 DOI: 10.1016/j.bionps.2022.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Methods: Results: Conclusions:
Collapse
Affiliation(s)
- W. Tommy Baumel
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Correspondence to: University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA. (W.T. Baumel)
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Andrew T. Drysdale
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - John A. Sweeny
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chad M. Sylvester
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
15
|
Bryant RA, Erlinger M, Felmingham K, Klimova A, Williams LM, Malhi G, Forbes D, Korgaonkar MS. Reappraisal-related neural predictors of treatment response to cognitive behavior therapy for post-traumatic stress disorder. Psychol Med 2021; 51:2454-2464. [PMID: 32366351 DOI: 10.1017/s0033291720001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although trauma-focused cognitive behavior therapy (TF-CBT) is the frontline treatment for post-traumatic stress disorder (PTSD), one-third of patients are treatment non-responders. To identify neural markers of treatment response to TF-CBT when participants are reappraising aversive material. METHODS This study assessed PTSD patients (n = 37) prior to TF-CBT during functional magnetic brain resonance imaging (fMRI) when they reappraised or watched traumatic images. Patients then underwent nine sessions of TF-CBT, and were then assessed for symptom severity on the Clinician-Administered PTSD Scale. FMRI responses for cognitive reappraisal and emotional reactivity contrasts of traumatic images were correlated with the reduction of PTSD severity from pretreatment to post-treatment. RESULTS Symptom improvement was associated with decreased activation of the left amygdala during reappraisal, but increased activation of bilateral amygdala and hippocampus during emotional reactivity prior to treatment. Lower connectivity of the left amygdala to the subgenual anterior cingulate cortex, pregenual anterior cingulate cortex, and right insula, and that between the left hippocampus and right amygdala were also associated with symptom improvement. CONCLUSIONS These findings provide evidence that optimal treatment response to TF-CBT involves the capacity to engage emotional networks during emotional processing, and also to reduce the engagement of these networks when down-regulating emotions.
Collapse
Affiliation(s)
- Richard A Bryant
- University of New South Wales, School, Sydney, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - May Erlinger
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Kim Felmingham
- Department of Psychological Medicine, University of Melbourne, Melbourne, Australia
| | - Aleksandra Klimova
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, San Francisco, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) VA Palo Alto Health Care System, San Francisco, USA
| | - Gin Malhi
- Department of Psychiatry, University of Sydney, Sydney, Australia
| | - David Forbes
- Phoenix Australia, University of Melbourne, Melbourne, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
- Department of Psychiatry, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Wiemer J, Leimeister F, Pauli P. Subsequent memory effects on event-related potentials in associative fear learning. Soc Cogn Affect Neurosci 2021; 16:525-536. [PMID: 33522590 PMCID: PMC8094998 DOI: 10.1093/scan/nsab015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/17/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Studies of human fear learning suggest that a reliable discrimination between safe and threatening stimuli is important for survival and mental health. In the current study, we applied the subsequent memory paradigm in order to identify neurophysiological correlates of successful threat and safety learning. We recorded event-related potentials, while participants incidentally learned associations between multiple neutral faces and an aversive outcome [unconditioned stimulus (US)/conditioned stimulus (CS)+] or no outcome (noUS/CS-). We found that an enhanced late positive potential (LPP) to both CS+ and CS- during learning predicted subsequent memory. A quadratic relationship between LPP and confidence in memory indicates a possible role in both correct and false fear memory. Importantly, the P300 to the omission of the US (following CS-) was enhanced for remembered CS-, while there was a positive correlation between P300 amplitude to both US occurrence and omission and individual memory performance. A following re-exposure phase indicated that memory was indeed related to subjective fear of the CS+/CS-. These results highlight the importance of cognitive resource allocation to both threat and safety for the acquisition of fear and suggest a potential role of the P300 to US omission as an electrophysiological marker of successful safety learning.
Collapse
Affiliation(s)
- Julian Wiemer
- Institute of Psychology (Biological Psychology Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Franziska Leimeister
- Institute of Psychology (Biological Psychology Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Institute of Psychology (Biological Psychology Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Cano M, Martínez-Zalacaín I, Giménez M, Torrents-Rodas D, Real E, Alonso P, Segalàs C, Munuera J, Menchón JM, Cardoner N, Soriano-Mas C, Fullana MA. Neural correlates of fear conditioning and fear extinction and its association with cognitive-behavioral therapy outcome in adults with obsessive-compulsive disorder. Behav Res Ther 2021; 144:103927. [PMID: 34237645 DOI: 10.1016/j.brat.2021.103927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Recent neurobiological models of obsessive-compulsive disorder (OCD) have highlighted the potential role of abnormalities in fear learning processes. We compared brain activation -as assessed with whole-brain functional magnetic resonance imaging- during fear conditioning, fear extinction learning, and fear extinction recall in patients with OCD (n = 18) and healthy controls (n = 18). We also investigated whether brain activation during any of these processes was associated with exposure-based cognitive-behavioral therapy (CBT) outcome in patients. Patients with OCD showed significantly lower brain activation in the right insulo-opercular region and the dorsal anterior cingulate cortex during fear conditioning in comparison to healthy controls. Moreover, brain activation in the right insula predicted CBT outcome, with lower activation predicting a better outcome. Brain activation during extinction learning or recall did not differ between patients and controls or predicted CBT outcome in patients. Our results suggest that neural activations during fear conditioning in patients with OCD are abnormal and predict CBT outcome.
Collapse
Affiliation(s)
- Marta Cano
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Tauli (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Sabadell, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Mònica Giménez
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain
| | | | - Eva Real
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain
| | - Pino Alonso
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain
| | - Cinto Segalàs
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Fundació de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - José Manuel Menchón
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Narcís Cardoner
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Tauli (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Sabadell, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carles Soriano-Mas
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, and CIBERSAM, Carlos III Health Institute, L'Hospitalet de Llobregat, Spain.
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Barcelona, Spain.
| |
Collapse
|
18
|
Postchemotherapy hippocampal functional connectivity patterns in patients with breast cancer: a longitudinal resting state functional MR imaging study. Brain Imaging Behav 2021; 14:1456-1467. [PMID: 30877468 DOI: 10.1007/s11682-019-00067-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hippocampus plays a key role in cognitive function and emotion regulation due to its wide connection with the whole brain. This study examined the acute effect of chemotherapy on hippocampal and subfield functional connectivity and neuropsychological status in breast cancer patients (BC). This IRB approved study included 29 BC and 25 age matched healthy controls (HCs) who underwent resting state functional magnetic resonance imaging (Rs-fMRI), neuropsychological tests and blood examinations at baseline and one week after completing chemotherapy or in the same time interval. Within-group comparisons and group-by-time interactions analysis of hippocampus- and subregion- based functional connectivity were performed between the two groups. Functional connectivity changes were correlated with changes of blood examination and neuropsychological test scores in the BC group. The BC group had higher depression and anxiety scores, poorer performance on visual mobility, auditory memory and executive function than HCs (p < 0.05), and significantly abnormal estrodiol, total cholesterol and triglycerides (p < 0.05). BC survivors showed significant hippocampal functional connectivity changes mainly in the left insula, temporal lobe (Gaussian Random Field theory correction, P < 0.001) and the left inferior frontal gyrus (P < 0.01). The functional connections from the anterior hippocampus to the left temporal lobe were greater than the posterior hippocampus (P < 0.05). The hippocampus functional connectivity alterations were closely related to changes in depression scores, estrodiol and triglycerides (all p < 0.05). Chemotherapy induced especially anterior hippocampal functional connectivity abnormality, which is related to depression symptom, estrodiol and triglycerides disorders.
Collapse
|
19
|
Lai CH. Biomarkers in Panic Disorder. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999200918163245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Panic disorder (PD) is a kind of anxiety disorder that impacts the life quality
and functional perspectives in patients. However, the pathophysiological study of PD seems still
inadequate and many unresolved issues need to be clarified.
Objectives:
In this review article of biomarkers in PD, the investigator will focus on the findings of
magnetic resonance imaging (MRI) of the brain in the pathophysiology study. The MRI biomarkers
would be divided into several categories, on the basis of structural and functional perspectives.
Methods:
The structural category would include the gray matter and white matter tract studies. The
functional category would consist of functional MRI (fMRI), resting-state fMRI (Rs-fMRI), and
magnetic resonance spectroscopy (MRS). The PD biomarkers revealed by the above methodologies
would be discussed in this article.
Results:
For the gray matter perspectives, the PD patients would have alterations in the volumes of
fear network structures, such as the amygdala, parahippocampal gyrus, thalamus, anterior cingulate
cortex, insula, and frontal regions. For the white matter tract studies, the PD patients seemed to have
alterations in the fasciculus linking the fear network regions, such as the anterior thalamic radiation,
uncinate fasciculus, fronto-occipital fasciculus, and superior longitudinal fasciculus. For the fMRI
studies in PD, the significant results also focused on the fear network regions, such as the amygdala,
hippocampus, thalamus, insula, and frontal regions. For the Rs-fMRI studies, PD patients seemed to
have alterations in the regions of the default mode network and fear network model. At last, the
MRS results showed alterations in neuron metabolites of the hippocampus, amygdala, occipital
cortex, and frontal regions.
Conclusion:
The MRI biomarkers in PD might be compatible with the extended fear network model
hypothesis in PD, which included the amygdala, hippocampus, thalamus, insula, frontal regions, and
sensory-related cortex.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Godlewska BR, Harmer CJ. Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology (Berl) 2021; 238:1265-1278. [PMID: 31938879 PMCID: PMC8062380 DOI: 10.1007/s00213-019-05448-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
Depression is a leading cause of disability worldwide and improving its treatment is a core research priority for future programmes. A change in the view of psychological and biological processes, from seeing them as separate to complementing one another, has introduced new perspectives on pathological mechanisms of depression and treatment mode of action. This review presents a theoretical model that incorporated this novel approach, the cognitive neuropsychological hypothesis of antidepressant action. This model proposes that antidepressant treatments decrease the negative bias in the processing of emotionally salient information early in the course of antidepressant treatment, which leads to the clinically significant mood improvement later in treatment. The paper discusses the role of negative affective biases in the development of depression and response to antidepressant treatments. It also discusses whether the model can be applied to other antidepressant interventions and its potential translational value, including treatment choice, prediction of response and drug development.
Collapse
Affiliation(s)
- Beata R Godlewska
- Department of Psychiatry, Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK.
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Catherine J Harmer
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
21
|
Goldwaser EL, Miller CWT. The Genetic and Neural Circuitry Predictors of Benefit From Manualized or Open-Ended Psychotherapy. Am J Psychother 2020; 73:72-84. [DOI: 10.1176/appi.psychotherapy.20190041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Luria Goldwaser
- Department of Psychiatry, University of Maryland Medical Center and Sheppard Pratt Health System, Baltimore
| | - Christopher W. T. Miller
- Department of Psychiatry, University of Maryland Medical Center and Sheppard Pratt Health System, Baltimore
| |
Collapse
|
22
|
Schwarzmeier H, Leehr EJ, Böhnlein J, Seeger FR, Roesmann K, Gathmann B, Herrmann MJ, Siminski N, Junghöfer M, Straube T, Grotegerd D, Dannlowski U. Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross-validation machine learning approach. Int J Methods Psychiatr Res 2020; 29:e1812. [PMID: 31814209 PMCID: PMC7301283 DOI: 10.1002/mpr.1812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. METHODS One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30% reduction regarding the individual score in the Spider Phobia Questionnaire and 50% reduction regarding the individual distance in the behavioral avoidance test. RESULTS N = 204 patients have been included (n = 100 in Würzburg, n = 104 in Münster). Sample characteristics for both sites are comparable. DISCUSSION This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).
Collapse
Affiliation(s)
- Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | | | - Joscha Böhnlein
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Fabian Reinhard Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Kati Roesmann
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
| | - Martin J. Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental HealthUniversity Hospital of WürzburgWürzburgGermany
| | - Markus Junghöfer
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems NeuroscienceUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Department of Psychiatry and PsychotherapyUniversity of MünsterMünsterGermany
- Otto‐Creutzfeld Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
23
|
Altered neural processing of negative stimuli in people with internet gaming disorder: fMRI evidence from the comparison with recreational game users. J Affect Disord 2020; 264:324-332. [PMID: 32056768 DOI: 10.1016/j.jad.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abundant clinical studies have suggested that emotion dysregulation seems to be the essential pathogenesis for Internet gaming disorder (IGD). However, the neural mechanism of emotion regulation for IGD is still unclear. METHODS Subjective evaluation and fMRI data were collected from 50 subjects (IGD: 24; recreational game user (RGU): 26) while they were performing an emotion reappraisal task. We collected and compared their brain features during emotion processing of different visual stimuli. RESULTS Higher activation in the left dorsal anterior cingulate cortex (dACC), right ventral ACC, left claustrum and bilateral insula was observed in participants with IGD during emotion reappraisal relative to that of the RGU participants. In addition, generalized psychophysiological interaction analysis also showed that IGD participants had stronger functional connectivity between the right insula and bilateral dorsolateral prefrontal cortex (DLPFC) than the RGU participants. CONCLUSIONS The results suggest that IGD participants could not down-regulate their negative emotional experiences as efficiently as the RGU participants, although they engaged more cognitive resources. These results reveal the special neural circuits of emotion dysregulation in IGD individuals and provide new neural perspective for the intervention of IGD.
Collapse
|
24
|
Burkhouse KL, Jagan Jimmy, Defelice N, Klumpp H, Ajilore O, Hosseini B, Fitzgerald KD, Monk CS, Phan KL. Nucleus accumbens volume as a predictor of anxiety symptom improvement following CBT and SSRI treatment in two independent samples. Neuropsychopharmacology 2020; 45:561-569. [PMID: 31756730 PMCID: PMC6969163 DOI: 10.1038/s41386-019-0575-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Structural variations of neural regions implicated in fear responses have been well documented in the pathophysiology of anxiety and may play an important role in treatment response. We examined whether gray matter volume of three neural regions supporting fear and avoidance responses [bilateral amygdala, nucleus accumbens (NAcc), and ventromedial prefrontal cortex (PFC)] predicted cognitive-behavioral therapy (CBT) and selective serotonin reuptake inhibitor (SSRI) treatment outcome in two independent samples of patients with anxiety disorders. Study 1 consisted of 81 adults with anxiety disorders and Study 2 included 55 children and adolescents with anxiety disorders. In both studies, patients completed baseline structural MRI scans and received either CBT or SSRI treatment. Clinician-rated interviews of anxiety symptoms were assessed at baseline and posttreatment. Among the adult sample, greater pre-treatment bilateral NAcc volume was associated with a greater reduction in clinician-rated anxiety symptoms pre-to-post CBT and SSRI treatment. Greater left NAcc volume also predicted greater decreases in clinician-rated anxiety symptoms pre-to-post CBT and SSRI treatment among youth with current anxiety. Across studies, results were similar across treatments, and findings were maintained when adjusting for patient's age, sex, and total intracranial brain volume. We found no evidence for baseline amygdala or ventromedial PFC volume serving as treatment predictors across the two samples. Together, these findings provide promising support for the role of NAcc volume as an objective marker of anxiety treatment improvement that spans across development. Future studies should clarify the specific mechanisms through which NAcc volume exerts its therapeutic effects.
Collapse
Affiliation(s)
- Katie L Burkhouse
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Jagan Jimmy
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas Defelice
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Bobby Hosseini
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Ferreira‐Junior NC, Lagatta DC, Kuntze LB, Fujiwara EA, Firmino EMS, Borges‐Assis AB, Resstel LBM, Sampaio KN. Dorsal hippocampus cholinergic and nitrergic neurotransmission modulates the cardiac baroreflex function in rats. Eur J Neurosci 2020; 51:991-1010. [DOI: 10.1111/ejn.14599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | - Davi Campos Lagatta
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Luciana Bärg Kuntze
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Eduardo Akira Fujiwara
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| | - Egidi Mayara Silva Firmino
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Anna Bárbara Borges‐Assis
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | | | - Karla Nívea Sampaio
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| |
Collapse
|
26
|
Yuan H, Zhu X, Tang W, Cai Y, Shi S, Luo Q. Connectivity between the anterior insula and dorsolateral prefrontal cortex links early symptom improvement to treatment response. J Affect Disord 2020; 260:490-497. [PMID: 31539685 DOI: 10.1016/j.jad.2019.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/09/2019] [Accepted: 09/08/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Early improvement (EI) following treatment with antidepressants is a widely reported predictor to the treatment response. This study aimed to identify the resting-state functional connectivity (rs-FC) and its related clinical features that link the treatment response at the time of EI. METHODS This study included 23 first-episode treatment-naive patients with MDD. After 2 weeks of antidepressant treatment, these patients received 3.0 Tesla resting-state functional magnetic resonance imaging scanning and were subgrouped into an EI group (N = 13) and a non-EI group (N = 10). Using the anterior insula (rAI) as a seed region, this study identified the rs-FC that were associated with both EI and the treatment response at week 12, and further tested the associations of the identified rs-FC with either the clinical features or the early symptom improvement. RESULTS Rs-FC between rAI and the left dorsolateral prefrontal cortex (dlPFC) was associated with EI (t21 = -6.091, p = 0.022 after FDR correction for multiple comparisons). This rs-FC was also associated with an interaction between EI and the treatment response at the week 12 (t21 = -5.361, p = 6.37e-5). Moreover, among the clinical features, this rs-FC was associated with the early symptom improvement in the insomnia, somatic symptoms, and anxiety symptoms, and these early symptom improvements were associated with the treatment response. CONCLUSION Rs-FC between the rAI and the left dlPFC played a crucial role in the early antidepressant effect, which linked the treatment response. The early treatment effect relating to rAI may represent an early symptom improvement in self-perceptual anxiety, somatic symptoms and insomnia.
Collapse
Affiliation(s)
- Hsinsung Yuan
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China; Psychiatry Department of Nanjing Meishan Hospital, Nanjing, China
| | - Xiao Zhu
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Weijun Tang
- Radiological Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Cai
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Shenxun Shi
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China.
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Task MRI-Based Functional Brain Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:3-20. [PMID: 32002919 DOI: 10.1007/978-981-32-9705-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a good tool for researchers to understand the biological mechanisms and pathophysiology of the brain due to the translational characteristics of MRI methods. For the psychiatric illness, this kind of mental disorders usually have minor alterations when compared to traditional neurological disorders. Therefore the functional study, such as functional connectivity, would play a significant role for understanding the pathophysiology of mental disorders. This chapter would focus on the discussion of task MRI-based functional network studies in anxiety. For social anxiety disorder, the limbic system, such as the temporal lobe, amygdala, and hippocampus, would show alterations in the functional connectivity with frontal regions, such as anterior cingulate, prefrontal, and orbitofrontal cortices. PD has anterior cingulate cortex-amygdala alterations in fear conditioning, frontoparietal alterations in attention network task, and limbic-prefrontal alterations in emotional task. A similar amygdala-based aberrant functional connectivity in specific phobia is observed. The mesocorticolimbic and limbic-prefrontal functional alterations are found in generalized anxiety disorder. The major components of task MRI-based functional connectivity in anxiety include limbic and frontal regions which might play a vital role for the origination of anxiety under different scenarios and tasks.
Collapse
|
28
|
Picó-Pérez M, Alemany-Navarro M, Dunsmoor J, Radua J, Albajes-Eizagirre A, Vervliet B, Cardoner N, Benet O, Harrison B, Soriano-Mas C, Fullana M. Common and distinct neural correlates of fear extinction and cognitive reappraisal: A meta-analysis of fMRI studies. Neurosci Biobehav Rev 2019; 104:102-115. [DOI: 10.1016/j.neubiorev.2019.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
|
29
|
Santos VA, Carvalho DD, Van Ameringen M, Nardi AE, Freire RC. Neuroimaging findings as predictors of treatment outcome of psychotherapy in anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:60-71. [PMID: 29627509 DOI: 10.1016/j.pnpbp.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Anxiety disorders are the largest group of mental disorders and a leading cause of impairment, implicating in high costs for health systems and society. Effective pharmacological and psychological treatments are available, but a significant fraction of these patients does not respond adequately to these treatments. The objective of this study is to identify neuroimaging findings that could predict response to psychotherapy in anxiety disorders. METHODS The authors reviewed psychotherapy clinical trials with neuroimaging conducted with patients with anxiety disorders. A systematic review was performed in MEDLINE database through PubMed, the Cochrane Collaboration's Clinical Trials Register (CENTRAL), PsycINFO and Thomson Reuters's Web of Science. RESULTS From the studies included in this review, 24 investigated anxiety disorder patients, and findings in the amygdala, dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC) and insula predicted response to psychotherapy in social anxiety disorder. Findings in ACC, hippocampus, insula, dlPFC, amygdala and inferior frontal gyrus (iFG) predicted response to psychotherapy in panic disorder and generalized anxiety disorder. LIMITATIONS There was great heterogeneity between the included studies regarding neuroimaging techniques and the tasks performed during functional neuroimaging. CONCLUSION Neuroimaging studies suggest that abnormalities in hippocampus, amygdala, iFG, uncus and areas linked with emotional regulation (dlPFC and ACC), predict a good outcome to psychotherapy in anxiety disorders.
Collapse
Affiliation(s)
- Veruska Andrea Santos
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Dessana David Carvalho
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Van Ameringen
- MacAnxiety Research Centre, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Antonio Egidio Nardi
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Christophe Freire
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Kinley JL, Reyno SM. The Price of Needing to Belong: Neurobiology of Working Through Attachment Trauma. Psychodyn Psychiatry 2019; 47:39-51. [PMID: 30840555 DOI: 10.1521/pdps.2019.47.1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Belonging is fundamental to health and well-being. Complex relational trauma disrupts attachments, negatively impacting developing neurobiology and has significant implications for attachment behaviors, mental health, and treatment planning. We have developed a dynamic relational (DR) model of psychotherapy that aims to restore a healthy sense of belonging, targeting levels of activation and integration of large scale neural networks in the service of increasing the emotional capacities (attunement, processing, regulation, and expression) required to work through attachment trauma and establish healthy relationships. Our DR model provides an organizing framework through which to understand both the phenomenology observed in complex trauma and the mechanisms of therapeutic change. Our approach informs the weighting and timing of interventions to actively address capacity deficits, ego-syntonic symptoms, and unconscious resistance. The implications of this model also relate to the pathogenesis of mental disorder, and suggest prevention and early intervention efforts focus on modulation of subcortical (autonomic) responses and the encouragement of balanced cortical integration to enhance cognitive flexibility/psychological resilience. Ultimately, interventions based on our systematic model may modulate the genetic diathesis and comorbidities of relational trauma and increase psychological resilience.
Collapse
Affiliation(s)
- Jacqueline L Kinley
- Queen Elizabeth II Health Sciences Centre, and Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia
| | - Sandra M Reyno
- Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia
| |
Collapse
|
31
|
Butterfield RD, Siegle GJ, Lee KH, Ladouceur CD, Forbes EE, Dahl RE, Ryan ND, Sheeber L, Silk JS. Parental coping socialization is associated with healthy and anxious early-adolescents' neural and real-world response to threat. Dev Sci 2019; 22:e12812. [PMID: 30746855 DOI: 10.1111/desc.12812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/04/2019] [Indexed: 01/14/2023]
Abstract
The ways parents socialize their adolescents to cope with anxiety (i.e., coping socialization) may be instrumental in the development of threat processing and coping responses. Coping socialization may be important for anxious adolescents, as they show altered neural threat processing and over reliance on disengaged coping (e.g., avoidance and distraction), which can maintain anxiety. We investigated whether coping socialization was associated with anxious and healthy adolescents' neural response to threat, and whether neural activation was associated with disengaged coping. Healthy and clinically anxious early adolescents (N = 120; M = 11.46 years; 71 girls) and a parent engaged in interactions designed to elicit adolescents' anxiety and parents' response to adolescents' anxiety. Parents' use of reframing and problem solving statements was coded to measure coping socialization. In a subsequent visit, we assessed adolescents' neural response to threat words during a neuroimaging task. Adolescents' disengaged coping was measured using ecological momentary assessment. Greater coping socialization was associated with lower anterior insula and perigenual cingulate activation in healthy adolescents and higher activation in anxious adolescents. Coping socialization was indirectly associated with less disengaged coping for anxious adolescents through neural activation. Findings suggest that associations between coping socialization and early adolescents' neural response to threat differ depending on clinical status and have implications for anxious adolescents' coping.
Collapse
Affiliation(s)
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyung Hwa Lee
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald E Dahl
- School of Public Health, University of California, Berkeley, California
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Chefetz RA. Psycho-Neurobiology and Its Potential Influence on Psychotherapy: Being, Doing, and the Risk of Scientism. Psychodyn Psychiatry 2019; 47:53-80. [PMID: 30840558 DOI: 10.1521/pdps.2019.47.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroscientific information may transform the modern practice of psychotherapy. Still we must pay heed to the most salient of the common factors generating therapeutic change: the relationship between patient and therapist. Likewise, brain and body are both part of mind and we ignore this at our clinical peril. Research on affective, cognitive, mnemic, somatic, psychophysiologic, developmental, and integrative mental processes, amongst others, must hold to a high standard of translation from basic scientific findings or we risk practicing a psychotherapy enslaved to an authoritarian scientism as a substitute for the creation of unfettered intimacy and engagement. A balanced approach is required if in trauma treatment, for example, we are to be both potential beneficiaries of understanding what is in our human heads while not losing track of our very human hearts. Each clinician need develop a basic knowledge of neuroscience in order to critically assess the meanings of new findings and their proper place in the practice of all the psychotherapies.
Collapse
Affiliation(s)
- Richard A Chefetz
- Psychiatrist in private practice in Washington, D.C. He was President of the International Society for the Study of Trauma and Dissociation (2002-2003), and is a Distinguished Visiting Lecturer at the William Alanson White Institute of Psychiatry, Psychoanalysis, and Psychology. He is a faculty member at the Washington School of Psychiatry, the Institute of Contemporary Psychotherapy & Psychoanalysis, and the Washington-Baltimore Center for Psychoanalysis
| |
Collapse
|
33
|
Lai CH. Fear Network Model in Panic Disorder: The Past and the Future. Psychiatry Investig 2019; 16:16-26. [PMID: 30176707 PMCID: PMC6354036 DOI: 10.30773/pi.2018.05.04.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The core concept for pathophysiology in panic disorder (PD) is the fear network model (FNM). The alterations in FNM might be linked with disturbances in the autonomic nervous system (ANS), which is a common phenomenon in PD. The traditional FNM included the frontal and limbic regions, which were dysregulated in the feedback mechanism for cognitive control of frontal lobe over the primitive response of limbic system. The exaggerated responses of limbic system are also associated with dysregulation in the neurotransmitter system. The neuroimaging studies also corresponded to FNM concept. However, more extended areas of FNM have been discovered in recent imaging studies, such as sensory regions of occipital, parietal cortex and temporal cortex and insula. The insula might integrate the filtered sensory information via thalamus from the visuospatial and other sensory modalities related to occipital, parietal and temporal lobes. In this review article, the traditional and advanced FNM would be discussed. I would also focus on the current evidences of insula, temporal, parietal and occipital lobes in the pathophysiology. In addition, the white matter and functional connectome studies would be reviewed to support the concept of advanced FNM. An emerging dysregulation model of fronto-limbic-insula and temporooccipito-parietal areas might be revealed according to the combined results of recent neuroimaging studies. The future delineation of advanced FNM model can be beneficial from more extensive and advanced studies focusing on the additional sensory regions of occipital, parietal and temporal cortex to confirm the role of advanced FNM in the pathophysiology of PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.,Department of Psychiatry, Yeezen General Hospital, Taoyuan, Taiwan
| |
Collapse
|
34
|
Godlewska BR. Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharmacol Ther 2018; 197:38-51. [PMID: 30578809 DOI: 10.1016/j.pharmthera.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
New antidepressants and individualized approaches to treatment, matching specific therapies to individual patients, are urgently needed. For this, a better understanding of processes underpinning the development of depressive symptoms and response to medications are required. The cognitive neuropsychological model offers a novel approach uniquely combining biological and psychological approaches to explain how antidepressants exert their effect, why there is a delay in the onset of their clinical effect, and how changes in emotional processing are an essential step for a clinical antidepressant effect to take place. The paper presents the model and its underpinnings in the form of research in both healthy and depressed individuals, as well as the potential for its practical use.
Collapse
Affiliation(s)
- Beata R Godlewska
- Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Marwood L, Wise T, Perkins AM, Cleare AJ. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety. Neurosci Biobehav Rev 2018; 95:61-72. [PMID: 30278195 PMCID: PMC6267850 DOI: 10.1016/j.neubiorev.2018.09.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Understanding the neural mechanisms underlying psychological therapy could aid understanding of recovery processes and help target treatments. The dual-process model hypothesises that psychological therapy is associated with increased emotional-regulation in prefrontal brain regions and decreased implicit emotional-reactivity in limbic regions; however, research has yielded inconsistent findings. Meta-analyses of brain activity changes accompanying psychological therapy (22 studies, n = 352) and neural predictors of symptomatic improvement (11 studies, n = 293) in depression and anxiety were conducted using seed-based d mapping. Both resting-state and task-based studies were included, and analysed together and separately. The most robust findings were significant decreases in anterior cingulate/paracingulate gyrus, inferior frontal gyrus and insula activation after therapy. Cuneus activation was predictive of subsequent symptom change. The results are in agreement with neural models of improved emotional-reactivity following therapy as evidenced by decreased activity within the anterior cingulate and insula. We propose compensatory as well as corrective neural mechanisms of action underlie therapeutic efficacy, and suggest the dual-process model may be too simplistic to account fully for treatment mechanisms. More research on predictors of psychotherapeutic response is required to provide reliable predictors of response.
Collapse
Affiliation(s)
- Lindsey Marwood
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK.
| | - Toby Wise
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Adam M Perkins
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
36
|
Reinecke A, Thilo KV, Croft A, Harmer CJ. Early effects of exposure-based cognitive behaviour therapy on the neural correlates of anxiety. Transl Psychiatry 2018; 8:225. [PMID: 30341276 PMCID: PMC6195621 DOI: 10.1038/s41398-018-0277-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
Exposure-based cognitive-behaviour therapy (CBT) for anxiety disorders is an effective intervention, but the brain mechanisms driving recovery are largely unknown. In this experimental medicine study, we investigated to what degree CBT affects neural markers of anxiety at an early stage of treatment, to identify dynamic mechanistic changes which might be crucial in the process of recovery as opposed to those seen following full treatment completion. In a randomised controlled trial, unmedicated patients with panic disorder either received four weekly sessions of exposure-based CBT (N = 14) or were allocated to a waiting group (N = 14). Symptom severity was measured before and after the intervention. During functional magnetic resonance imaging (fMRI), patients performed an emotion regulation task, either viewing negative images naturally, or intentionally down-regulating negative affect using previously taught strategies. Four-session CBT led to marked reductions in symptoms and 71% of patients reached recovery status (versus 7% in the control group). This intervention normalised brain hyperactivation previously seen in panic disorder, particularly in areas linked to threat monitoring, fear memory, and maladaptive emotion regulation, such as amygdala, dorsomedial and dorsolateral prefrontal cortex, and temporal gyrus. Our findings suggest that optimal treatment doses for panic disorder might be much lower than previously thought. Furthermore, this is the first study to show that neural markers of anxiety change very early during CBT, highlighting potential neural mechanisms that might drive clinical recovery. Such knowledge is important for the development of more compact combination treatments targeting these mechanisms more effectively. (Neural Effects of Cognitive-behaviour Therapy in Panic Disorder; clinicaltrials.gov; NCT03251235).
Collapse
Affiliation(s)
| | | | - Alison Croft
- 0000 0004 0641 5119grid.416938.1Oxford Cognitive Therapy Centre, Warneford Hospital, Oxford, UK
| | - Catherine J. Harmer
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Angiotensin Regulation of Amygdala Response to Threat in High-Trait-Anxiety Individuals. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:826-835. [DOI: 10.1016/j.bpsc.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
|
38
|
Hall CB, Lundh LG. Brief Therapist-Guided Exposure Treatment of Panic Attacks: A Pilot Study. Behav Modif 2018; 43:564-586. [PMID: 29862830 DOI: 10.1177/0145445518776472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A three-session therapist-guided exposure treatment was tested in a consecutive series of eight primary health care patients suffering from panic attacks who specifically used distraction techniques as their primary safety behavior. The Panic Disorder Severity Scale Self-Report (PDSS-SR) was administered at baseline (1-3 weeks before the first session), and 1, 2, and 3 weeks after treatment. Weekly ratings on the Body Sensations Questionnaire (BSQ) and the Agoraphobic Cognitions Questionnaire (ACQ) during treatment were undertaken to explore when reliable change took place on these measures. The results showed a large within-group effect size on PDSS-SR ( d = 1.63); six of the eight patients were classified as responders, and four of them showed remission. Large effect sizes ( ds between 1.17 and 3.00) were seen also on BSQ and ACQ, as well as on agoraphobic avoidance, general level of anxiety, and depression. The results on BSQ and ACQ suggest that the fear of body sensations in most cases was reduced before a change occurred in agoraphobic cognitions. These results indicate that a brief three-session exposure-based treatment may be sufficient for this subgroup of panic patients. The findings need to be replicated under controlled conditions with larger samples and different therapists before more firm conclusions can be drawn. Future research should also focus on the relevance of dividing patients into subgroups based on type of safety behavior.
Collapse
|
39
|
Abstract
INTRODUCTION Predictive neuroimaging markers of treatment response are increasingly sought in order to inform the treatment of major depressive and anxiety disorders. We review the existing literature regarding candidate predictive neuroimaging markers of psychotherapy response and assess their potential clinical utility. METHODS We searched Embase, PsycINFO, and PubMed up to October 2014 for studies correlating pretreatment neuroimaging parameters with psychotherapy response in major depressive and anxiety disorders. Our search yielded 40 eligible studies. RESULTS The anterior cingulate cortex, amygdala, and anterior insula emerged as potential markers in major depressive disorder and some anxiety disorders. Results across studies displayed a large degree of variability, however, and to date the findings have not been systematically validated in independent clinical cohorts and have not been shown capable of distinguishing between medication and psychotherapy responders. Also limited is the examination of how neuroimaging compares or might add to other prognostic clinical variables. CONCLUSION While the extant data suggest avenues of further investigation, we are still far from being able to use these markers clinically. Future studies need to focus on longitudinal testing of potential markers, determining their prescriptive value and examining how they might be integrated with clinical factors.
Collapse
|
40
|
Maron E, Lan CC, Nutt D. Imaging and Genetic Approaches to Inform Biomarkers for Anxiety Disorders, Obsessive-Compulsive Disorders, and PSTD. Curr Top Behav Neurosci 2018; 40:219-292. [PMID: 29796838 DOI: 10.1007/7854_2018_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders are the most common mental health problem in the world and also claim the highest health care cost among various neuropsychiatric disorders. Anxiety disorders have a chronic and recurrent course and cause significantly negative impacts on patients' social, personal, and occupational functioning as well as quality of life. Despite their high prevalence rates, anxiety disorders have often been under-diagnosed or misdiagnosed, and consequently under-treated. Even with the correct diagnosis, anxiety disorders are known to be difficult to treat successfully. In order to implement better strategies in diagnosis, prognosis, treatment decision, and early prevention for anxiety disorders, tremendous efforts have been put into studies using genetic and neuroimaging techniques to advance our understandings of the underlying biological mechanisms. In addition to anxiety disorders including panic disorder, generalised anxiety disorder (GAD), specific phobias, social anxiety disorders (SAD), due to overlapping symptom dimensions, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder (PTSD) (which were removed from the anxiety disorder category in DSM-5 to become separate categories) are also included for review of relevant genetic and neuroimaging findings. Although the number of genetic or neuroimaging studies focusing on anxiety disorders is relatively small compare to other psychiatric disorders such as psychotic disorders or mood disorders, various structural abnormalities in the grey or white matter, functional alterations of activity during resting-state or task conditions, molecular changes of neurotransmitter receptors or transporters, and genetic associations have all been reported. With continuing effort, further genetic and neuroimaging research may potentially lead to clinically useful biomarkers for the prevention, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia.
| | - Chen-Chia Lan
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
41
|
Empirically supported psychological treatments and the Research Domain Criteria (RDoC). J Affect Disord 2017; 216:78-88. [PMID: 27836118 DOI: 10.1016/j.jad.2016.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Research Domain Criteria (RDoC) has been developed as an alternative approach to studying psychiatric disorders. The RDoC constructs and units of analysis, from genes up through paradigms, are intended to describe a hierarchy of priority measurements. Several of these have been investigated in the context of empirically-supported treatments, as either moderators or mediators of outcome. METHOD This review considers the available research on the moderating and mediating role of genes, molecules, circuits and physiology in cognitive-behavior therapy (CBT) outcome studies for negative valence system conditions. FINDINGS Based on the review, research has aspired to identify candidate genes, molecules, circuits and physiological moderators or mediators of treatment, but no definitive tests have been conducted. Instead, several candidate variables have been found that deserve further investigation. LIMITATIONS The available research is based on diagnoses from the DSM, whereas the RDoC initiative endeavors to determine empirically valid taxonomic signs. CONCLUSIONS The results of this review are discussed in the joint context of developments in empirically-supported psychological therapy and the specific aims of the RDoC initiative, and conclude with recommendations for future research.
Collapse
|
42
|
Miller CWT. Epigenetic and Neural Circuitry Landscape of Psychotherapeutic Interventions. PSYCHIATRY JOURNAL 2017; 2017:5491812. [PMID: 29226124 PMCID: PMC5684598 DOI: 10.1155/2017/5491812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/11/2017] [Indexed: 11/21/2022]
Abstract
The science behind psychotherapy has garnered considerable interest, as objective measures are being developed to map the patient's subjective change over the course of treatment. Prenatal and early life influences have a lasting impact on how genes are expressed and the manner in which neural circuits are consolidated. Transgenerationally transmitted epigenetic markers as well as templates of enhanced thought flexibility versus evasion can be passed down from parent to child. This influences gene expression/repression (impacting neuroplasticity) and kindling of neurocircuitry which can perpetuate maladaptive cognitive processing seen in a number of psychiatric conditions. Importantly, genetic factors and the compounding effects of early life adversity do not inexorably lead to certain fated outcomes. The concepts of vulnerability and resilience are becoming more integrated into the framework of "differential susceptibility," speaking to how corrective environmental factors may promote epigenetic change and reconfigure neural templates, allowing for symptomatic improvement. Psychotherapy is one such factor, and this review will focus on our current knowledge of its epigenetic and neurocircuitry impact.
Collapse
Affiliation(s)
- Christopher W. T. Miller
- University of Maryland School of Medicine, 701 W. Pratt St., 4th Floor, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
Emotion regulation related neural predictors of cognitive behavioral therapy response in social anxiety disorder. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:106-112. [PMID: 28126372 PMCID: PMC9278876 DOI: 10.1016/j.pnpbp.2017.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 01/22/2017] [Indexed: 01/22/2023]
Abstract
Social anxiety disorder (SAD) is characterized by aberrant prefrontal activity during reappraisal, an adaptive cognitive approach aimed at downregulating the automatic response evoked by a negative event. Cognitive behavioral therapy (CBT) is first-line psychotherapy for SAD, however, many remain symptomatic after treatment indicating baseline individual differences in neurofunctional activity may factor into CBT outcome. An emotion regulation strategy practiced in CBT is cognitive restructuring, a proxy for reappraisal. Therefore, neural response during reappraisal may serve as a brain-based predictor of CBT success. Prior to 12weeks of individual CBT, 34 patients with SAD completed a validated emotion regulation task during fMRI. Task instructions included 'Reappraise,' that is, use a cognitive approach to reduce affective state to a negative image, which was contrasted with looking at a negative image ('Look'). Regression results for Reappraise (vs. Look) revealed greater reduction in symptom severity was predicted by less pre-CBT activation in the dorsolateral prefrontal cortex (DLPFC). Regarding predictive validity, DLPFC significantly classified responder status. Post-hoc analysis revealed DLPFC activity, but not demographic data, baseline clinical measures, or reappraisal-related affective state during fMRI, significantly accounted for the variance in symptom reduction. Findings indicate patients with SAD are more likely to benefit from CBT if there is less pre-treatment DLPFC recruitment, a region strongly implicated in emotion regulation. Patients with reduced baseline frontal activation when reappraising negative stimuli may be especially helped by explicit cognitive interventions. Further research is necessary to establish DLPFC as a stable brain-based marker of treatment outcome.
Collapse
|
44
|
Goddard AW. The Neurobiology of Panic: A Chronic Stress Disorder. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017736038. [PMID: 32440580 PMCID: PMC7219873 DOI: 10.1177/2470547017736038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Panic disorder is an often chronic and impairing human anxiety syndrome, which frequently results in serious psychiatric and medical comorbidities. Although, to date, there have been many advances in the diagnosis and treatment of panic disorder, its pathophysiology still remains to be elucidated. In this review, recent evidence for a neurobiological basis of panic disorder is reviewed with particular attention to risk factors such as genetic vulnerability, chronic stress, and temperament. In addition, neuroimaging data are reviewed which provides support for the concept of panic disorder as a fear network disorder. The potential impact of the National Institute of Mental Health Research Domain Criteria constructs of acute and chronic threats responses and their implications for the neurobiology of panic disorder are also discussed.
Collapse
Affiliation(s)
- Andrew W. Goddard
- UCSF Fresno Medical Education and
Research Program, University of California, San Francisco, USA
| |
Collapse
|
45
|
Tolin DF, Billingsley AL, Hallion LS, Diefenbach GJ. Low pre-treatment end-tidal CO 2 predicts dropout from cognitive-behavioral therapy for anxiety and related disorders. Behav Res Ther 2016; 90:32-40. [PMID: 27960095 DOI: 10.1016/j.brat.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022]
Abstract
Recent clinical trial research suggests that baseline low end-tidal CO2 (ETCO2, the biological marker of hyperventilation) may predict poorer response to cognitive-behavioral therapy (CBT) for anxiety-related disorders. The present study examined the predictive value of baseline ETCO2 among patients treated for such disorders in a naturalistic clinical setting. Sixty-nine adults with a primary diagnosis of a DSM-5 anxiety disorder, obsessive-compulsive disorder, or posttraumatic stress disorder completed a 4-min assessment of resting ETCO2, and respiration rate (the first minute was analyzed). Lower ETCO2 was not associated with a diagnosis of panic disorder, and was associated with lower subjective distress ratings on certain measures. Baseline ETCO2 significantly predicted treatment dropout: those meeting cutoff criteria for hypocapnia were more than twice as likely to drop out of treatment, and ETCO2 significantly predicted dropout beyond other pre-treatment variables. Weekly measurement suggested that the lower-ETCO2 patients who dropped out were not responding well to treatment prior to dropout. The present results, along with previous clinical trial data, suggest that lower pre-treatment ETCO2 is a negative prognostic indicator for CBT for anxiety-related disorders. It is suggested that patients with lower ETCO2 might benefit from additional intervention that targets respiratory abnormality.
Collapse
Affiliation(s)
- David F Tolin
- The Institute of Living, United States; Yale University School of Medicine, United States.
| | | | | | - Gretchen J Diefenbach
- The Institute of Living, United States; Yale University School of Medicine, United States
| |
Collapse
|
46
|
Chen MH, Tsai SJ. Treatment-resistant panic disorder: clinical significance, concept and management. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:219-26. [PMID: 26850787 DOI: 10.1016/j.pnpbp.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Panic disorder is commonly prevalent in the population, but the treatment response for panic disorder in clinical practice is much less effective than that in our imagination. Increasing evidence suggested existence of a chronic or remitting-relapsing clinical course in panic disorder. In this systematic review, we re-examine the definition of treatment-resistant panic disorder, and present the potential risk factors related to the treatment resistance, including the characteristics of panic disorder, other psychiatric and physical comorbidities, and psychosocial stresses. Furthermore, we summarize the potential pathophysiologies, such as genetic susceptibility, altered brain functioning, brain-derived neurotrophic factor, and long-term inflammation, to explain the treatment resistance. Finally, we conclude the current therapeutic strategies for treating treatment-resistant panic disorder from pharmacological and non-pharmacological views.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
47
|
Engel KR, Obst K, Bandelow B, Dechent P, Gruber O, Zerr I, Ulrich K, Wedekind D. Functional MRI activation in response to panic-specific, non-panic aversive, and neutral pictures in patients with panic disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci 2016; 266:557-66. [PMID: 26585457 DOI: 10.1007/s00406-015-0653-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023]
Abstract
There is evidence that besides limbic brain structures, prefrontal and insular cortical activations and deactivations are involved in the pathophysiology of panic disorder. This study investigated activation response patterns to stimulation with individually selected panic-specific pictures in patients with panic disorder with agoraphobia (PDA) and healthy control subjects using functional magnetic resonance imaging (fMRI). Structures of interest were the prefrontal, cingulate, and insular cortex, and the amygdalo-hippocampal complex. Nineteen PDA subjects (10 females, 9 males) and 21 healthy matched controls were investigated using a Siemens 3-Tesla scanner. First, PDA subjects gave Self-Assessment Manikin (SAM) ratings on 120 pictures showing characteristic panic/agoraphobia situations, of which 20 pictures with the individually highest SAM ratings were selected. Twenty matched pictures showing aversive but not panic-specific stimuli and 80 neutral pictures from the International Affective Picture System were chosen for each subject as controls. Each picture was shown twice in each of four subsequent blocks. Anxiety and depression ratings were recorded before and after the experiment. Group comparisons revealed a significantly greater activation in PDA patients than control subjects in the insular cortices, left inferior frontal gyrus, dorsomedial prefrontal cortex, the left hippocampal formation, and left caudatum, when PA and N responses were compared. Comparisons for stimulation with unspecific aversive pictures showed activation of similar brain regions in both groups. Results indicate region-specific activations to panic-specific picture stimulation in PDA patients. They also imply dysfunctionality in the processing of interoceptive cues in PDA and the regulation of negative emotionality. Therefore, differences in the functional networks between PDA patients and control subjects should be further investigated.
Collapse
Affiliation(s)
- K R Engel
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - K Obst
- University clinik Schleswig-Holstein, Institute of Social Medicine and Epidemiology, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - B Bandelow
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - P Dechent
- Core Facility MR-Research in Neurology and Psychiatry, Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Strasse 40, Goettingen, Germany
| | - O Gruber
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany.,Department of Systemic Neurosciences, University of Goettingen, von-Siebold-Strasse 5, Goettingen, Germany
| | - I Zerr
- Department of Neurology, University of Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - K Ulrich
- Department of Neurology, University of Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - D Wedekind
- Department of Psychiatry and Psychotherapy, Anxiety Research Unit, University of Goettingen, Von-Siebold-Strasse 5, 37075, Goettingen, Germany.
| |
Collapse
|
48
|
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17:321-65. [PMID: 27403679 DOI: 10.1080/15622975.2016.1181783] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part I) summarises findings on potential biomarkers in neuroimaging studies, including structural brain morphology, functional magnetic resonance imaging and techniques for measuring metabolic changes, including positron emission tomography and others. Furthermore, this review reports on the clinical and molecular genetic findings of family, twin, linkage, association and genome-wide association studies. Part II of the review focuses on neurochemistry, neurophysiology and neurocognition. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high-quality research has accumulated that will improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- a Department of Psychiatry and Psychotherapy , University of Göttingen , Germany
| | - David Baldwin
- b Faculty of Medicine , University of Southampton , Southampton , UK
| | - Marianna Abelli
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Carlo Altamura
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Bernardo Dell'Osso
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Katharina Domschke
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany
| | - Naomi A Fineberg
- f Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire , Rosanne House, Parkway , Welwyn Garden City , UK
| | - Edna Grünblatt
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland ;,i Zurich Center for Integrative Human Physiology , University of Zurich , Switzerland
| | - Marek Jarema
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Eduard Maron
- k North Estonia Medical Centre, Department of Psychiatry , Tallinn , Estonia ;,l Department of Psychiatry , University of Tartu , Estonia ;,m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - David Nutt
- m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - Stefano Pini
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Matilde M Vaghi
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK
| | - Adam Wichniak
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Gwyneth Zai
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK ;,o Neurogenetics Section, Centre for Addiction & Mental Health , Toronto , Canada ;,p Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre , Toronto , Canada ;,q Institute of Medical Science and Department of Psychiatry, University of Toronto , Toronto , Canada
| | - Peter Riederer
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland
| |
Collapse
|
49
|
Maron E, Nutt D. Biological predictors of pharmacological therapy in anxiety disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26487811 PMCID: PMC4610615 DOI: 10.31887/dcns.2015.17.3/emaron] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At least one third of patients with anxiety disorders do not adequately respond to available pharmacological treatment. The reason that some patients with anxiety disorders respond well, but others not, to the same classes of medication is not yet fully understood. It is suggested that several biological factors may influence treatment mechanisms in anxiety and therefore could be identified as possible biomarkers predicting treatment response. In this review, we look at current evidence exploring different types of treatment predictors, including neuroimaging, genetic factors, and blood-related measures, which could open up novel perspectives in clinical management of patients with anxiety disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia; Department of Psychiatry, University of Tartu, Tartu, Estonia ; Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - David Nutt
- Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
50
|
Lueken U, Zierhut KC, Hahn T, Straube B, Kircher T, Reif A, Richter J, Hamm A, Wittchen HU, Domschke K. Neurobiological markers predicting treatment response in anxiety disorders: A systematic review and implications for clinical application. Neurosci Biobehav Rev 2016; 66:143-62. [DOI: 10.1016/j.neubiorev.2016.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023]
|