1
|
Lee J, Huh S, Park K, Kang N, Yu HS, Park HG, Kim YS, Kang UG, Won S, Kim SH. Behavioral and transcriptional effects of repeated electroconvulsive seizures in the neonatal MK-801-treated rat model of schizophrenia. Psychopharmacology (Berl) 2024; 241:817-832. [PMID: 38081977 DOI: 10.1007/s00213-023-06511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Electroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear. OBJECTIVES To gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia. METHODS Two injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted. RESULTS Prepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E. CONCLUSIONS E10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc., Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Lin CW, Cheng MH, Fan CH, Chen HH, Yeh CK. Focused ultrasound stimulation of infralimbic cortex attenuates reinstatement of methamphetamine-induced conditioned place preference in rats. Neurotherapeutics 2024; 21:e00328. [PMID: 38355360 PMCID: PMC10937235 DOI: 10.1016/j.neurot.2024.e00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Methamphetamine (MA) use disorder poses significant challenges to both the affected individuals and society. Current non-drug therapies like transcranial direct-current stimulation and transcranial magnetic stimulation have limitations due to their invasive nature and limited reach to deeper brain areas. Transcranial focused ultrasound (FUS) is gaining attention as a noninvasive option with precise spatial targeting, able to affect deeper areas of the brain. This research focused on assessing the effectiveness of FUS in influencing the infralimbic cortex (IL) to prevent the recurrence of MA-seeking behavior, using the conditioned place preference (CPP) method in rats. The study involved twenty male Sprague-Dawley rats. Neuronal activation by FUS was first examined via electromyography (EMG). Rats received alternately with MA or saline, and confined to one of two distinctive compartments in a three compartment apparatus over a 4-day period. After CPP test, extinction, the first reinstatement, and extinction again, FUS was applied to IL prior to the second MA priming-induced reinstatement. Safety assessments were conducted through locomotor and histological function examinations. EMG data confirmed the effectiveness of FUS in activating neurons. Significant attenuation of reinstatement of MA CPP was found, along with successful targeting of the IL region, confirmed through acoustic field scanning, c-Fos immunohistochemistry, and Evans blue dye staining. No damage to brain tissue or impaired locomotor activity was observed. The results of the study indicate that applying FUS to the IL markedly reduced the recurrence of MA seeking behavior, without harming brain tissue or impairing motor skills. This suggests that FUS could be a promising method for treating MA use disorder, with the infralimbic cortex being an effective target for FUS in preventing MA relapse.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Hsuan Cheng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi University, Taipei, Taiwan; Graduate Program for Aging, China Medical University, Taichung, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Canseco-Alba A, Tabata K, Momoki Y, Tabassum T, Horiuchi Y, Arinami T, Onaivi ES, Ishiguro H. Cannabinoid CB2 receptors and hypersensitivity to methamphetamine: Vulnerability to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110924. [PMID: 38135096 PMCID: PMC10872318 DOI: 10.1016/j.pnpbp.2023.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/19/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The human cannabinoid receptor 2 (CB2R) gene CNR2 has been associated with schizophrenia development. Inbred mice treated with the CB2R inverse agonist AM630 and challenged with methamphetamine (MAP) showed reduced prepulse inhibition (%PPI) response and locomotor hyperactivity, both behavioral measures in rodents that correlate with psychosis. Mice lacking CB2R on striatal dopaminergic neurons exhibit a hyperdopaminergic tone and a hyperactivity phenotype. Hyperdopaminergia plays a role in the etiology of schizophrenia. This study aimed to determine the direct role of CB2R, heterozygous Cnr2 gene knockout (Het) mice treated with MAP to induce behavioral sensitivity mimicking a schizophrenia-like human phenotype. Additionally, the study aims to explore the unique modulation of dopamine activity by neuronal CB2R. Conditional knockout DAT-Cnr2-/- mice were evaluated in response to MAP treatments for this purpose. Sensorimotor gating deficits in DAT-Cnr2-/- mice were also evaluated. Het mice developed reverse tolerance (RT) to MAP-enhanced locomotor activity, and RT reduced the %PPI compared to wild-type (WT) mice. DAT-Cnr2-/- mice showed an increased sensitivity to stereotypical behavior induced by MAP and developed RT to MAP. DAT-Cnr2-/- mice exhibit a reduction in %PPI and alter social interaction, another core symptom of schizophrenia. These results demonstrate that there is an interaction between neuronal CB2R and MAP treatment, which increases the risk of schizophrenia-like behavior in this mouse model. This finding provides evidence for further studies targeting CB2R as a potential schizophrenia therapy.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico; Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Koichi Tabata
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Yukihiko Momoki
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Taharima Tabassum
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Yasue Horiuchi
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan; Department of Genomic Medicine, Shizuoka Graduate University of Public Health, Shizuoka, Shizuoka 420-0881, Japan
| | - Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan; Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3821, Japan.
| |
Collapse
|
4
|
Zhuo C, Zhou C, Cai Z, Chen J, Yang L, Li Q, Zhang Q, Fang T, Tian H, Lin C, Song X. Electrical stimulus combined with venlafaxine and mirtazapine improves brain Ca 2+ activity, pre-pulse inhibition, and immobility time in a model of major depressive disorder in schizophrenia. J Affect Disord 2022; 319:610-617. [PMID: 36162671 DOI: 10.1016/j.jad.2022.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The prevalence of major depressive disorder in patients with schizophrenia (SZ-MDD) has been reported to be about 32.6 %, but it varies considerably depending on the stage (early or chronic) and state (acute or post-psychotic) of schizophrenia. The exploration of ideal strategies for the treatment of major depressive disorder in the context of schizophrenia is urgently needed. Thus, the present study was conducted to investigate the treatment effects of clozapine, electrical stimulation (ECS; the mouse model equivalent of electroconvulsive therapy for humans), venlafaxine, and mirtazapine for SZ-MDD. METHODS A mouse model of SZ-MDD was established with MK801 administration and chronic unpredictable mild stress exposure. Clozapine and ECS, alone and with mirtazapine and/or venlafaxine, were used as treatment strategies. In-vivo two-photon imaging was performed to visualize Ca2+ neural activity in the prefrontal cortex (PFC). Mouse performance on behavioral assays was taken to reflect acute treatment effects. RESULTS ECS + venlafaxine + mirtazapine performed significantly better than other treatments in alleviating major depressive disorder, as reflected by PFC Ca2+ activity and behavioral assay performance. Clozapine + venlafaxine + mirtazapine did not have an ideal treatment effect. Brain Ca2+ activity alterations did not correlate with behavioral expression in any treatment group. CONCLUSIONS In this mouse model of SZ-MDD, ECS + venlafaxine + mirtazapine improved brain Ca2+ activity, pre-pulse inhibition, and immobility time. These findings provide useful information for the further exploration of treatment methods for patients with SZ-MDD, although the mechanisms underlying this comorbidity needed to be investigated further.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing Brain Circuits of Nerology and Psychiatry (RTBNP_Lab), Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin 300140, China; the key Laboratory of Psychiatric-Neuroimaging-Genetics and Comorbidity (PNGC_Lab) of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China; Brain Micro-imaging Center of Psychiatric Animal Model, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China; Department of Psychiatry, the First Affiliated Hospital/Zhengzhou University, Zhengzhou, China.
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang 05000, China
| | - Ziyao Cai
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China
| | - Jiayue Chen
- Key Laboratorary of Multiple Organs Damage in the Patients with Mental Illness (MODPM_Lab) of Tianjin Fourth Center Hospital, Tianjin 100140, China
| | - Lei Yang
- Key Laboratorary of Multiple Organs Damage in the Patients with Mental Illness (MODPM_Lab) of Tianjin Fourth Center Hospital, Tianjin 100140, China
| | - Qianchen Li
- Key Laboratorary of Multiple Organs Damage in the Patients with Mental Illness (MODPM_Lab) of Tianjin Fourth Center Hospital, Tianjin 100140, China
| | - Qiuyu Zhang
- Key Laboratorary of Multiple Organs Damage in the Patients with Mental Illness (MODPM_Lab) of Tianjin Fourth Center Hospital, Tianjin 100140, China
| | - Tao Fang
- Key Laboratorary of Multiple Organs Damage in the Patients with Mental Illness (MODPM_Lab) of Tianjin Fourth Center Hospital, Tianjin 100140, China
| | - Hongjun Tian
- Key Laboratorary of Multiple Organs Damage in the Patients with Mental Illness (MODPM_Lab) of Tianjin Fourth Center Hospital, Tianjin 100140, China.
| | - Chongguang Lin
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, Wenzhou 325000, China.
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou 045000, China.
| |
Collapse
|
5
|
Jordan Walter T, Minassian A, Perry W, Young JW. Combined prior chronic methamphetamine treatment and gp120 expression reduce PPI in aged male but not female mice. Neurosci Lett 2022; 780:136639. [PMID: 35452766 DOI: 10.1016/j.neulet.2022.136639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
Abstract
Methamphetamine (METH) use disorder is highly prevalent among people with HIV and is a significant public health problem. Furthermore, people with HIV are living longer and using drugs such as METH even into old age, making it important to understand the effects of METH use and aging in this population. HIV, METH, and aging negatively impact a variety of brain functions, including sensorimotor gating (i.e. - automatic, pre-conscious information processing). Sensorimotor gating is often measured using prepulse inhibition (PPI), a paradigm that can be conducted in animals, thereby allowing for preclinical studies. Little is known about how HIV, METH, and aging interact to affect PPI. The goal of this study was therefore to examine how METH affects PPI in aged gp120 mice, a mouse model of HIV. PPI was measured at 8, 14, and 22 months in male and female wild type (WT) and gp120 mice. PPI was also measured during and after METH treatment at 23-24 months. Aging was associated with decreased PPI in both sexes and genotypes. Combined prior METH treatment and gp120 expression caused the greatest reduction in PPI in aged male mice. Prior METH treatment decreased PPI in aged WT female mice, but not aged gp120 female mice. Overall, these results suggest the effects of HIV and METH on information processing seem to be influenced by age and sex. Combined HIV and METH may impair information processing in older men, but not older women.
Collapse
Affiliation(s)
- T Jordan Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Research Services, Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
6
|
García-Cabrerizo R, Bis-Humbert C, García-Fuster MJ. Electroconvulsive seizures protect against methamphetamine-induced inhibition of neurogenesis in the rat hippocampus. Neurotoxicology 2021; 86:185-191. [PMID: 34418438 DOI: 10.1016/j.neuro.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Following methamphetamine consumption and during abstinence many behavioral consequences emerge (i.e., cognitive deficits, ongoing episodes of psychosis, depression, severe cravings, brain neurotoxicity), which are likely linked to propensity to relapse. In this line of thought, we recently showed that binge methamphetamine administration enhanced negative affect and voluntary drug consumption in rats, while it induced persistent neurotoxic effects (i.e., impaired hippocampal neurogenesis), effects that emerged long after drug removal. To date, no pharmacological strategies have been proven to be effective for the treatment of methamphetamine toxicity. A few studies have evaluated the impact of combining methamphetamine pretreatment with electroconvulsive seizures (ECS) post-treatment, an alternative non-pharmacological option used in psychiatry for resistant depression that offers a safe and really potent therapeutic response. Against this background, the present study aimed at testing whether repeated ECS treatment could ameliorate some of the long-term neurotoxicity effects induced by adolescent methamphetamine exposure in rats and emerging after drug removal. At the behavioral level, the main results showed that methamphetamine administration did not alter negative affect immediate during adolescence or later on in adulthood. Interestingly, repeated ECS improved the negative impact of methamphetamine administration on reducing hippocampal neurogenesis, demonstrating that ECS can attenuate certain degree of methamphetamine-induced neurotoxicity in rats, and suggesting ECS as a good therapeutical candidate that deserves further studies.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
7
|
Walter TJ, Young JW, Milienne-Petiot M, Deben DS, Heaton RK, Letendre S, Grelotti DJ, Perry W, Grant I, Minassian A. Both HIV and Tat expression decrease prepulse inhibition with further impairment by methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110089. [PMID: 32891668 PMCID: PMC7750302 DOI: 10.1016/j.pnpbp.2020.110089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
HIV infection and methamphetamine (METH) use are highly comorbid and represent a significant public health problem. Both conditions are known to negatively impact a variety of brain functions. One brain function that may be affected by HIV and METH use is sensorimotor gating, an automatic, pre-conscious filtering of sensory information that is thought to contribute to higher order cognitive processes. Sensorimotor gating is often measured using prepulse inhibition (PPI), a paradigm that can be conducted in both humans and animals, thereby enabling cross-species translational studies. While previous studies suggest HIV and METH may individually impair PPI, little research has been conducted on the effects of combined HIV and METH on PPI. The goal of this cross-species study was to determine the effects of METH on PPI in the inducible Tat (iTat) mouse model of HIV and in people with HIV. PPI was measured in the iTat mouse model before, during, and after chronic METH treatment and after Tat induction. Chronic METH treatment decreased PPI in male but not female mice. PPI normalized with cessation of METH. Inducing Tat expression decreased PPI in male but not in female mice. No interactions between chronic METH treatment and Tat expression were observed in mice. In humans, HIV was associated with decreased PPI in both men and women. Furthermore, PPI was lowest in people with HIV who also had a history of METH dependence. Overall, these results suggest HIV and METH may additively impair early information processing in humans, potentially affecting downstream cognitive function.
Collapse
Affiliation(s)
- T. Jordan Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Corresponding Author at: 410 Dickinson St, Office 6, San Diego CA, 92103, Telephone: 619-543-3098,
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Research Services, Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA, 92161, USA
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - D. S. Deben
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Scott Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - David J. Grelotti
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | |
Collapse
|
8
|
Park MJ, Kim H, Kim EJ, Yook V, Chung IW, Lee SM, Jeon HJ. Recent Updates on Electro-Convulsive Therapy in Patients with Depression. Psychiatry Investig 2021; 18:1-10. [PMID: 33321557 PMCID: PMC7897863 DOI: 10.30773/pi.2020.0350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Electro-convulsive therapy (ECT) has been established as a treatment modality for patients with treatment-resistant depression and with some specific subtypes of depression. This narrative review intends to provide psychiatrists with the latest findings on the use of ECT in depression, devided into total eight sub-topics. METHODS We searched PubMed for English-language articles using combined keywords and tried to analyze journals published from 1995-2020. RESULTS Pharmacotherapy such as antidepressants or maintenance ECT is more effective than a placebo as prevention of recurrence after ECT. The use of ECT in treatment-resistant depression, depressed patients with suicidal risks, elderly depression, bipolar depression, psychotic depression, and depression during pregnancy or postpartum have therapeutic benefits. As possible mechanisms of ECT, the role of neurotransmitters such as serotonin, dopamine, gamma-aminobutyric acid (GABA), and other findings in the field of neurophysiology, neuro-immunology, and neurogenesis are also supported. CONCLUSION ECT is evolving toward reducing cognitive side effects and maximizing therapeutic effects. If robust evidence for ECT through randomized controlled studies are more established and the mechanism of ECT gets further clarified, the scope of its use in the treatment of depression will be more expanded in the future.
Collapse
Affiliation(s)
- Mi Jin Park
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Ji Kim
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Vidal Yook
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Won Chung
- Department of Psychiatry and Electroconvulsive Therapy Center, Dongguk University International Hospital, Goyang, Republic of Korea
| | - Sang Min Lee
- Department of Psychiatry, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Moszczynska A, Callan SP. Molecular, Behavioral, and Physiological Consequences of Methamphetamine Neurotoxicity: Implications for Treatment. J Pharmacol Exp Ther 2017; 362:474-488. [PMID: 28630283 PMCID: PMC11047030 DOI: 10.1124/jpet.116.238501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/09/2017] [Indexed: 04/28/2024] Open
Abstract
Understanding the relationship between the molecular mechanisms underlying neurotoxicity of high-dose methamphetamine (METH) and related clinical manifestations is imperative for providing more effective treatments for human METH users. This article provides an overview of clinical manifestations of METH neurotoxicity to the central nervous system and neurobiology underlying the consequences of administration of neurotoxic METH doses, and discusses implications of METH neurotoxicity for treatment of human abusers of the drug.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Sean Patrick Callan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
10
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
11
|
Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain. Behav Brain Res 2016; 320:282-290. [PMID: 27993694 DOI: 10.1016/j.bbr.2016.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022]
Abstract
Methamphetamine (MA) studies in animals usually involve acute, binge, or short-term exposure to the drug. However, addicts take substantial amounts of MA for extended periods of time. Here we wished to study the effects of MA exposure on brain and behavior, using an animal model analogous to this pattern of MA intake. MA doses, 4 and 8mg/kg/day, were based on previously reported average daily freely available MA self-administration levels. We examined the effects of 16 week MA treatment on psychomotor and cognitive function in the rat using open field and novel object recognition tests and we studied the adaptations of the dopaminergic system, using in vitro and in vivo receptor imaging. We show that chronic MA treatment, at doses that correspond to the average daily freely available self-administration levels in the rat, disorganizes open field activity, impairs alert exploratory behavior and anxiety-like state, and downregulates dopamine transporter in the striatum. Under these treatment conditions, dopamine terminal functional integrity in the nucleus accumbens is also affected. In addition, lower dopamine D1 receptor binding density, and, to a smaller degree, lower dopamine D2 receptor binding density were observed. Potential mechanisms related to these alterations are discussed.
Collapse
|
12
|
Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflammation 2016; 13:230. [PMID: 27590010 PMCID: PMC5009533 DOI: 10.1186/s12974-016-0688-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022] Open
Abstract
Background Although electroconvulsive therapy (ECT) is regarded as one of the efficient treatments for intractable psychiatric disorders, the mechanism of therapeutic action remains unclear. Recently, many studies indicate that ECT affects the immune-related cells, such as microglia, astrocytes, and lymphocytes. Moreover, microglial activation and astrocytic activation have been implicated in the postmortem brains of schizophrenia patients. We previously demonstrated that Gunn rats showed schizophrenia-like behavior and microglial activation in their brains. The present study examined the effects of electroconvulsive shock (ECS), an animal counterpart of ECT, on schizophrenia-like behavior, microgliosis, and astrogliosis in the brain of Gunn rats. Methods The rats were divided into four groups, i.e., Wistar sham, Wistar ECS, Gunn sham, and Gunn ECS. ECS groups received ECS once daily for six consecutive days. Subsequently, prepulse inhibition (PPI) test was performed, and immunohistochemistry analysis was carried out to determine the activation degree of microglia and astrocytes in the hippocampus by using anti-CD11b and anti-glial fibrillary acidic protein (GFAP) antibody, respectively. Results We found PPI deficit in Gunn rats compared to Wistar rats, and it was significantly improved by ECS. Immunohistochemistry analysis revealed that immunoreactivity of CD11b and GFAP was significantly increased in Gunn rats compared to Wistar rats. ECS significantly attenuated the immunoreactivity of both CD11b and GFAP in Gunn rats. Conclusions ECS ameliorated schizophrenia-like behavior of Gunn rats and attenuated microgliosis and astrogliosis in the hippocampus of Gunn rats. Accordingly, therapeutic effects of ECT may be exerted, at least in part, by inhibition of glial activation. These results may provide crucial information to elucidate the role of activated glia in the pathogenesis of schizophrenia and to determine whether future therapeutic interventions should attempt to up-regulate or down-regulate glial functions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0688-2) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
John N, Theilmann W, Frieling H, Krauss JK, Alam M, Schwabe K, Brandt C. Cortical electroconvulsive stimulation alleviates breeding-induced prepulse inhibition deficit in rats. Exp Neurol 2015; 275 Pt 1:99-103. [PMID: 26476178 DOI: 10.1016/j.expneurol.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
In patients with medical-refractory schizophrenia electroconvulsive therapy (ECT), i.e., the induction of therapeutic seizures via cortical surface electrodes, is effectively used. Electroconvulsive stimulation (ECS) in rodents simulates ECT in humans and is applied to investigate the mechanisms underlying this treatment. Experimentally-induced reduced prepulse inhibition (PPI) of the acoustic startle response (ASR), i.e., the reduction of the startle response to an intense acoustic stimulus when this stimulus is shortly preceded by a weaker not-startling stimulus, serves as an endophenotype for neuropsychiatric disorders that are accompanied by disturbed sensorimotor gating, such as schizophrenia. Here we used rats selectively bred for high and low PPI to evaluate whether bifrontal cortical ECS would affect PPI. For this purpose, cortical screw electrodes were stereotactically implanted above the frontal cortex. After recovery ECS was applied for five consecutive days with stimuli of 1 ms pulse-width, 100 pulses/s, 1 s duration, ranging from 5.5 mA to 10 mA. PPI of ASR was measured one day before ECS, and on days 1, 7, and 14 after the last ECS. In rats with breeding-induced low PPI ECS increased PPI one week after stimulation. In contrast, ECS decreased PPI in rats with high PPI on the first day after stimulation. The reaction to the startle impulse was reduced by ECS without difference between groups. This work provides evidence that rats with breeding-induced high or low PPI could be used to further investigate the underlying mechanisms of ECT in neuropsychiatric disorders with disturbed sensorimotor gating like schizophrenia.
Collapse
Affiliation(s)
- Nadine John
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany.
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany; Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Helge Frieling
- Molecular Neuroscience Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
14
|
Henry BL, Geyer MA, Buell MR, Perry W, Young JW, Minassian A. Prepulse inhibition in HIV-1 gp120 transgenic mice after withdrawal from chronic methamphetamine. Behav Pharmacol 2014; 25:12-22. [PMID: 24281153 PMCID: PMC3926694 DOI: 10.1097/fbp.0000000000000012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HIV infection is frequently comorbid with methamphetamine (METH) dependence. Both factors are associated with impairment in inhibitory function that continues even after abstinence from the drug. Deficits in prepulse inhibition (PPI), a measure of sensorimotor gating, are induced by acute stimulant administration, but the combined effect of HIV and chronic METH exposure on PPI is not well characterized. We quantified baseline acoustic startle and PPI in mice expressing the HIV-1 gp120 envelope protein (gp120tg) and in wild-type (WT) littermates; thereafter, we administered a chronic regimen of METH or vehicle and tested startle and PPI after 7 days of drug withdrawal. We hypothesized that METH-treated gp120tg mice would exhibit PPI deficits compared with vehicle-treated WT or gp120tg animals. Before METH administration, drug-naive female gp120tg mice exhibited decreased PPI compared with female WT mice, whereas male gp120tg mice exhibited increased startle compared with other groups. After drug withdrawal, no consistent genotype effect was observed, but METH-treated mice exhibited increased PPI compared with vehicle, in contrast to previous reports of acute METH-induced PPI deficits. In summary, PPI impairment in HIV could depend on factors such as sex, whereas changes in PPI following METH withdrawal may depend on the quantity and duration of drug exposure.
Collapse
Affiliation(s)
- Brook L. Henry
- Department of Psychiatry, University of California, San Diego
| | - Mark A. Geyer
- Department of Psychiatry, University of California, San Diego
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | | | - William Perry
- Department of Psychiatry, University of California, San Diego
| | - Jared W. Young
- Department of Psychiatry, University of California, San Diego
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego
- Center of Excellence for Stress and Mental Health, (CESAMH), Veteran’s Administration, San Diego, California, USA
| | | |
Collapse
|
15
|
Manning EE, van den Buuse M. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci 2013; 7:92. [PMID: 23781174 PMCID: PMC3679473 DOI: 10.3389/fncel.2013.00092] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/26/2013] [Indexed: 12/30/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH) users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous (HET) mutant mice has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and wildtype (WT) littermates were treated during young adulthood with METH and, following a 2-week break, prepulse inhibition (PPI) was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH) disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine (APO) or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioral endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behavior. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the disorder.
Collapse
Affiliation(s)
- Elizabeth E Manning
- Behavioural Neuroscience Laboratory, The Florey Institute of Neuroscience and Mental Health Melbourne, VIC, Australia
| | | |
Collapse
|