1
|
Caterfino A, Krishna S, Chen V. Novel and complementary treatment approaches in attention-deficit/hyperactivity disorder. Curr Opin Pediatr 2024; 36:562-569. [PMID: 38957089 DOI: 10.1097/mop.0000000000001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To provide an updated review of novel and complementary treatment approaches for children and adolescents with attention-deficit/hyperactivity disorder. RECENT FINDINGS The evidence for complementary attention-deficit/hyperactivity disorder treatments is often promising, but limited to small, unblinded studies. Recent evidence from larger, more rigorous studies reveals that most of these treatments have modest efficacy. Omega-3 polyunsaturated fatty acids, saffron, broad spectrum micronutrients, and physical exercise have potential benefits that seem to outweigh known risks. However, neurofeedback, cognitive training, and trigeminal nerve stimulation need further research to determine whether specific sub-groups of children/adolescents with attention-deficit/hyperactivity disorder would benefit long-term with their associated tolerable risks. SUMMARY There is not sufficient evidence for complementary treatments to be recommended as substitutes for first-line pharmacological and psychosocial treatment options. Nonetheless, some adjuvant therapies to currently recommended attention-deficit/hyperactivity disorder treatments can be safe. Physicians should be familiar with existing and emerging complementary treatments to help guide families.
Collapse
Affiliation(s)
- Andrew Caterfino
- Northwell, New Hyde Park
- Cohen Children's Medical Center, Queens, New York, USA
| | - Shruthi Krishna
- Northwell, New Hyde Park
- Cohen Children's Medical Center, Queens, New York, USA
| | - Victoria Chen
- Northwell, New Hyde Park
- Cohen Children's Medical Center, Queens, New York, USA
| |
Collapse
|
2
|
Liu M, Yu C, Shi J, Xu Y, Li Z, Huang J, Si Z, Yao L, Yin K, Zhao Z. Effects of one-week bilateral cerebellar iTBS on resting-state functional brain network and multi-task attentional performance in healthy individuals: A randomized, sham-controlled trial. Neuroimage 2024; 295:120648. [PMID: 38761882 DOI: 10.1016/j.neuroimage.2024.120648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Cerebellar intermittent theta burst stimulation (iTBS) modulates the excitability of the cerebral cortex and may enhance attentional performance. To date, few studies have conducted iTBS on healthy subjects for one week and used electroencephalography (EEG) to investigate the effect of multiple stimulation sessions on resting-state functional brain networks and the daily stimulation effect on attentional performance. METHODS 16 healthy subjects participated in a one-week experiment, receiving bilateral cerebellar iTBS or sham stimulation and engaging in multi-task attentional training. The primary measures were the one-week attentional performance and pre- and post-experiment resting-state EEG activities. Amplitude Envelope Correlation (AEC) was used to construct the functional connectivity in the eye-open (EO) and eye-closed (EC) phases. RESULTS At least three sessions of iTBS were required to enhance multi-task performance significantly, whereas only one or two sessions failed to elicit the improvement. Compared with the control group, iTBS induced significant changes in PSD, AEC functional connectivity, and AEC network properties during the EO phase, while it had little effect during the EC phase. During the EO phase, the network property changes of the iTBS subject were correlated with improved attentional performance. CONCLUSION The multi-task performance requires multiple stimulations to enhance. iTBS affects the resting-state alpha band brain activities during the EO rather than the EC phase. The AEC network properties may serve as a biomarker to assess the attentional potential of healthy subjects.
Collapse
Affiliation(s)
- Meiliang Liu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China.
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Jinping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yunfang Xu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zijin Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Junhao Huang
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhengye Si
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Zhiwen Zhao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China; Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
3
|
Rubia K, Johansson L, Carter B, Stringer D, Santosh P, Mehta MA, Conti AA, Bozhilova N, Eraydin IE, Cortese S. The efficacy of real versus sham external Trigeminal Nerve Stimulation (eTNS) in youth with Attention-Deficit/Hyperactivity Disorder (ADHD) over 4 weeks: a protocol for a multi-centre, double-blind, randomized, parallel-group, phase IIb study (ATTENS). BMC Psychiatry 2024; 24:326. [PMID: 38689273 PMCID: PMC11059677 DOI: 10.1186/s12888-024-05650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Attention Deficit/Hyperactivity Disorder (ADHD), if severe, is usually treated with stimulant or non-stimulant medication. However, users prefer non-drug treatments due to side effects. Alternative non-medication treatments have so far only shown modest effects. External trigeminal nerve stimulation (eTNS) is a minimal risk, non-invasive neuromodulation device, targeting the trigeminal system. It was approved for ADHD in 2019 by the USA Food and Drug administration (FDA) based on a small proof of concept randomised controlled trial (RCT) in 62 children with ADHD showing improvement of ADHD symptoms after 4 weeks of nightly real versus sham eTNS with minimal side effects. We present here the protocol of a larger confirmatory phase IIb study testing efficacy, longer-term persistency of effects and underlying mechanisms of action. METHODS A confirmatory, sham-controlled, double-blind, parallel-arm, multi-centre phase IIb RCT of 4 weeks of eTNS in 150 youth with ADHD, recruited in London, Portsmouth, and Southampton, UK. Youth with ADHD will be randomized to either real or sham eTNS, applied nightly for 4 weeks. Primary outcome is the change in the investigator-administered parent rated ADHD rating scale. Secondary outcomes are other clinical and cognitive measures, objective hyperactivity and pupillometry measures, side effects, and maintenance of effects over 6 months. The mechanisms of action will be tested in a subgroup of 56 participants using magnetic resonance imaging (MRI) before and after the 4-week treatment. DISCUSSION This multi-centre phase IIb RCT will confirm whether eTNS is effective in a larger age range of children and adolescents with ADHD, whether it improves cognition and other clinical measures, whether efficacy persists at 6 months and it will test underlying brain mechanisms. The results will establish whether eTNS is effective and safe as a novel non-pharmacological treatment for ADHD. TRIAL REGISTRATION ISRCTN82129325 on 02/08/2021, https://doi.org/10.1186/ISRCTN82129325 .
Collapse
Affiliation(s)
- Katya Rubia
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK.
- Department of Child & Adolescent Psychiatry, Technical University, Dresden, Germany.
| | - Lena Johansson
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Ben Carter
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trial Unit, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Stringer
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's Clinical Trial Unit, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paramala Santosh
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
- National and Specialist CAMHS, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Department for Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aldo Alberto Conti
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Natali Bozhilova
- Department of Child & Adolescent Psychiatry/PO46 Institute of Psychiatry, Psychology & Neurosciences King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Irem Ece Eraydin
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- SOLENT NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Center, New York City, NY, USA
| |
Collapse
|
4
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
5
|
Monaco A, Cattaneo R, Di Nicolantonio S, Strada M, Altamura S, Ortu E. Central effects of trigeminal electrical stimulation. Cranio 2023:1-24. [PMID: 38032105 DOI: 10.1080/08869634.2023.2280153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This is a review of the literature on the main neuromodulation techniques, focusing on the possibility of introducing sensory threshold ULFTENS into them. Electro neuromodulation techniques have been in use for many years as promising methods of therapy for cognitive and emotional disorders. One of the most widely used forms of stimulation for orofacial pain is transcutaneous trigeminal stimulation on three levels: supraorbital area, dorsal surface of the tongue, and anterior skin area of the tragus. The purpose of this review is to trigger interest on using dental ULFTENS as an additional trigeminal neurostimulation and neuromodulation technique in the context of TMD. In particular, we point out the possibility of using ULFTENS at a lower activation level than that required to trigger a muscle contraction that is capable of triggering effects at the level of the autonomic nervous system, with extreme ease of execution and few side effects.
Collapse
Affiliation(s)
- Annalisa Monaco
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Ruggero Cattaneo
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | | | - Marco Strada
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Serena Altamura
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Ortu
- MeSVA Department, Dental Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Westwood SJ, Conti AA, Tang W, Xue S, Cortese S, Rubia K. Clinical and cognitive effects of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:4025-4043. [PMID: 37674019 PMCID: PMC10827664 DOI: 10.1038/s41380-023-02227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
This pre-registered (CRD42022322038) systematic review and meta-analysis investigated clinical and cognitive outcomes of external trigeminal nerve stimulation (eTNS) in neurological and psychiatric disorders. PubMed, OVID, Web of Science, Chinese National Knowledge Infrastructure, Wanfang, and VIP database for Chinese technical periodicals were searched (until 16/03/2022) to identify trials investigating cognitive and clinical outcomes of eTNS in neurological or psychiatric disorders. The Cochrane Risk of Bias 2.0 tool assessed randomized controlled trials (RCTs), while the Risk of Bias of Non-Randomized Studies (ROBINS-I) assessed single-arm trials. Fifty-five peer-reviewed articles based on 48 (27 RCTs; 21 single-arm) trials were included, of which 12 trials were meta-analyzed (N participants = 1048; of which ~3% ADHD, ~3% Epilepsy, ~94% Migraine; age range: 10-49 years). The meta-analyses showed that migraine pain intensity (K trials = 4, N = 485; SMD = 1.03, 95% CI[0.84-1.23]) and quality of life (K = 2, N = 304; SMD = 1.88, 95% CI[1.22-2.53]) significantly improved with eTNS combined with anti-migraine medication. Dimensional measures of depression improved with eTNS across 3 different disorders (K = 3, N = 111; SMD = 0.45, 95% CI[0.01-0.88]). eTNS was well-tolerated, with a good adverse event profile across disorders. eTNS is potentially clinically relevant in other disorders, but well-blinded, adequately powered RCTs must replicate findings and support optimal dosage guidance.
Collapse
Affiliation(s)
- Samuel J Westwood
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Social Science, University of Westminster, London, UK.
| | - Aldo Alberto Conti
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wanjie Tang
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Xue
- Department of Sociology and Psychology, School of Public Administration, Sichuan University, Chengdu, China
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Technical University Dresden, Dresden, Germany
| |
Collapse
|
7
|
Xu J, Wu S, Huo L, Zhang Q, Liu L, Ye Z, Cao J, Ma H, Shang C, Ma C. Trigeminal nerve stimulation restores hippocampal dopamine deficiency to promote cognitive recovery in traumatic brain injury. Prog Neurobiol 2023:102477. [PMID: 37270025 DOI: 10.1016/j.pneurobio.2023.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Cognitive impairment (CI) is a common neurological disease resulting from traumatic brain injury (TBI). Trigeminal nerve stimulation (TNS) is an emerging, non-invasive, and effective neuromodulation therapy especially for patients suffering from brain function disorders. However, the treatment and recovery mechanisms of TNS remain poorly understood. By using combined advanced technologies, we revealed here that the neuroprotective potential of TNS to improve CI caused by TBI. The study results found that 40Hz TNS treatment has the ability to improve CI in TBI mice and communicates with central nervous system via the trigeminal ganglion (TG). Transsynaptic virus experiments revealed that TG is connected to the hippocampus (HPC) through the corticotropin-releasing hormone (CRH) neurons of paraventricular hypothalamic nucleus (PVN) and the dopamine transporter (DAT) neurons of substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Mechanistically, the data showed that TNS can increase the release of dopamine in the HPC by activating the following neural circuit: TG→CRH+ PVN→DAT+ SNc/VTA → HPC. Bulk RNA sequencing confirmed changes in the expression of dopamine-related genes in the HPC. This work preliminarily explains the efficacy and mechanism of TNS and adds to the increasing evidence demonstrating that nerve stimulation is an effective method to treat neurological diseases. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lifang Huo
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Zhimin Ye
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Jie Cao
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haiyun Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Congping Shang
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; School of Basic Medical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China.
| |
Collapse
|
8
|
Russell D, Arnold LE. Complementary and Integrative Treatments for Attention-Deficit/Hyperactivity Disorder in Youth. Child Adolesc Psychiatr Clin N Am 2023; 32:173-192. [PMID: 37147036 DOI: 10.1016/j.chc.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
First-line psychopharmacologic and psychosocial treatments for attention-deficit/hyperactivity disorder in children are effective but limited by tolerability and accessibility problems. Many complementary and integrative strategies have been investigated as alternative or adjunctive treatments for the disorder, and the literature has progressed to meta-analyses for several. Although heterogeneity of study methods and risk of bias pervades the literature, we conclude that Omega-3 supplementation, dietary restriction of artificial food colorings, and physical activity can be considered evidence-based. Additionally, meditation, yoga, and sleep hygiene are safe, partially effective, cost effective and sensible adjunctive treatment strategies.
Collapse
Affiliation(s)
- Douglas Russell
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, c/o Seattle Children's Hospital, OA.5.154 PO Box 5371, Seattle, WA 98145-5005, USA.
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, 395E McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Short-term transcutaneous trigeminal nerve stimulation does not affect visual oddball task and paired-click paradigm ERP responses in healthy volunteers. Exp Brain Res 2023; 241:327-339. [PMID: 36515720 DOI: 10.1007/s00221-022-06525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Recent research suggests that transcutaneous trigeminal nerve stimulation (TNS) may positively affect cognitive function. However, no clear-cut evidence is available yet, since the majority of it derives from clinical studies, and the few data on healthy subjects show inconsistent results. In this study, we report the effects of short-term TNS on event-related potentials (ERP) recorded during the administration of a simple visual oddball task and a paired-click paradigm, both considered useful for studying brain information processing functions. Thirty-two healthy subjects underwent EEG recording before and after 20 min of sham- or real-TNS, delivered bilaterally to the infraorbital nerve. The amplitude and latency of P200 and P300 waves in the simple visual oddball task and P50, N100 and P200 waves in the paired-click paradigm were measured before and after treatment. Our results show that short-term TNS did not alter any of the ERP parameters measured, suggesting that in healthy subjects, short-term TNS may not affect brain processes involved in cognitive functions such as pre-attentional processes, early allocation of attention and immediate memory. The perspective of having an effective, non-pharmacological, non-invasive, and safe treatment option for cognitive decline is particularly appealing; therefore, more research on the positive effects on cognition of TNS is definitely needed.
Collapse
|
10
|
Bennett SM, Hindin JS, Mohatt J, Bauer C, Schild J, Falk A, Specht M, Woods D, Walkup J. Proof of Concept Study of an Oral Orthotic in Reducing Tic Severity in Tourette Syndrome. Child Psychiatry Hum Dev 2022; 53:953-963. [PMID: 33959852 DOI: 10.1007/s10578-021-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
The use of an oral orthotic, called an occlusal splint, has gained recognition for the potential to reduce the frequency of tics for individuals with Persistent Tic Disorders. The purpose of this study was to assess the feasibility of a fully blinded, randomized controlled trial (RCT) to assess the safety, tolerability and initial efficacy of the oral orthotic in youth with chronic tics. Thirteen youth were randomly assigned to wear an active or sham orthotic in a two week double-blind RCT, with a 4-6 week unblinded follow up period. A statistically significant difference was found for change in tic severity between participants wearing the active and sham orthotic. However, this difference was not replicated during the follow up period. The oral orthotic is a promising intervention for the reduction of tics in youth with Tourette's Syndrome and is worthy of continued study to establish intervention efficacy and mechanism of action.
Collapse
Affiliation(s)
- Shannon M Bennett
- Weill Cornell Medical College, 315 East 62nd Street, 5th Floor, New York, NY, 10065, USA.
| | | | - Justin Mohatt
- Weill Cornell Medical College, 315 East 62nd Street, 5th Floor, New York, NY, 10065, USA
| | | | | | - Avital Falk
- Weill Cornell Medical College, 315 East 62nd Street, 5th Floor, New York, NY, 10065, USA
| | - Matthew Specht
- Weill Cornell Medical College, 315 East 62nd Street, 5th Floor, New York, NY, 10065, USA
| | | | | |
Collapse
|
11
|
Rajabalee N, Kozlowska K, Lee SY, Savage B, Hawkes C, Siciliano D, Porges SW, Pick S, Torbey S. Neuromodulation Using Computer-Altered Music to Treat a Ten-Year-Old Child Unresponsive to Standard Interventions for Functional Neurological Disorder. Harv Rev Psychiatry 2022; 30:303-316. [PMID: 35616609 PMCID: PMC9470039 DOI: 10.1097/hrp.0000000000000341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Yang Q, Zhang S, Xu Z, Liu L, Fan S, Wu S, Ma C. The Effectiveness of Trigeminal Nerve Stimulation on Traumatic Brain Injury. Neuromodulation 2022; 25:1330-1337. [PMID: 35088758 DOI: 10.1016/j.neurom.2021.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Trigeminal nerve stimulation (TNS) is a promising strategy in treating diseases of the nervous system. In this study, the effects of TNS on traumatic brain injury (TBI) were investigated in a mouse model. MATERIALS AND METHODS TBI was induced using a weight-drop device, and TNS treatment was delivered in the first hour after the TBI. Twenty-four hours later, the mice's behavior, brain edema, and expression of inflammatory factors were tested. Functional magnetic resonance imaging also was used to explore the possible effects of TNS on brain activity. RESULTS TNS alleviates TBI-induced neurological dysfunction in animal behavior tests, besides protecting the blood-brain barrier and reducing the level of brain edema. TNS also effectively reduces the level of tumor necrosis factor-α and interleukin 6 and downregulates the cleaved caspase-3 signaling pathway. A series of brain areas was found to be possibly regulated by TNS, thus affecting the neural functions of animals. CONCLUSION This study elucidates the role of TNS as an effective treatment for TBI by inhibiting the occurrence of a secondary brain injury.
Collapse
Affiliation(s)
- Qian Yang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengnuo Fan
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Çöpür M, Çöpür S. Trigeminal nerve stimulation: a recently approved treatment approach in attention deficit hyperactivity disorder. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAttention-deficit hyperactivity disorder (ADHD) with its high prevalence is a growing area of concern and research, whereas exact underlying pathophysiology remains unknown. Behavioral therapy and multiple medications include methylphenidate, atomoxetine, and amphetamines while trigeminal nerve stimulator (TNS) is the first medical device in ADHD with FDA approval. The aim of this article is to evaluate the latest studies in this field.
Collapse
|
14
|
Rubia K, Westwood S, Aggensteiner PM, Brandeis D. Neurotherapeutics for Attention Deficit/Hyperactivity Disorder (ADHD): A Review. Cells 2021; 10:2156. [PMID: 34440925 PMCID: PMC8394071 DOI: 10.3390/cells10082156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023] Open
Abstract
This review focuses on the evidence for neurotherapeutics for attention deficit/hyperactivity disorder (ADHD). EEG-neurofeedback has been tested for about 45 years, with the latest meta-analyses of randomised controlled trials (RCT) showing small/medium effects compared to non-active controls only. Three small studies piloted neurofeedback of frontal activations in ADHD using functional magnetic resonance imaging or near-infrared spectroscopy, finding no superior effects over control conditions. Brain stimulation has been applied to ADHD using mostly repetitive transcranial magnetic and direct current stimulation (rTMS/tDCS). rTMS has shown mostly negative findings on improving cognition or symptoms. Meta-analyses of tDCS studies targeting mostly the dorsolateral prefrontal cortex show small effects on cognitive improvements with only two out of three studies showing clinical improvements. Trigeminal nerve stimulation has been shown to improve ADHD symptoms with medium effect in one RCT. Modern neurotherapeutics are attractive due to their relative safety and potential neuroplastic effects. However, they need to be thoroughly tested for clinical and cognitive efficacy across settings and beyond core symptoms and for their potential for individualised treatment.
Collapse
Affiliation(s)
- Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King’s College London, De Crespigny Park, London SE5 8AF, UK;
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King’s College London, De Crespigny Park, London SE5 8AF, UK
- Department of Child & Adolescent Psychiatry, Transcampus, Dresden University, 01307 Dresden, Germany
| | - Samuel Westwood
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King’s College London, De Crespigny Park, London SE5 8AF, UK;
- Department of Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King’s College London, De Crespigny Park, London SE5 8AF, UK
- Department of Psychology, Wolverhampton University, Wolverhampton WV1 1LY, UK
| | - Pascal-M. Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159 Mannheim, Germany; (P.-M.A.); (D.B.)
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, 68159 Mannheim, Germany; (P.-M.A.); (D.B.)
- Department of Child and Adolescent Psychiatry and Psychotherapy, Hospital of Psychiatry, Psychiatric Hospital University, University of Zürich, 8032 Zürich, Switzerland
- Neuroscience Center Zürich, Swiss Federal Institute of Technology and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Loo SK, Salgari GC, Ellis A, Cowen J, Dillon A, McGough JJ. Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder: Cognitive and Electroencephalographic Predictors of Treatment Response. J Am Acad Child Adolesc Psychiatry 2021; 60:856-864.e1. [PMID: 33068751 PMCID: PMC9714960 DOI: 10.1016/j.jaac.2020.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/12/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The current study applies a precision medicine approach to trigeminal nerve simulation (TNS), a Food and Drug Administration-approved neuromodulation treatment for attention-deficit/hyperactivity disorder (ADHD), by testing secondary outcomes of cognitive and electroencephalographic [EEG] predictors of treatment response among subjects from the original randomized controlled trial. METHOD Children aged 8 to 12 years with ADHD, were randomized to 4 weeks of active or sham TNS treatment, after which the sham group crossed over into 4 weeks of open-label treatment. TNS treatment responders (RESP) had an ADHD Rating Scale (ADHD-RS) Total score reduction of ≥25%, whereas nonresponders (NR) had <25% reduction posttreatment. Assessments included weekly behavioral ratings and pre-/posttreatment cognitive EEG measures. RESULTS The final sample was 25 RESP and 26 NR comprising 34 male and 17 female children, with a mean (SD) age of 10.3 (1.4) years. Baseline measures that significantly differentiated RESP from NR included: lower working memory, lower spelling and mathematics achievement, deficits on behavioral ratings of executive function (BRIEF), and lower resting state EEG power in the right frontal (F4) region (all p values <.05). Compared to NRs, responders showed significantly increased right frontal EEG power with TNS treatment, which was predictive of improved executive functions and ADHD symptomatology (β = 0.65, p < .001). When EEG findings and behavior were modeled together, the area under the curve (AUC) for BRIEF Working Memory scale was 0.83 (p = .003), indicating moderate prediction of treatment response. CONCLUSION Children with ADHD who have executive dysfunction are more likely to be TNS responders and show modulation of right frontal brain activity, improved/normalized executive functions, and ADHD symptom reduction. CLINICAL TRIAL REGISTRATION INFORMATION Developmental Pilot Study of External Trigeminal Nerve Stimulation for ADHD; http://clinicaltrials.gov; NCT02155608.
Collapse
|
16
|
Camp A, Pastrano A, Gomez V, Stephenson K, Delatte W, Perez B, Syas H, Guiseppi-Elie A. Understanding ADHD: Toward an Innovative Therapeutic Intervention. Bioengineering (Basel) 2021; 8:56. [PMID: 34062853 PMCID: PMC8147268 DOI: 10.3390/bioengineering8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a pervasive condition affecting persons across all age groups, although it is primarily diagnosed in children. This neurological condition affects behavior, learning, and social adjustment and requires specific symptomatic criteria to be fulfilled for diagnosis. ADHD may be treated with a combination of psychological or psychiatric therapeutic interventions, but it often goes unattended. People with ADHD face societal bias challenges that impact how they manage the disorder and how they view themselves. This paper summarizes the present state of understanding of this disorder, with particular attention to early diagnosis and innovative therapeutic intervention. Contemporary understanding of the mind-brain duality allows for innovative therapeutic interventions based on neurological stimulation. This paper introduces the concept of neurostimulation as a therapeutic intervention for ADHD and poses the question of the relationship between patient adherence to self-administered therapy and the aesthetic design features of the neurostimulation device. By fabricating devices that go beyond safety and efficacy to embrace the aesthetic preferences of the patient, it is proposed that there will be improvements in patient adherence to a device intended to address ADHD.
Collapse
Affiliation(s)
- Allyson Camp
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Amanda Pastrano
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Valeria Gomez
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Kathleen Stephenson
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - William Delatte
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Brianna Perez
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Hunter Syas
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.C.); (A.P.); (V.G.); (K.S.); (W.D.); (B.P.); (H.S.)
- Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- Department of Electrical and Computer Engineering, College of Engineering, Anderson University, Anderson, SC 29621, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
| |
Collapse
|
17
|
Shah YD, Kelly-Pieper K, Kothare S. eTNS used for ADHD can disrupt sleep architecture. Sleep Med 2021; 83:1-3. [PMID: 33984654 DOI: 10.1016/j.sleep.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Yash D Shah
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Kristin Kelly-Pieper
- Division of Pediatric Pulmonary Medicine, Pediatrics, Sleep Medicine, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Sanjeev Kothare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, NY, USA.
| |
Collapse
|
18
|
Westwood SJ, Radua J, Rubia K. Noninvasive brain stimulation in children and adults with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Psychiatry Neurosci 2021; 46:E14-E33. [PMID: 33009906 PMCID: PMC7955851 DOI: 10.1503/jpn.190179] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) could provide treatment alternatives to stimulant medication for attention-deficit/hyperactivity disorder (ADHD), given some evidence for improvements in cognition and clinical symptoms. However, despite a lack of solid evidence for their use, rTMS and tDCS are already offered clinically and commercially in ADHD. This systematic review and meta-analysis aimed to critically appraise rTMS and tDCS studies in ADHD to inform good research and clinical practice. METHODS A systematic search (up to February 2019) identified 18 studies (rTMS 4, tDCS 14; 311 children and adults with ADHD) stimulating mainly the dorsolateral prefrontal cortex (dlPFC). We included 12 anodal tDCS studies (232 children and adults with ADHD) in 3 random-effects meta-analyses of cognitive measures of attention, inhibition and processing speed. RESULTS The review of rTMS and tDCS showed positive effects in some functions but not others, and little evidence for clinical improvement. The meta-analyses of 1 to 5 sessions of anodal tDCS over mainly the left or bilateral dlPFC showed trend-level improvements in inhibition and processing speed, but not in attention. LIMITATIONS Heterogeneity in stimulation parameters, patient age and outcome measures limited the interpretation of findings. CONCLUSION The review and meta-analysis showed limited evidence that 1 to 5 sessions of rTMS and tDCS, mostly of the dlPFC, improved clinical or cognitive measures of ADHD. These findings did not support using rTMS or tDCS of the dlPFC as an alternative neurotherapy for ADHD as yet. Larger, multi-session stimulation studies identifying more optimal sites and stimulation parameters in combination with cognitive training could achieve larger effects.
Collapse
Affiliation(s)
- Samuel J Westwood
- From the Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom (Westwood, Rubia); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Radua); the Mental Health Research Networking Centre (CIBERSAM), Madrid, Spain (Radua); the Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Sweden (Radua); and the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom (Radua)
| | - Joaquim Radua
- From the Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom (Westwood, Rubia); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Radua); the Mental Health Research Networking Centre (CIBERSAM), Madrid, Spain (Radua); the Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Sweden (Radua); and the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom (Radua)
| | - Katya Rubia
- From the Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom (Westwood, Rubia); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Radua); the Mental Health Research Networking Centre (CIBERSAM), Madrid, Spain (Radua); the Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Sweden (Radua); and the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom (Radua)
| |
Collapse
|
19
|
Zhang F, Xie G, Leung L, Mooney MA, Epprecht L, Norton I, Rathi Y, Kikinis R, Al-Mefty O, Makris N, Golby AJ, O'Donnell LJ. Creation of a novel trigeminal tractography atlas for automated trigeminal nerve identification. Neuroimage 2020; 220:117063. [PMID: 32574805 PMCID: PMC7572753 DOI: 10.1016/j.neuroimage.2020.117063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/29/2022] Open
Abstract
Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identification of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability, time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50 subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual ROI placement for TGN selection and hence yields a higher successful TGN identification rate.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Guoqiang Xie
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Neurosurgery, Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang, China
| | - Laura Leung
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael A Mooney
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lorenz Epprecht
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Isaiah Norton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ossama Al-Mefty
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Departments of Psychiatry, Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alexandra J Golby
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
20
|
Possible links between gut-microbiota and attention-deficit/hyperactivity disorders in children and adolescents. Eur J Nutr 2020; 59:3391-3403. [PMID: 32918136 DOI: 10.1007/s00394-020-02383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
An association between gut-microbiota and several neuropsychiatric conditions including autism, depression, anxiety, schizophrenia, and attention-deficit/hyperactivity disorder (ADHD) has been observed. Despite being the most prevalent neurodevelopmental disorders in children and adolescents worldwide, the etiology and curative approaches to treatment of ADHD remain unclear. There is a probability that gut-microbiota may contribute to ADHD via bidirectional communication between the gut and brain, a system known as the "gut-brain axis". Although a mechanistic link in the gut-brain axis in ADHD has been proposed, there is still a lack of information about the correlation of the microbiome profile with the mechanisms involved. The objective of this review was to summarize the diversity of the gut-microbiota and taxonomic profiles in children and adolescents with ADHD. In this review, we have provided an overview of the association between ADHD and gut-microbiota. The evidence pertinent to potentially distinctive gut-microbiota in children and adolescents with ADHD is also discussed and compared to that of their non-ADHD peers. Finally, the implications and future directions for investigation into the gut microbiome in ADHD patients are proposed.
Collapse
|
21
|
Zwolińska J, Gąsior M. Physical therapy modalities in neurological disorders at developmental age - Assessment of the methodological value of research papers. NeuroRehabilitation 2020; 46:437-453. [PMID: 32508336 DOI: 10.3233/nre-203045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical therapy modalities are often applied in treatment of neurological conditions in children and adolescents. OBJECTIVE Evaluation of the methodological quality of research focusing on the application of physical therapy modalities in children and adolescents with neurological conditions. METHODS Papers published between 2007 and 2018 were included in the review. 149 papers were analyzed and finally 26 studies investigating the use of physical therapy modalities in children and adolescents with neurological conditions were included in the review. Jadad scale (0-5) was used to assess the methodological value of the studies. RESULTS The mean Jadad score was 1.46 (researcher 1) and 1.38 (researcher 2). A score of 0 was awarded to nine (r1) and eight papers (r2). A score of 5 points was awarded to three (r1) and two papers (r2). CONCLUSION 1. The evidence showing the effectiveness of the use of physical therapy modalities is mainly of low quality. 2. The Jadad scale is a valuable tool to assess the quality of research, although it does not always reflect the real value in the case children participate in studies. 3. The analyzed studies show that physical therapy modalities are effective in the treatment of children and adolescents with neurological disorders.
Collapse
Affiliation(s)
- Jolanta Zwolińska
- St Queen Jadwiga's Regional Clinical Hospital No. 2 in Rzeszow, Rzeszów, Poland.,University of Rzeszow, Institute of Physiotherapy, Faculty of Medicine, Rzeszów, Poland.,Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty of University of Rzeszow, Rzeszów, Poland
| | - Monika Gąsior
- St Queen Jadwiga's Regional Clinical Hospital No. 2 in Rzeszow, Rzeszów, Poland
| |
Collapse
|
22
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
23
|
Xie G, Zhang F, Leung L, Mooney MA, Epprecht L, Norton I, Rathi Y, Kikinis R, Al-Mefty O, Makris N, Golby AJ, O'Donnell LJ. Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b-values and single- and multi-fiber tracking strategies. NEUROIMAGE-CLINICAL 2020; 25:102160. [PMID: 31954337 PMCID: PMC6962690 DOI: 10.1016/j.nicl.2019.102160] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Investigation of the performance of multiple dMRI acquisitions and fiber models for trigeminal nerve (TGN) identification. Expert rating study of over 1000 TGN visualizations using seven proposed expert rating anatomical criteria. The two-tensor tractography method had better performance on identifying true positive structures, while generating more false positive streamlines in comparison to the single-tensor tractography method. TGN tracking performance was significantly different across the three b-values for almost all structures studied.
Background The trigeminal nerve (TGN) is the largest cranial nerve and can be involved in multiple inflammatory, compressive, ischemic or other pathologies. Currently, imaging-based approaches to identify the TGN mostly rely on T2-weighted magnetic resonance imaging (MRI), which provides localization of the cisternal portion of the TGN where the contrast between nerve and cerebrospinal fluid (CSF) is high enough to allow differentiation. The course of the TGN within the brainstem as well as anterior to the cisternal portion, however, is more difficult to display on traditional imaging sequences. An advanced imaging technique, diffusion MRI (dMRI), enables tracking of the trajectory of TGN fibers and has the potential to visualize anatomical regions of the TGN not seen on T2-weighted imaging. This may allow a more comprehensive assessment of the nerve in the context of pathology. To date, most work in TGN tracking has used clinical dMRI acquisitions with a b-value of 1000 s/mm2 and conventional diffusion tensor MRI (DTI) tractography methods. Though higher b-value acquisitions and multi-tensor tractography methods are known to be beneficial for tracking brain white matter fiber tracts, there have been no studies conducted to evaluate the performance of these advanced approaches on nerve tracking of the TGN, in particular on tracking different anatomical regions of the TGN. Objective We compare TGN tracking performance using dMRI data with different b-values, in combination with both single- and multi-tensor tractography methods. Our goal is to assess the advantages and limitations of these different strategies for identifying the anatomical regions of the TGN. Methods We proposed seven anatomical rating criteria including true and false positive structures, and we performed an expert rating study of over 1000 TGN visualizations, as follows. We tracked the TGN using high-quality dMRI data from 100 healthy adult subjects from the Human Connectome Project (HCP). TGN tracking performance was compared across dMRI acquisitions with b = 1000 s/mm2, b = 2000 s/mm2 and b = 3000 s/mm2, using single-tensor (1T) and two-tensor (2T) unscented Kalman filter (UKF) tractography. This resulted in a total of six tracking strategies. The TGN was identified using an anatomical region-of-interest (ROI) selection approach. First, in a subset of the dataset we identified ROIs that provided good TGN tracking performance across all tracking strategies. Using these ROIs, the TGN was then tracked in all subjects using the six tracking strategies. An expert rater (GX) visually assessed and scored each TGN based on seven anatomical judgment criteria. These criteria included the presence of multiple expected anatomical segments of the TGN (true positive structures), specifically branch-like structures, cisternal portion, mesencephalic trigeminal tract, and spinal cord tract of the TGN. False positive criteria included the presence of any fibers entering the temporal lobe, the inferior cerebellar peduncle, or the middle cerebellar peduncle. Expert rating scores were analyzed to compare TGN tracking performance across the six tracking strategies. Intra- and inter-rater validation was performed to assess the reliability of the expert TGN rating result. Results The TGN was selected using two anatomical ROIs (Meckel's Cave and cisternal portion of the TGN). The two-tensor tractography method had significantly better performance on identifying true positive structures, while generating more false positive streamlines in comparison to the single-tensor tractography method. TGN tracking performance was significantly different across the three b-values for almost all structures studied. Tracking performance was reported in terms of the percentage of subjects achieving each anatomical rating criterion. Tracking of the cisternal portion and branching structure of the TGN was generally successful, with the highest performance of over 98% using two-tensor tractography and b = 1000 or b = 2000. However, tracking the smaller mesencephalic and spinal cord tracts of the TGN was quite challenging (highest performance of 37.5% and 57.07%, using two-tensor tractography with b = 1000 and b = 2000, respectively). False positive connections to the temporal lobe (over 38% of subjects for all strategies) and cerebellar peduncles (100% of subjects for all strategies) were prevalent. High joint probability of agreement was obtained in the inter-rater (on average 83%) and intra-rater validation (on average 90%), showing a highly reliable expert rating result. Conclusions Overall, the results of the study suggest that researchers and clinicians may benefit from tailoring their acquisition and tracking methodology to the specific anatomical portion of the TGN that is of the greatest interest. For example, tracking of branching structures and TGN-T2 overlap can be best achieved with a two-tensor model and an acquisition using b = 1000 or b = 2000. In general, b = 1000 and b = 2000 acquisitions provided the best-rated tracking results. Further research is needed to improve both sensitivity and specificity of the depiction of the TGN anatomy using dMRI.
Collapse
Affiliation(s)
- Guoqiang Xie
- Department of Neurosurgery, Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang, China; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Laura Leung
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael A Mooney
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lorenz Epprecht
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Isaiah Norton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ossama Al-Mefty
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Departments of Psychiatry, Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alexandra J Golby
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
24
|
Abstract
Depression is one of the most disabling conditions in the world. In many cases patients continue to suffer with depressive disorders despite a series of adequate trials of medication and psychotherapy. Neuromodulation treatments offer a qualitatively different modality of treatment that can frequently prove efficacious in these treatment-refractory patients. The field of neuromodulation focuses on the use of electrical/electromagnetic energy, both invasively and noninvasively, to interface with and ultimately alter activity within the human brain for therapeutic purposes. These treatments provide another set of options to offer patients when clinically indicated, and knowledge of their safety, risks and benefits, and appropriate clinical application is essential for modern psychiatrists and other mental health professionals. Although neuromodulation techniques hold tremendous promise, only three such treatments are currently approved by the United States Food and Drug Administration (FDA) for the treatment of major depressive disorder: electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), and repetitive transcranial magnetic stimulation (rTMS). Additionally, numerous other neurostimulation modalities (deep brain stimulation [DBS], magnetic seizure therapy [MST], transcranial electric stimulation [tES], and trigeminal nerve stimulation [TNS]), though currently experimental, show considerable therapeutic promise. Researchers are actively looking for ways to optimize outcomes and clinical benefits by making neuromodulation treatments safer, more efficacious, and more durable.
Collapse
Affiliation(s)
| | - Willa Xiong
- Washington University School of Medicine, St. Louis, MO, USA
| | - Charles R Conway
- Washington University School of Medicine, St. Louis, MO, USA. .,John Cochran Division, VA St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
25
|
McGough JJ, Sturm A, Cowen J, Tung K, Salgari GC, Leuchter AF, Cook IA, Sugar CA, Loo SK. Double-Blind, Sham-Controlled, Pilot Study of Trigeminal Nerve Stimulation for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2019; 58:403-411.e3. [PMID: 30768393 PMCID: PMC6481187 DOI: 10.1016/j.jaac.2018.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Trigeminal nerve stimulation (TNS), a minimal-risk noninvasive neuromodulation method, showed potential benefits for attention-deficit/hyperactivity disorder (ADHD) in an unblinded open study. The present blinded sham-controlled trial was conducted to assess the efficacy and safety of TNS for ADHD and potential changes in brain spectral power using resting-state quantitative electroencephalography. METHOD Sixty-two children 8 to 12 years old, with full-scale IQ of at least 85 and Schedule for Affective Disorders and Schizophrenia-diagnosed ADHD, were randomized to 4 weeks of nightly treatment with active or sham TNS, followed by 1 week without intervention. Assessments included weekly clinician-administered ADHD Rating Scales (ADHD-RS) and Clinical Global Impression (CGI) scales and quantitative electroencephalography at baseline and week 4. RESULTS ADHD-RS total scores showed significant group-by-time interactions (F1,228 = 8.12, p = .005; week 4 Cohen d = 0.5). CGI-Improvement scores also favored active treatment (χ21,168 = 8.75, p = .003; number needed to treat = 3). Resting-state quantitative electroencephalography showed increased spectral power in the right frontal and frontal midline frequency bands with active TNS. Neither group had clinically meaningful adverse events. CONCLUSION This study demonstrates TNS efficacy for ADHD in a blinded sham-controlled trial, with estimated treatment effect size similar to non-stimulants. TNS is well tolerated and has minimal risk. Additional research should examine treatment response durability and potential impact on brain development with sustained use. CLINICAL TRIAL REGISTRATION INFORMATION Trigeminal Nerve Stimulation for ADHD; http://clinicaltrials.gov/; NCT02155608.
Collapse
Affiliation(s)
- James J McGough
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA.
| | - Alexandra Sturm
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Jennifer Cowen
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Kelly Tung
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Giulia C Salgari
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Andrew F Leuchter
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Ian A Cook
- David Geffen School of Medicine at UCLA, the Henry Samueli School of Engineering and Applied Science at UCLA, and NeuroSigma, Inc., Los Angeles, CA
| | - Catherine A Sugar
- David Geffen School of Medicine and the Fielding School of Public Health at UCLA, Los Angeles, CA
| | - Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior and the David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| |
Collapse
|
26
|
Grigolon RB, Blumberger DM, Daskalakis ZJ, Trevizol AP. Editorial: Transcutaneous Trigeminal Nerve Stimulation for Children With Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2019; 58:392-394. [PMID: 30768389 DOI: 10.1016/j.jaac.2019.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/01/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a prevalence of 9.5% of school-aged children and 4.4% of adults in the United States. ADHD is defined by clinically significant and developmentally inappropriate levels of inattention and hyperactivity/impulsivity. Executive functioning and control and attention regulation are the neuropsychological deficits commonly associated with ADHD.1.
Collapse
Affiliation(s)
| | - Daniel M Blumberger
- University of Toronto and the Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Zafiris J Daskalakis
- University of Toronto and the Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Alisson P Trevizol
- University of Toronto and the Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
27
|
Doruk Camsari D, Kirkovski M, Croarkin PE. Therapeutic Applications of Noninvasive Neuromodulation in Children and Adolescents. Psychiatr Clin North Am 2018; 41:465-477. [PMID: 30098658 PMCID: PMC6413505 DOI: 10.1016/j.psc.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances and growing evidence supporting the safety and efficacy of noninvasive neuromodulatory techniques in adults have facilitated the study of neuromodulation applications in children and adolescents. Noninvasive brain stimulation methods such as transcranial direct current stimulation and transcranial magnetic stimulation have been considered in children with depression, autism spectrum disorder, attention-deficit hyperactivity disorder, and other neuropsychiatric disorders. However, current clinical applications of neuromodulation techniques in children and adolescents are nascent. There is a great need for developmentally informed, large, double-blinded, randomized, controlled clinical trials to demonstrate efficacy and safety of noninvasive brain stimulation in children and adolescents.
Collapse
Affiliation(s)
- Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Melissa Kirkovski
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat 2018; 11:130. [PMID: 29358907 PMCID: PMC5766640 DOI: 10.3389/fnana.2017.00130] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo De Cicco
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Maria P Tramonti Fantozzi
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Massimo Barresi
- Institut des Maladie Neurodégénératives, University of Bordeaux, Bordeaux, France
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Diego Manzoni
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Sturm A, McCracken JT, Cai L. Evaluating the Hierarchical Structure of ADHD Symptoms and Invariance Across Age and Gender. Assessment 2017. [PMID: 28621145 DOI: 10.1177/1073191117714559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bifactor model of attention-deficit/hyperactivity disorder (ADHD) has been extensively explored, yet the tendency of the bifactor model to overfit data necessitates investigation of alternative, more parsimonious models, such as a modified bifactor structure. The present study used item response theory to compare unidimensional, correlated factors, bifactor, and modified bifactor models of ADHD symptoms in a clinical sample of youth ( N = 1,612) and examined differential item functioning (DIF) by age (<11 and ≥11 years) and gender. Results suggested that two restricted bifactor models showed superior fit compared with alternative models, and support strong general and inattention dimensions, with unreliable hyperactivity and impulsivity dimensions. No DIF was found across gender or age. The present study confirms that the general dimension (i.e., inhibition) and one specific dimension (i.e., sustained attention) represent distinct variability in ADHD symptoms that may improve prediction of symptom persistence, treatment response, or functional outcomes.
Collapse
Affiliation(s)
- Alexandra Sturm
- 1 University of California Los Angeles, Los Angeles, CA, USA
| | | | - Li Cai
- 1 University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
30
|
Trigeminal Nerve Stimulation for Major Depressive Disorder: An Updated Systematic Review. ARCHIVES OF NEUROSCIENCE 2016. [DOI: 10.5812/archneurosci.39263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Cook IA, Abrams M, Leuchter AF. Trigeminal Nerve Stimulation for Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder. Neuromodulation 2016; 19:299-305. [PMID: 26818103 DOI: 10.1111/ner.12399] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVES External stimulation of the trigeminal nerve (eTNS) is an emerging neuromodulation therapy for epilepsy and depression. Preliminary studies suggest it has an excellent safety profile and is associated with significant improvements in seizures and mood. Neuroanatomical projections of the trigeminal system suggest eTNS may alter activity in structures regulating mood, anxiety, and sleep. In this proof-of-concept trial, the effects of eTNS were evaluated in adults with posttraumatic stress disorder (PTSD) and comorbid unipolar major depressive disorder (MDD) as an adjunct to pharmacotherapy for these commonly co-occurring conditions. MATERIALS AND METHODS Twelve adults with PTSD and MDD were studied in an eight-week open outpatient trial (age 52.8 [13.7 sd], 8F:4M). Stimulation was applied to the supraorbital and supratrochlear nerves for eight hours each night as an adjunct to pharmacotherapy. Changes in symptoms were monitored using the PTSD Patient Checklist (PCL), Hamilton Depression Rating Scale (HDRS-17), Quick Inventory of Depressive Symptomatology (QIDS-C), and the Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q). RESULTS Over the eight weeks, eTNS treatment was associated with significant decreases in PCL (p = 0.003; median decrease of 15 points; effect size d 1.5), HDRS-17 (p < 0.001; 42% response rate, 25% remission; d 2.1), and QIDS-C scores (p < 0.001; d 1.8), as well as an improvement in quality of life (Q-LES-Q, p < 0.01). eTNS was well tolerated with few treatment emergent adverse events. CONCLUSIONS Significant improvements in PTSD and depression severity were achieved in the eight weeks of acute eTNS treatment. This novel approach to wearable brain stimulation may have use as an adjunct to pharmacotherapy in these disorders if efficacy and tolerability are confirmed with additional studies.
Collapse
Affiliation(s)
- Ian A Cook
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences at UCLA, Los Angeles, CA, USA.,NeuroSigma, Inc, Los Angeles, CA, USA
| | - Michelle Abrams
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew F Leuchter
- Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
32
|
Cosmo C, Baptista AF, de Araújo AN, do Rosário RS, Miranda JGV, Montoya P, de Sena EP. A Randomized, Double-Blind, Sham-Controlled Trial of Transcranial Direct Current Stimulation in Attention-Deficit/Hyperactivity Disorder. PLoS One 2015; 10:e0135371. [PMID: 26267861 PMCID: PMC4534404 DOI: 10.1371/journal.pone.0135371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/20/2015] [Indexed: 12/02/2022] Open
Abstract
Background Current standardized treatments for cognitive impairment in attention-deficit/hyperactivity disorder remain limited and their efficacy restricted. Transcranial direct current stimulation (tDCS) is a promising tool for enhancing cognitive performance in several neuropsychiatric disorders. Nevertheless, the effects of tDCS in reducing cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD) have not yet been investigated. Methods A parallel, randomized, double-blind, sham-controlled trial was conducted to examine the efficacy of tDCS on the modulation of inhibitory control in adults with ADHD. Thirty patients were randomly allocated to each group and performed a go/no-go task before and after a single session of either anodal stimulation (1 mA) over the left dorsolateral prefrontal cortex or sham stimulation. Results A nonparametric two-sample Wilcoxon rank-sum (Mann-Whitney) test revealed no significant differences between the two groups of individuals with ADHD (tDCS vs. sham) in regard to behavioral performance in the go/no go tasks. Furthermore, the effect sizes of group differences after treatment for the primary outcome measures—correct responses, impulsivity and omission errors—were small. No adverse events resulting from stimulation were reported. Conclusion According to these findings, there is no evidence in support of the use of anodal stimulation over the left dorsolateral prefrontal cortex as an approach for improving inhibitory control in ADHD patients. To the best of our knowledge, this is the first clinical study to assess the cognitive effects of tDCS in individuals with ADHD. Further research is needed to assess the clinical efficacy of tDCS in this population. Trial Registration ClinicalTrials.gov NCT01968512
Collapse
Affiliation(s)
- Camila Cosmo
- Postgraduate Program, Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Bahia State Health Department (SESAB), Salvador, Bahia, Brazil
- Functional Electrostimulation Laboratory, Biomorphology Department, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail:
| | - Abrahão Fontes Baptista
- Functional Electrostimulation Laboratory, Biomorphology Department, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program on Medicine and Human Health, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Arão Nogueira de Araújo
- Postgraduate Program, Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Pedro Montoya
- Research Institute on Health Sciences (IUNICS-IdisPa), University of the Balearic Islands, Palma, Spain
| | - Eduardo Pondé de Sena
- Postgraduate Program, Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|