1
|
Khatri UU, Pulliam K, Manesiya M, Cortez MV, Millán JDR, Hussain SJ. Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time. Brain Stimul 2024:S1935-861X(24)01392-5. [PMID: 39716573 DOI: 10.1016/j.brs.2024.12.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed. METHODS As a first step towards this goal, we tested a novel machine learning-based EEG-TMS system that identifies personalized brain activity patterns reflecting strong and weak corticospinal tract (CST) activation (strong and weak CST states) in healthy adults in real-time. Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG training dataset, personalized classifier training, and real-time EEG-informed single-pulse TMS during classifier-predicted personalized CST states. RESULTS MEP amplitudes elicited in real-time during classifier-predicted personalized strong CST states were significantly larger than those elicited during corresponding weak and random CST states. MEP amplitudes elicited in real-time during classifier-predicted personalized strong CST states were also significantly less variable than those elicited during corresponding weak CST states. Personalized CST states lasted for ∼1-2 seconds at a time and ∼1 second elapsed between consecutive similar states. Individual participants exhibited unique differences in spectro-spatial EEG patterns between classifier-predicted personalized strong and weak CST states. CONCLUSION Our results show for the first time that personalized whole-brain EEG activity patterns predict CST activation in real-time in healthy humans. These findings represent a pivotal step towards using personalized brain state-dependent TMS interventions to promote poststroke CST function.
Collapse
Affiliation(s)
- Uttara U Khatri
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Kristen Pulliam
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Muskan Manesiya
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Melanie Vieyra Cortez
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - José Del R Millán
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Saccenti D, Lauro LJR, Crespi SA, Moro AS, Vergallito A, Grgič RG, Pretti N, Lamanna J, Ferro M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast 2024; 2024:7853199. [PMID: 39723244 PMCID: PMC11669434 DOI: 10.1155/np/7853199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration. Consequently, scholars suggested the convenience of integrating the two interventions into a multimodal treatment to boost and prolong the therapeutic outcomes. Such an approach is still in its infancy, and the physiological underpinnings substantiating the effectiveness and utility of combined interventions are still to be clarified. Therefore, this opinion paper aims to provide a theoretical framework consisting of compelling arguments as to why adding NIBS to psychotherapy can promote therapeutic change. Namely, we will discuss the physiological effects of the two interventions, thus providing a rationale to explain the potential advantages of a combined approach.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Leonor J. Romero Lauro
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Sofia A. Crespi
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea S. Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Novella Pretti
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Clinical Psychology Center, Division of Neurology, Galliera Hospital, Genoa, Italy
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Suresh T, Iwane F, Zhang M, McElmurry M, Manesiya M, Freedberg MV, Hussain SJ. Motor sequence learning elicits mu peak-specific corticospinal plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606022. [PMID: 39211097 PMCID: PMC11361050 DOI: 10.1101/2024.07.31.606022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Motor cortical (M1) transcranial magnetic stimulation (TMS) interventions increase corticospinal output and improve motor learning when delivered during sensorimotor mu rhythm trough but not peak phases, suggesting that the mechanisms supporting motor learning may be most active during mu trough phases. Based on these findings, we predicted that motor sequence learning-related corticospinal plasticity would be most evident when measured during mu trough phases. Healthy adults were assigned to either a sequence or no-sequence group. Participants in the sequence group practiced the implicit serial reaction time task (SRTT), which contained an embedded, repeating 12-item sequence. Participants in the no-sequence group practiced a version of the SRTT that contained no sequence. We measured mu phase-independent and mu phase-dependent MEP amplitudes using EEG-informed single-pulse TMS before, immediately after, and 30 minutes after the SRTT in both groups. All participants performed a retention test one hour after SRTT acquisition. In both groups, mu phase-independent MEP amplitudes increased following SRTT acquisition, but the pattern of mu phase-dependent MEP amplitude changes after SRTT acquisition differed between groups. Relative to the no-sequence group, the sequence group showed greater peak-specific MEP amplitude increases 30 minutes after SRTT acquisition. Further, the magnitude of these peak-specific MEP amplitude increases was negatively associated with the magnitude of sequence-specific learning. Contrary to our original hypothesis, results revealed that motor sequence-specific learning elicits peak-specific corticospinal plasticity. Findings provide first direct evidence for the presence of a mu phase-dependent motor learning mechanism in the human brain. New and Noteworthy Recent work suggests that motor learning's neural mechanisms may be most active during specific sensorimotor mu rhythm phases. If so, motor sequence learning-induced corticospinal plasticity should be more evident during some mu phases than others. Our results show that motor sequence-specific learning elicits corticospinal plasticity that is most prominent during mu peak phases. Further, this peak-specific plasticity correlates with learning. Findings establish the presence of a mu phase-dependent motor learning mechanism in the human brain.
Collapse
|
4
|
Wang Q, Gong A, Feng Z, Bai Y, Ziemann U. Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review. Front Syst Neurosci 2024; 18:1489949. [PMID: 39698203 PMCID: PMC11652484 DOI: 10.3389/fnsys.2024.1489949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
Collapse
Affiliation(s)
- Qijun Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Wischnewski M, Shirinpour S, Alekseichuk I, Lapid MI, Nahas Z, Lim KO, Croarkin PE, Opitz A. Real-time TMS-EEG for brain state-controlled research and precision treatment: a narrative review and guide. J Neural Eng 2024; 21:061001. [PMID: 39442548 PMCID: PMC11528152 DOI: 10.1088/1741-2552/ad8a8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Transcranial magnetic stimulation (TMS) modulates neuronal activity, but the efficacy of an open-loop approach is limited due to the brain state's dynamic nature. Real-time integration with electroencephalography (EEG) increases experimental reliability and offers personalized neuromodulation therapy by using immediate brain states as biomarkers. Here, we review brain state-controlled TMS-EEG studies since the first publication several years ago. A summary of experiments on the sensorimotor mu rhythm (8-13 Hz) shows increased cortical excitability due to TMS pulse at the trough and decreased excitability at the peak of the oscillation. Pre-TMS pulse mu power also affects excitability. Further, there is emerging evidence that the oscillation phase in theta and beta frequency bands modulates neural excitability. Here, we provide a guide for real-time TMS-EEG application and discuss experimental and technical considerations. We consider the effects of hardware choice, signal quality, spatial and temporal filtering, and neural characteristics of the targeted brain oscillation. Finally, we speculate on how closed-loop TMS-EEG potentially could improve the treatment of neurological and mental disorders such as depression, Alzheimer's, Parkinson's, schizophrenia, and stroke.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Psychology, Experimental Psychology, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States of America
| | - Maria I Lapid
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
6
|
Brancaccio A, Tabarelli D, Zazio A, Bertazzoli G, Metsomaa J, Ziemann U, Bortoletto M, Belardinelli P. Towards the definition of a standard in TMS-EEG data preprocessing. Neuroimage 2024; 301:120874. [PMID: 39341472 DOI: 10.1016/j.neuroimage.2024.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Combining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simultaneous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortunately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in the concurrent EEG acquisition. Therefore, a careful but aggressive pre-processing is required to efficiently remove artifacts. Unfortunately, as already reported in the literature, different preprocessing approaches can introduce variability in the results. Here we aim at characterizing the three main TMS-EEG preprocessing pipelines currently available, namely ARTIST (Wu et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR (Mutanen et al., 2018, 2016), providing an insight to researchers who need to choose between different approaches. Differently from previous works, we tested the pipelines using a synthetic TMS-EEG signal with a known ground-truth (the artifacts-free to-be-reconstructed signal). In this way, it was possible to assess the reliability of each pipeline precisely and quantitatively, providing a more robust reference for future research. In summary, we found that all pipelines performed well, but with differences in terms of the spatio-temporal precision of the ground-truth reconstruction. Crucially, the three pipelines impacted differently on the inter-trial variability, with ARTIST introducing inter-trial variability not already intrinsic to the ground-truth signal.
Collapse
Affiliation(s)
- A Brancaccio
- Center for Mind/Brain Sciences-CIMeC, University of Trento, I-38123 Trento, Italy.
| | - D Tabarelli
- Center for Mind/Brain Sciences-CIMeC, University of Trento, I-38123 Trento, Italy
| | - A Zazio
- Neurophysiology lab, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - G Bertazzoli
- Neurophysiology lab, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - J Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - U Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - M Bortoletto
- Neurophysiology lab, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P Belardinelli
- Center for Mind/Brain Sciences-CIMeC, University of Trento, I-38123 Trento, Italy; Department of Neurology & Stroke, University of Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
7
|
Lewis CP, Nakonezny PA, Sonmez AI, Ozger C, Garzon JF, Camsari DD, Yuruk D, Romanowicz M, Shekunov J, Zaccariello MJ, Vande Voort JL, Croarkin PE. A Dose-Finding, Biomarker Validation, and Effectiveness Study of Transcranial Magnetic Stimulation for Adolescents With Depression. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)01839-2. [PMID: 39245178 DOI: 10.1016/j.jaac.2024.08.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Research and clinical application of transcranial magnetic stimulation (TMS) for adolescents with major depressive disorder has advanced slowly. Significant gaps persist in the understanding of optimized, age-specific protocols and dosing strategies. This study aimed to compare the clinical effects of 1-Hz vs 10-Hz TMS regimens and examine a biomarker-informed treatment approach with glutamatergic intracortical facilitation (ICF). METHOD Participants with moderate-to-severe symptoms of major depressive disorder were randomized to 30 sessions of left prefrontal 1-Hz or 10-Hz TMS, stratified by baseline ICF measures. The primary clinical outcome measure was the Children's Depression Rating Scale-Revised (CDRS-R). The CDRS-R score and ICF biomarker were collected weekly. RESULTS A total of 41 participants received either 1-Hz (n = 22) or 10-Hz (n = 19) TMS treatments. CDRS-R scores improved compared with baseline in both 1-Hz and 10-Hz groups. For participants with low ICF at baseline, the overall least squares means of CDRS-R scores over the 6-week trial showed that depressive symptom severity was lower for participants treated with 1-Hz TMS than for participants who received 10-Hz TMS. There were no significant changes in weekly ICF measurements across 6 weeks of TMS treatment. CONCLUSION Low ICF may reflect optimal glutamatergic N-methyl-d-aspartate receptor activity that facilitates the therapeutic effect of 1-Hz TMS through long-term depression-like mechanisms on synaptic plasticity. The stability of ICF suggests that it is a tonic, traitlike measure of N-methyl-d-aspartate receptor-mediated neurotransmission, with potential utility to inform parameter selection for therapeutic TMS in adolescents with major depressive disorder. CLINICAL TRIAL REGISTRATION INFORMATION Biomarkers in Repetitive Transcranial Magnetic Stimulation (rTMS) for Adolescent Depression; https://clinicaltrials.gov; NCT03363919. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list. While citing references scientifically relevant for this work, we also actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our reference list.
Collapse
Affiliation(s)
- Charles P Lewis
- University of Minnesota, Minneapolis, Minnesota; Masonic Institute for the Developing Brain, Minneapolis, Minnesota; Mayo Clinic, Rochester, Minnesota
| | | | - Ayse Irem Sonmez
- Mayo Clinic, Rochester, Minnesota; Columbia University, New York, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang Y, Chang W, Ding J, Xu H, Wu X, Ma L, Xu Y. Effects of different modalities of transcranial magnetic stimulation on post-stroke cognitive impairment: a network meta-analysis. Neurol Sci 2024; 45:4399-4416. [PMID: 38600332 DOI: 10.1007/s10072-024-07504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke. METHODS Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023. RESULTS A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores. CONCLUSIONS High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.
Collapse
Affiliation(s)
- Yulin Yang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wanpeng Chang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiangtao Ding
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongli Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Wu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihong Ma
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yanwen Xu
- Ergonomics and Vocational Rehabilitation Lab, College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Rehabilitation Medicine, Wuxi , 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
9
|
Mahmoud W, Baur D, Zrenner B, Brancaccio A, Belardinelli P, Ramos-Murguialday A, Zrenner C, Ziemann U. Brain state-dependent repetitive transcranial magnetic stimulation for motor stroke rehabilitation: a proof of concept randomized controlled trial. Front Neurol 2024; 15:1427198. [PMID: 39253360 PMCID: PMC11381265 DOI: 10.3389/fneur.2024.1427198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background In healthy subjects, repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects contingent on electroencephalography (EEG)-derived excitability states, defined by the phase of the ongoing sensorimotor μ-oscillation. The therapeutic potential of brain state-dependent rTMS in the rehabilitation of upper limb motor impairment post-stroke remains unexplored. Objective Proof-of-concept trial to assess the efficacy of rTMS, synchronized to the sensorimotor μ-oscillation, in improving motor impairment and reducing upper-limb spasticity in stroke patients. Methods We conducted a parallel group, randomized double-blind controlled trial in 30 chronic stroke patients (clinical trial registration number: NCT05005780). The experimental intervention group received EEG-triggered rTMS of the ipsilesional M1 [1,200 pulses; 0.33 Hz; 100% of the resting motor threshold (RMT)], while the control group received low-frequency rTMS of the contralesional motor cortex (1,200 pulses; 1 Hz, 115% RMT), i.e., an established treatment protocol. Both groups received 12 rTMS sessions (20 min, 3× per week, 4 weeks) followed by 50 min of physiotherapy. The primary outcome measure was the change in upper-extremity Fugl-Meyer assessment (FMA-UE) scores between baseline, immediately post-treatment and 3 months' follow-up. Results Both groups showed significant improvement in the primary outcome measure (FMA-UE) and the secondary outcome measures. This included the reduction in spasticity, measured objectively using the hand-held dynamometer, and enhanced motor function as measured by the Wolf Motor Function Test (WMFT). There were no significant differences between the groups in any of the outcome measures. Conclusion The application of brain state-dependent rTMS for rehabilitation in chronic stroke patients is feasible. This pilot study demonstrated that the brain oscillation-synchronized rTMS protocol produced beneficial effects on motor impairment, motor function and spasticity that were comparable to those observed with an established therapeutic rTMS protocol. Clinical Trial Registration ClinicalTrials.gov, identifier [NCT05005780].
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Brigitte Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arianna Brancaccio
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Paolo Belardinelli
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Khatri UU, Pulliam K, Manesiya M, Cortez MV, Millán JDR, Hussain SJ. Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607985. [PMID: 39229238 PMCID: PMC11370398 DOI: 10.1101/2024.08.15.607985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are therefore needed. METHODS As a first step towards this goal, we tested a novel machine learning-based EEG-TMS system that identifies personalized brain activity patterns reflecting strong and weak corticospinal tract (CST) output (strong and weak CST states) in healthy adults in real-time. Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG training dataset, personalized classifier training, and real-time EEG-informed single pulse TMS during classifier-predicted personalized CST states. RESULTS MEP amplitudes elicited in real-time during personalized strong CST states were significantly larger than those elicited during personalized weak and random CST states. MEP amplitudes elicited in real-time during personalized strong CST states were also significantly less variable than those elicited during personalized weak CST states. Personalized CST states lasted for ~1-2 seconds at a time and ~1 second elapsed between consecutive similar states. Individual participants exhibited unique differences in spectro-spatial EEG patterns between personalized strong and weak CST states. CONCLUSION Our results show for the first time that personalized whole-brain EEG activity patterns predict CST activation in real-time in healthy humans. These findings represent a pivotal step towards using personalized brain state-dependent TMS interventions to promote poststroke CST function.
Collapse
Affiliation(s)
- Uttara U Khatri
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Kristen Pulliam
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Muskan Manesiya
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Melanie Vieyra Cortez
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - José del R. Millán
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Bardel B, Ayache SS, Lefaucheur JP. The contribution of EEG to assess and treat motor disorders in multiple sclerosis. Clin Neurophysiol 2024; 162:174-200. [PMID: 38643612 DOI: 10.1016/j.clinph.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) can highlight significant changes in spontaneous electrical activity of the brain produced by altered brain network connectivity linked to inflammatory demyelinating lesions and neuronal loss occurring in multiple sclerosis (MS). In this review, we describe the main EEG findings reported in the literature to characterize motor network alteration in term of local activity or functional connectivity changes in patients with MS (pwMS). METHODS A comprehensive literature search was conducted to include articles with quantitative analyses of resting-state EEG recordings (spectrograms or advanced methods for assessing spatial and temporal dynamics, such as coherence, theory of graphs, recurrent quantification, microstates) or dynamic EEG recordings during a motor task, with or without connectivity analyses. RESULTS In this systematic review, we identified 26 original articles using EEG in the evaluation of MS-related motor disorders. Various resting or dynamic EEG parameters could serve as diagnostic biomarkers of motor control impairment to differentiate pwMS from healthy subjects or be related to a specific clinical condition (fatigue) or neuroradiological aspects (lesion load). CONCLUSIONS We highlight some key EEG patterns in pwMS at rest and during movement, both suggesting an alteration or disruption of brain connectivity, more specifically involving sensorimotor networks. SIGNIFICANCE Some of these EEG biomarkers of motor disturbance could be used to design future therapeutic strategies in MS based on neuromodulation approaches, or to predict the effects of motor training and rehabilitation in pwMS.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Samar S Ayache
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France; Gilbert and Rose-Marie Chagoury School of Medicine, Department of Neurology, 4504 Byblos, Lebanon; Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, F-75116 Paris, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France.
| |
Collapse
|
12
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. Brain Stimul 2024; 17:698-712. [PMID: 38821396 PMCID: PMC11313454 DOI: 10.1016/j.brs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is believed to alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach generally evaluates low-frequency neural activity at the cortical surface. However, TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct assessment of deeper and more localized oscillatory responses across the frequency spectrum. OBJECTIVE/HYPOTHESIS Our study used iEEG to understand the effects of TMS on human neural activity in the spectral domain. We asked (1) which brain regions respond to cortically-targeted TMS, and in what frequency bands, (2) whether deeper brain structures exhibit oscillatory responses, and (3) whether the neural responses to TMS reflect evoked versus induced oscillations. METHODS We recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at either the dorsolateral prefrontal cortex (DLPFC) or parietal cortex. iEEG signals were analyzed using spectral methods to understand the oscillatory responses to TMS. RESULTS Stimulation to DLPFC drove widespread low-frequency increases (3-8 Hz) in frontolimbic cortices and high-frequency decreases (30-110 Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with phase-locked evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. CONCLUSIONS By combining TMS with intracranial EEG recordings, our results suggest that TMS is an effective means to perturb oscillatory neural activity in brain-wide networks, including deeper structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA.
| | - Jeffrey B Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Biophysics Graduate Program, Stanford University Medical Center, Stanford, 94305, CA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Nicholas T Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Brandt D Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Aaron D Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Corey J Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
13
|
Li R, Meng J, You J, Zhou X, Xu M, Ming D. Long-range and cross-frequency neural modulation of gamma flicker on vigilance decrement. Cogn Neurodyn 2024; 18:417-429. [PMID: 39554724 PMCID: PMC11564507 DOI: 10.1007/s11571-023-10008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 09/10/2023] [Indexed: 11/19/2024] Open
Abstract
Vigilance decrement is a ubiquitous problem in attention-demanding tasks. Therefore, it is significant to develop neuromodulation methods to mitigate the negative neural effect of vigilance decrement. As one of the non-invasive brain stimulation techniques, visual flicker/rhythmic visual stimulation (RVS) has been proposed to entrain neural oscillations and thereby modulate cognitive processes supported by these brain rhythms, but its effects on vigilance decrement are still unclear. Here, we investigated the effect of gamma flicker on vigilance decrement and its underlying neural mechanism. Thirty participants were recruited to perform a 12-min vigilance task. They were required to discriminate the orientation of lateralized triangle targets with/without 40-Hz RVS background. As a result, it was found that 40-Hz RVS mitigated the decrease in perceptual sensitivity ( A ' ) with time-on-task, a typical adverse effect on behaviors caused by vigilance decrement. Electroencephalography (EEG) results showed that 40-Hz RVS could reduce the significant decline of post-stimulus theta-band inter-trial coherence (ITC) in the prefrontal cortex (PFC) with time-on-task. Regression analysis further revealed that the anterior theta-band ITC was significantly correlated to perceptual sensitivity ( A ' ) in a positive manner. These findings indicated that gamma flicker to the visual cortex had a cross-frequency neuromodulation effect on low-frequency EEG responses over the long-range PFC region. Furthermore, this study provides new insights into the neural effects of 40-Hz RVS, which could impact time-on-task effects on vigilance behaviors and alter the utilization of attentional resources. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10008-6.
Collapse
Affiliation(s)
- Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
| | - Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jia You
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiaoyu Zhou
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
| | - Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
14
|
Abstract
In the same way that beauty lies in the eye of the beholder, what a stimulus does to the brain is determined not simply by the nature of the stimulus but by the nature of the brain that is receiving the stimulus at that instant in time. Over the past decades, therapeutic brain stimulation has typically applied open-loop fixed protocols and has largely ignored this principle. Only recent neurotechnological advancements have enabled us to predict the nature of the brain (i.e., the electrophysiological brain state in the next instance in time) with sufficient temporal precision in the range of milliseconds using feedforward algorithms applied to electroencephalography time-series data. This allows stimulation exclusively whenever the targeted brain area is in a prespecified excitability or connectivity state. Preclinical studies have shown that repetitive stimulation during a particular brain state (e.g., high-excitability state), but not during other states, results in lasting modification (e.g., long-term potentiation) of the stimulated circuits. Here, we survey the evidence that this is also possible at the systems level of the human cortex using electroencephalography-informed transcranial magnetic stimulation. We critically discuss opportunities and difficulties in developing brain state-dependent stimulation for more effective long-term modification of pathological brain networks (e.g., in major depressive disorder) than is achievable with conventional fixed protocols. The same real-time electroencephalography-informed transcranial magnetic stimulation technology will allow closing of the loop by recording the effects of stimulation. This information may enable stimulation protocol adaptation that maximizes treatment response. This way, brain states control brain stimulation, thereby introducing a paradigm shift from open-loop to closed-loop stimulation.
Collapse
Affiliation(s)
- Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany.
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Yu H, Shu X, Zhou Y, Zhou S, Wang X. Intermittent theta burst stimulation combined with cognitive training improves cognitive dysfunction and physical dysfunction in patients with post-stroke cognitive impairment. Behav Brain Res 2024; 461:114809. [PMID: 38081516 DOI: 10.1016/j.bbr.2023.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE Post-stroke cognitive impairment (PSCI) is a common complication of stroke. Intermittent theta burst stimulation (iTBS) can inducing motor learning. We observed the effects of combination of iTBS with cognitive training on physical/cognitive dysfunctions in PSCI patients. METHODS PSCI patients treated with basic treatment & cognitive training (Control group)/iTBS & cognitive training (iTBS group) were enrolled, with Mini-mental State Examination (MMSE)/Montreal Cognitive Assessment (MoCA)/Frontal Assessment Battery (FAB)/barthel index (BI)/Upper Limb Fugl-Meyer Assessment (U-FMA)/Action Research Arm Test (ARAT) scores compared. Gait spatiotemporal parameters/dynamic parameters were analyzed by 3D gait analysis. Correlations between MMSE/MoCA scores and gait parameters in PSCI patients after iTBS & cognitive training were analyzed by Spearman analysis. RESULTS Increased MMSE/MoCA/FAB/BI/U-FMA/ARAT scores, step speed, step frequency, stride length, step width, step length on the affected side, percentage of swing phase on the affected side, hip joint flexion angle on the affected side, knee joint flexion angle on the affected side, and ankle plantar flexion angle on the affected side and reduced gait period on the affected side and percentage of stance phase on the affected side were found in patients of both groups after treatment, with the effects in the iTBS group more profound. CONCLUSION iTBS & cognitive training obviously improved the cognitive function scores/upper limb function scores/gait parameters in PSCI patients versus cognitive training treatment. After combination therapy, the MMSE/MoCA scores of PSCI patients were significantly correlated with gait parameters. This provided more data support for iTBS & cognitive training application in the rehabilitation treatment of PSCI patients.
Collapse
Affiliation(s)
- Hong Yu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xinxin Shu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Yuda Zhou
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Siwei Zhou
- Department of Geriatric Rehabilitation, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xiaojun Wang
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| |
Collapse
|
16
|
Rösch J, Emanuel Vetter D, Baldassarre A, Souza VH, Lioumis P, Roine T, Jooß A, Baur D, Kozák G, Blair Jovellar D, Vaalto S, Romani GL, Ilmoniemi RJ, Ziemann U. Individualized treatment of motor stroke: A perspective on open-loop, closed-loop and adaptive closed-loop brain state-dependent TMS. Clin Neurophysiol 2024; 158:204-211. [PMID: 37945452 DOI: 10.1016/j.clinph.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Johanna Rösch
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - David Emanuel Vetter
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Andreas Jooß
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - David Baur
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Gábor Kozák
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - D Blair Jovellar
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Selja Vaalto
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany.
| |
Collapse
|
17
|
Humaidan D, Xu J, Kirchhoff M, Romani GL, Ilmoniemi RJ, Ziemann U. Towards real-time EEG-TMS modulation of brain state in a closed-loop approach. Clin Neurophysiol 2024; 158:212-217. [PMID: 38160069 DOI: 10.1016/j.clinph.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Dania Humaidan
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Jiahua Xu
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Miriam Kirchhoff
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University and Helsinki University Hospital, Helsinki, Finland
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Germany.
| |
Collapse
|
18
|
Vetter DE, Zrenner C, Belardinelli P, Mutanen TP, Kozák G, Marzetti L, Ziemann U. Targeting motor cortex high-excitability states defined by functional connectivity with real-time EEG-TMS. Neuroimage 2023; 284:120427. [PMID: 38008297 PMCID: PMC10714128 DOI: 10.1016/j.neuroimage.2023.120427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 11/28/2023] Open
Abstract
We tested previous post-hoc findings indicating a relationship between functional connectivity (FC) in the motor network and corticospinal excitability (CsE), in a real-time EEG-TMS experiment in healthy participants. We hypothesized that high FC between left and right motor cortex predicts high CsE. FC was quantified in real-time by single-trial phase-locking value (stPLV), and TMS single pulses were delivered based on the current FC. CsE was indexed by motor-evoked potential (MEP) amplitude in a hand muscle. Possible confounding factors (pre-stimulus μ-power and phase, interstimulus interval) were evaluated post hoc. MEPs were significantly larger during high FC compared to low FC. Post hoc analysis revealed that the FC condition showed a significant interaction with μ-power in the stimulated hemisphere. Further, inter-stimulus interval (ISI) interacted with high vs. low FC conditions. In summary, FC was confirmed to be predictive of CsE, but should not be considered in isolation from μ-power and ISI. Moreover, FC was complementary to μ-phase in predicting CsE. Motor network FC is another marker of real-time accessible CsE beyond previously established markers, in particular phase and power of the μ rhythm, and may help define a more robust composite biomarker of high/low excitability states of human motor cortex.
Collapse
Affiliation(s)
- David Emanuel Vetter
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Trento, Trentino-Alto Adige, Italy
| | - Tuomas Petteri Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto Yliopisto, Espoo, Uusimaa, Finland
| | - Gábor Kozák
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
| | - Laura Marzetti
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Abruzzo, Italy; Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Baden-Württemberg, Germany; Hertie-Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany.
| |
Collapse
|
19
|
Lv Y, Zhang JJ, Wang K, Ju L, Zhang H, Zhao Y, Pan Y, Gong J, Wang X, Fong KNK. Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial. Brain Sci 2023; 13:1662. [PMID: 38137110 PMCID: PMC10741851 DOI: 10.3390/brainsci13121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
To find out the optimal treatment sessions of repetitive transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) for upper extremity dysfunction after stroke during the 6-week treatment and to explore its mechanism using motor-evoked potentials (MEPs) and resting-state functional magnetic resonance imaging (rs-fMRI), 72 participants with upper extremity motor dysfunction after ischemic stroke were randomly divided into the control group, 10-session, 20-session, and 30-session rTMS groups. Low-frequency (1 Hz) rTMS over the contralesional M1 was applied in all rTMS groups. The motor function of the upper extremity was assessed before and after treatment. In addition, MEPs and rs-fMRI data were analyzed to detect its effect on brain reorganization. After 6 weeks of treatment, there were significant differences in the Fugl-Meyer Assessment of the upper extremity and the Wolf Motor Function Test scores between the 10-session group and the 30-session group and between the 20- and 30-session groups and the control group, while there was no significant difference between the 20-session group and the 30-session group. Meanwhile, no significant difference was found between the 10-session group and the control group. The 20-session group of rTMS decreased the excitability of the contralesional corticospinal tract represented by the amplitudes of MEPs and enhanced the functional connectivity of the ipsilesional M1 or premotor cortex with the the precentral gyrus, postcentral gyrus, and cingulate gyrus, etc. In conclusion, the 20-session of rTMS protocol is the optimal treatment sessions of TMS for upper extremity dysfunction after stroke during the 6-week treatment. The potential mechanism is related to its influence on the excitability of the corticospinal tract and the remodeling of corticomotor functional networks.
Collapse
Affiliation(s)
- Yichen Lv
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kui Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Leilei Ju
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hongying Zhang
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yuehan Zhao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yao Pan
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jianwei Gong
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264000, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Campos B, Choi H, DeMarco AT, Seydell-Greenwald A, Hussain SJ, Joy MT, Turkeltaub PE, Zeiger W. Rethinking Remapping: Circuit Mechanisms of Recovery after Stroke. J Neurosci 2023; 43:7489-7500. [PMID: 37940595 PMCID: PMC10634578 DOI: 10.1523/jneurosci.1425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke. Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke, and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery, including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex, specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural population dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functionality. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper understanding of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.
Collapse
Affiliation(s)
- Baruc Campos
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Hoseok Choi
- Department of Neurology, Weill Institute for Neuroscience, University of California-San Francisco, San Francisco, California 94158
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- Department of Rehabilitation Medicine, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712
| | - Mary T Joy
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
21
|
Bai Y, Xuan J, Jia S, Ziemann U. TMS of parietal and occipital cortex locked to spontaneous transient large-scale brain states enhances natural oscillations in EEG. Brain Stimul 2023; 16:1588-1597. [PMID: 37827359 DOI: 10.1016/j.brs.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Fluctuating neuronal network states influence brain responses to transcranial magnetic stimulation (TMS). Our previous studies revealed that transient spontaneous bihemispheric brain states in the EEG, driven by oscillatory power, information flow and regional domination, modify cortical EEG responses to TMS. However, the impact of ongoing fluctuations of large-scale brain network states on TMS-EEG responses has not been explored. OBJECTIVES To determine the effects of large-scale brain network states on TMS-EEG responses. METHODS Resting-state EEG and structural MRI from 24 healthy subjects were recorded to infer large-scale brain states. TMS-EEG was acquired with TMS at state-related targets, identified by the spatial distribution of state activation power from resting-state EEG. TMS-induced oscillations were measured by event-related spectral perturbations (ERSPs), and classified with respect to the brain states preceding the TMS pulses. State-locked ERSPs with TMS at specific state-related targets and during state activation were compared with state-unlocked ERSPs. RESULTS Intra-individual comparison of ERSPs by threshold free cluster enhancement (TFCE) revealed that posterior and visual state-locked TMS, respectively, increased beta and alpha responses to TMS of parietal and occipital cortex compared to state-unlocked TMS. Also, the peak frequencies of ERSPs were increased with state-locked TMS. In addition, inter-individual correlation analyses revealed that posterior and visual state-locked TMS-induced oscillation power (ERSP clusters identified by TFCE) positively correlated with state-dependent oscillation power preceding TMS. CONCLUSIONS Spontaneous transient large-scale brain network states modify TMS-induced natural oscillations in specific brain regions. This significantly extends our knowledge on the critical importance of instantaneous state on explaining the brain's varying responsiveness to external perturbation.
Collapse
Affiliation(s)
- Yang Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330006, Jiangxi, China; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Jie Xuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shihang Jia
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Pillen S, Shulga A, Zrenner C, Ziemann U, Bergmann TO. Repetitive sensorimotor mu-alpha phase-targeted afferent stimulation produces no phase-dependent plasticity related changes in somatosensory evoked potentials or sensory thresholds. PLoS One 2023; 18:e0293546. [PMID: 37903116 PMCID: PMC10615264 DOI: 10.1371/journal.pone.0293546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Phase-dependent plasticity has been proposed as a neurobiological mechanism by which oscillatory phase-amplitude cross-frequency coupling mediates memory process in the brain. Mimicking this mechanism, real-time EEG oscillatory phase-triggered transcranial magnetic stimulation (TMS) has successfully induced LTP-like changes in corticospinal excitability in the human motor cortex. Here we asked whether EEG phase-triggered afferent stimulation alone, if repetitively applied to the peaks, troughs, or random phases of the sensorimotor mu-alpha rhythm, would be sufficient to modulate the strength of thalamocortical synapses as assessed by changes in somatosensory evoked potential (SEP) N20 and P25 amplitudes and sensory thresholds (ST). Specifically, we applied 100 Hz triplets of peripheral electrical stimulation (PES) to the thumb, middle, and little finger of the right hand in pseudorandomized trials, with the afferent input from each finger repetitively and consistently arriving either during the cortical mu-alpha trough or peak or at random phases. No significant changes in SEP amplitudes or ST were observed across the phase-dependent PES intervention. We discuss potential limitations of the study and argue that suboptimal stimulation parameter choices rather than a general lack of phase-dependent plasticity in thalamocortical synapses are responsible for this null finding. Future studies should further explore the possibility of phase-dependent sensory stimulation.
Collapse
Affiliation(s)
- Steven Pillen
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Anastasia Shulga
- Ward for Demanding Rehabilitation, Helsinki University Hospital, Department of Physical and Rehabilitation Medicine, Helsinki, Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki, Finland
| | - Christoph Zrenner
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Til Ole Bergmann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
23
|
Li ZJ, Zhang LB, Chen YX, Hu L. Advancements and challenges in neuromodulation technology: interdisciplinary opportunities and collaborative endeavors. Sci Bull (Beijing) 2023; 68:1978-1982. [PMID: 37599173 DOI: 10.1016/j.scib.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
24
|
Suresh T, Hussain SJ. Re-evaluating the contribution of sensorimotor mu rhythm phase and power to human corticospinal output: A replication study. Brain Stimul 2023; 16:936-938. [PMID: 37257815 DOI: 10.1016/j.brs.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Tharan Suresh
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, TX, 78712, USA
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, TX, 78712, USA.
| |
Collapse
|
25
|
Xing Y, Zhang A, Li C, Han J, Wang J, Luo L, Chang X, Tian Z, Bai Y. Corticostriatal Projections Relying on GABA Levels Mediate Exercise-Induced Functional Recovery in Cerebral Ischemic Mice. Mol Neurobiol 2023; 60:1836-1853. [PMID: 36580196 DOI: 10.1007/s12035-022-03181-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Stroke is a neurological disorder characterized by high disability and death worldwide. The occlusion of the middle cerebral artery (MCAO) supplying the cortical motor regions and its projection pathway regions can either kill the cortical neurons or block their projections to the spinal cord and subcortical structure. The cerebral cortex is the primary striatal afferent, and the medium spiny neurons of the striatum have been identified as the major output neurons projecting to the substantia nigra and pallidum. Thus, disconnection of the corticostriatal circuit often occurs in the model of MCAO. In this study, we hypothesize that striatal network dysfunction in cerebral ischemic mice ultimately modulates the activity of striatal projections from cortical neurons to improve dysfunction during exercise training. In this study, we observed that the corticostriatal circuit originating from glutamatergic neurons could partially medicate the improvement of motor and anxiety-like behavior in mice with exercise. Furthermore, exercising or activating a single optogenetic corticostriatal circuit can increase the striatal gamma-aminobutyric acid (GABA) level. Using the GABA-A receptor antagonist, bicuculline, we further identified that the striatal glutamatergic projection from the cortical neurons relies on the GABAergic synapse's activity to modulate exercise-induced functional recovery. Overall, those results reveal that the dorsal striatum-projecting subpopulation of cortical glutamatergic neurons can influence GABA levels in the striatum, playing a critical role in modulating exercise-induced improvement of motor and anxiety-like behavior.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China
- Department of Neurological Rehabilitation Medicine, The First Rehabilitation Hospital of Shanghai, Shanghai, 200093, People's Republic of China
| | - Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, No. 130 Dong 'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Jun Wang
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, No. 130 Dong 'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China
| | - Xuechun Chang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, No. 130 Dong 'An Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
26
|
Zrenner C, Kozák G, Schaworonkow N, Metsomaa J, Baur D, Vetter D, Blumberger DM, Ziemann U, Belardinelli P. Corticospinal excitability is highest at the early rising phase of sensorimotor µ-rhythm. Neuroimage 2023; 266:119805. [PMID: 36513289 DOI: 10.1016/j.neuroimage.2022.119805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations are thought to reflect alternating cortical states of excitation and inhibition. Studies of perceptual thresholds and evoked potentials have shown the scalp EEG negative phase of the oscillation to correspond to a short-lasting low-threshold and high-excitability state of underlying visual, somatosensory, and primary motor cortex. The negative peak of the oscillation is assumed to correspond to the state of highest excitability based on biophysical considerations and considerable effort has been made to improve the extraction of a predictive signal by individually optimizing EEG montages. Here, we investigate whether it is the negative peak of sensorimotor µ-rhythm that corresponds to the highest corticospinal excitability, and whether this is consistent between individuals. In 52 adult participants, a standard 5-channel surface Laplacian EEG montage was used to extract sensorimotor µ-rhythm during transcranial magnetic stimulation (TMS) of primary motor cortex. Post-hoc trials were sorted from 800 TMS-evoked motor potentials (MEPs) according to the pre-stimulus EEG (estimated instantaneous phase) and MEP amplitude (as an index of corticospinal excitability). Different preprocessing transformations designed to improve the accuracy by which µ-alpha phase predicts excitability were also tested. By fitting a sinusoid to the MEP amplitudes, sorted according to pre-stimulus EEG-phase, we found that excitability was highest during the early rising phase, at a significant delay with respect to the negative peak by on average 45° or 10 ms. The individual phase of highest excitability was consistent across study participants and unaffected by two different EEG-cleaning methods that utilize 64 channels to improve signal quality by compensating for individual noise level and channel covariance. Personalized transformations of the montage did not yield better prediction of excitability from µ-alpha phase. The relationship between instantaneous phase of a brain oscillation and fluctuating cortical excitability appears to be more complex than previously hypothesized. In TMS of motor cortex, a standard surface Laplacian 5-channel EEG montage is effective in extracting a predictive signal and the phase corresponding to the highest excitability appears to be consistent between individuals. This is an encouraging result with respect to the clinical potential of therapeutic personalized brain interventions in the motor system. However, it remains to be investigated, whether similar results can be obtained for other brain areas and brain oscillations targeted with EEG and TMS.
Collapse
Affiliation(s)
- Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Neurology & Stroke, University of Tübingen, Germany.
| | - Gábor Kozák
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Johanna Metsomaa
- Department of Neurology & Stroke, University of Tübingen, Germany; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - David Baur
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - David Vetter
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
27
|
Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. Int J Mol Sci 2023; 24:ijms24032578. [PMID: 36768901 PMCID: PMC9917173 DOI: 10.3390/ijms24032578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined the use of weak tFUS to potentially induce long-lasting neuromodulatory responses in vivo. The purpose of this study was to determine the lower-bound threshold of tFUS stimulation for inducing neuromodulation in the motor cortex of rats. A total of 94 Sprague-Dawley rats were used. The sonication region aimed at the motor cortex under weak tFUS exposure (ISPTA of 0.338-12.15 mW/cm2). The neuromodulatory effects of tFUS on the motor cortex were evaluated by the changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). In addition to histology analysis, the in vitro cell culture was used to confirm the neuromodulatory mechanisms following tFUS stimulation. In the results, the dose-dependent inhibitory effects of tFUS were found, showing increased intensities of tFUS suppressed MEPs and lasted for 30 min. Weak tFUS significantly decreased the expression of excitatory neurons and increased the expression of inhibitory GABAergic neurons. The PIEZO-1 proteins of GABAergic neurons were found to involve in the inhibitory neuromodulation. In conclusion, we show the use of weak ultrasound to induce long-lasting neuromodulatory effects and explore the potential use of weak ultrasound for future clinical neuromodulatory applications.
Collapse
|
28
|
Ozdemir RA, Kirkman S, Magnuson JR, Fried PJ, Pascual-Leone A, Shafi MM. Phase matters when there is power: Phasic modulation of corticospinal excitability occurs at high amplitude sensorimotor mu-oscillations. NEUROIMAGE. REPORTS 2022; 2:100132. [PMID: 36570046 PMCID: PMC9784422 DOI: 10.1016/j.ynirp.2022.100132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prior studies have suggested that oscillatory activity in cortical networks can modulate stimulus-evoked responses through time-varying fluctuations in neural excitation-inhibition dynamics. Studies combining transcranial magnetic stimulation (TMS) with electromyography (EMG) and electroencephalography (EEG) can provide direct measurements to examine how instantaneous fluctuations in cortical oscillations contribute to variability in TMS-induced corticospinal responses. However, the results of these studies have been conflicting, as some reports showed consistent phase effects of sensorimotor mu-rhythms with increased excitability at the negative mu peaks, while others failed to replicate these findings or reported unspecific mu-phase effects across subjects. Given the lack of consistent results, we systematically examined the modulatory effects of instantaneous and pre-stimulus sensorimotor mu-rhythms on corticospinal responses with offline EEG-based motor evoked potential (MEP) classification analyses across five identical visits. Instantaneous sensorimotor mu-phase or pre-stimulus mu-power alone did not significantly modulate MEP responses. Instantaneous mu-power analyses showed weak effects with larger MEPs during high-power trials at the overall group level analyses, but this trend was not reproducible across visits. However, TMS delivered at the negative peak of high magnitude mu-oscillations generated the largest MEPs across all visits, with significant differences compared to other peak-phase combinations. High power effects on MEPs were only observed at the trough phase of ongoing mu oscillations originating from the stimulated region, indicating site and phase specificity, respectively. More importantly, such phase-dependent power effects on corticospinal excitability were reproducible across multiple visits. We provide further evidence that fluctuations in corticospinal excitability indexed by MEP amplitudes are partially driven by dynamic interactions between the magnitude and the phase of ongoing sensorimotor mu oscillations at the time of TMS, and suggest promising insights for (re)designing neuromodulatory TMS protocols targeted to specific cortical oscillatory states.
Collapse
Affiliation(s)
- Recep A. Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Corresponding author. Mouhsin Shafi Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA. (R.A. Ozdemir)
| | - Sofia Kirkman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Justine R. Magnuson
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Hinda and Arthur Marcus Institute for Aging Research and Deanne and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA,Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Corresponding author. Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA. (M.M. Shafi)
| |
Collapse
|
29
|
Phase-amplitude coupling in high-gamma frequency range induces LTP-like plasticity in human motor cortex: EEG-TMS evidence. Brain Stimul 2022; 15:1508-1510. [PMID: 36402378 DOI: 10.1016/j.brs.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
30
|
Bakulin IS, Poydasheva AG, Zabirova AH, Suponeva NA, Piradov MA. Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. ANNALS OF CLINICAL AND EXPERIMENTAL NEUROLOGY 2022; 16:74-82. [DOI: 10.54101/acen.2022.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.
Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.
Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.
The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.
Collapse
|
31
|
The phase of sensorimotor mu and beta oscillations has the opposite effect on corticospinal excitability. Brain Stimul 2022; 15:1093-1100. [PMID: 35964870 DOI: 10.1016/j.brs.2022.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neural oscillations in the primary motor cortex (M1) shape corticospinal excitability. Power and phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate motor cortical output. However, the functional dynamics of both mu and beta phase and power relationships and their interaction, are largely unknown. OBJECTIVE Here, we employ recently developed real-time targeting of the mu and beta rhythm, to apply phase-specific brain stimulation and probe motor corticospinal excitability non-invasively. For this, we used instantaneous read-out and analysis of ongoing oscillations, targeting four different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms with suprathreshold single-pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor evoked potentials (MEPs) in the right first dorsal interossei muscle were recorded. Twenty healthy adults took part in this double-blind randomized crossover study. RESULTS Mixed model regression analyses showed significant phase-dependent modulation of corticospinal output by both mu and beta rhythm. Strikingly, these modulations exhibit a double dissociation. MEPs are larger at the mu trough and rising phase and smaller at the peak and falling phase. For the beta rhythm we found the opposite behavior. Also, mu power, but not beta power, was positively correlated with corticospinal output. Power and phase effects did not interact for either rhythm, suggesting independence between these aspects of oscillations. CONCLUSION Our results provide insights into real-time motor cortical oscillation dynamics, which offers the opportunity to improve the effectiveness of TMS by specifically targeting different frequency bands.
Collapse
|
32
|
Zhang Y, Yang Y, Hu Z, Zhu M, Qin S, Yu P, Li B, Xu J, Ondrejcak T, Klyubin I, Rowan MJ, Hu NW. Long-Term Depression-Inducing Low Frequency Stimulation Enhances p-Tau181 and p-Tau217 in an Age-Dependent Manner in Live Rats. J Alzheimers Dis 2022; 89:335-350. [PMID: 35871344 PMCID: PMC9484260 DOI: 10.3233/jad-220351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cognitive decline in Alzheimer’s disease (AD) correlates with the extent of tau pathology, in particular tau hyperphosphorylation, which is strongly age-associated. Although elevation of cerebrospinal fluid or blood levels of phosphorylated tau (p-Tau) at residues Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) are proposed to be particularly sensitive markers of preclinical AD, the generation of p-Tau during brain activity is poorly understood. Objective: To study whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can be enhanced by physiological synaptic long-term depression (LTD) which has been linked to the enhancement of p-Tau in hippocampus. Methods: In vivo electrophysiology was performed in urethane anesthetized young adult and aged male rats. Low frequency electrical stimulation (LFS) was used to induce LTD at CA3 to CA1 synapses. The expression level of p-Tau and total tau was measured in dorsal hippocampus using immunofluorescent staining and/or western blotting. Results: We found that LFS enhanced p-Tau181 and p-Tau217 in an age-dependent manner in the hippocampus of live rats. In contrast, phosphorylation at residues Thr231, Ser202/Thr205, and Ser396 appeared less sensitive to LFS. Pharmacological antagonism of either N-methyl-D-aspartate or metabotropic glutamate 5 receptors inhibited the elevation of both p-Tau181 and p-Tau217. Targeting the integrated stress response, which increases with aging, using a small molecule inhibitor ISRIB, prevented the enhancement of p-Tau by LFS in aged rats. Conclusion: Together, our data provide a novel in vivo means to uncover brain plasticity-related cellular and molecular processes of tau phosphorylation at key sites in health and aging.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengtao Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Manyi Zhu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangying Qin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Yu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Bo Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jitian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Michael J. Rowan
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
33
|
Granö I, Mutanen TP, Tervo A, Nieminen JO, Souza VH, Fecchio M, Rosanova M, Lioumis P, Ilmoniemi RJ. Local brain-state dependency of effective connectivity: a pilot TMS-EEG study. OPEN RESEARCH EUROPE 2022; 2:45. [PMID: 36035767 PMCID: PMC7613446 DOI: 10.12688/openreseurope.14634.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
Abstract
Background: Spontaneous cortical oscillations have been shown to modulate cortical responses to transcranial magnetic stimulation (TMS). However, whether these oscillations influence cortical effective connectivity is largely unknown. We conducted a pilot study to set the basis for addressing how spontaneous oscillations affect cortical effective connectivity measured through TMS-evoked potentials (TEPs). Methods: We applied TMS to the left primary motor cortex and right pre-supplementary motor area of three subjects while recording EEG. We classified trials off-line into positive- and negative-phase classes according to the mu and beta rhythms. We calculated differences in the global mean-field amplitude (GMFA) and compared the cortical spreading of the TMS-evoked activity between the two classes. Results: Phase affected the GMFA in four out of 12 datasets (3 subjects × 2 stimulation sites × 2 frequency bands). Two of the observed significant intervals were before 50 ms, two between 50 and 100 ms, and one after 100 ms post-stimulus. Source estimates showed complex spatial differences between the classes in the cortical spreading of the TMS-evoked activity. Conclusions: TMS-evoked effective connectivity seems to depend on the phase of local cortical oscillations at the stimulated site. This work paves the way to design future closed-loop stimulation paradigms.
Collapse
Affiliation(s)
- Ida Granö
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas P. Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aino Tervo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaakko O. Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Victor H. Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Matteo Fecchio
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Hussain SJ, Quentin R. Decoding personalized motor cortical excitability states from human electroencephalography. Sci Rep 2022; 12:6323. [PMID: 35428785 PMCID: PMC9012777 DOI: 10.1038/s41598-022-10239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Brain state-dependent transcranial magnetic stimulation (TMS) requires real-time identification of cortical excitability states. Current approaches deliver TMS during brain states that correlate with motor cortex (M1) excitability at the group level. Here, we hypothesized that machine learning classifiers could successfully discriminate between high and low M1 excitability states in individual participants using information obtained from low-density electroencephalography (EEG) signals. To test this, we analyzed a publicly available dataset that delivered 600 single TMS pulses to the right M1 during EEG and electromyography (EMG) recordings in 20 healthy adults. Multivariate pattern classification was used to discriminate between brain states during which TMS evoked small and large motor-evoked potentials (MEPs). Results show that personalized classifiers successfully discriminated between low and high M1 excitability states in 80% of tested participants. MEPs elicited during classifier-predicted high excitability states were significantly larger than those elicited during classifier-predicted low excitability states in 90% of tested participants. Personalized classifiers did not generalize across participants. Overall, results show that individual participants exhibit unique brain activity patterns which predict low and high M1 excitability states and that these patterns can be efficiently captured using low-density EEG signals. Our findings suggest that deploying individualized classifiers during brain state-dependent TMS may enable fully personalized neuromodulation in the future.
Collapse
Affiliation(s)
- Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, 540 Bellmont Hall, 2109 San Jacinto Blvd, Austin, TX, 78712, USA.
| | - Romain Quentin
- MEL Group, EDUWELL Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CRNS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
35
|
Wu Q, Peng T, Liu L, Zeng P, Xu Y, Yang X, Zhao Y, Fu C, Huang S, Huang Y, Zhou H, Liu Y, Tang H, He L, Xu K. The Effect of Constraint-Induced Movement Therapy Combined With Repetitive Transcranial Magnetic Stimulation on Hand Function in Preschool Children With Unilateral Cerebral Palsy: A Randomized Controlled Preliminary Study. Front Behav Neurosci 2022; 16:876567. [PMID: 35449560 PMCID: PMC9017424 DOI: 10.3389/fnbeh.2022.876567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Constraint-induced movement therapy (CIMT) combined with repetitive transcranial magnetic stimulation (rTMS) have shown great potential in improving function in schoolchildren with unilateral cerebral palsy attributed to perinatal stroke. However, the prospect of application in preschool children with unilateral cerebral palsy (UCP) attributed to various brain disorders remains unclear. In this prospective, assessor-blinded, randomized controlled study, 40 preschool children with UCP (aged 2.5–6 years) were randomized to receive 10 days of CIMT combined with active or sham rTMS. Assessments were performed at baseline, 2 weeks, and 6 months post-intervention to investigate upper limb extremity, social life ability, and perceived changes by parents and motor-evoked potentials. Overall, 35 participants completed the trial. The CIMT plus active stimulation group had greater gains in the affected hand function (range of motion, accuracy, and fluency) than the CIMT plus sham stimulation group (P < 0.05), but there was no significant difference in muscular tone, social life ability, and perceived changes by parents between the two groups (P > 0.05). In addition, there was no significant difference in hand function between children with and without motor-evoked potential (P > 0.05). No participants reported severe adverse events during the study session. In short, the treatment of CIMT combined with rTMS is safe and feasible for preschool children with UCP attributed to various brain disorders. Randomized controlled studies with large samples and long-term effects are warranted.
Collapse
Affiliation(s)
- Qianwen Wu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peishan Zeng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- Department of Rehabilitation, Kunming Children's Hospital, Kunming, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Lu He
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Kaishou Xu ; orcid.org/0000-0002-0639-3488
| |
Collapse
|
36
|
Bridging the gap: TMS-EEG from Lab to Clinic. J Neurosci Methods 2022; 369:109482. [PMID: 35041855 DOI: 10.1016/j.jneumeth.2022.109482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has reached technological maturity and has been an object of significant scientific interest for over two decades. Ιn parallel, accumulating evidence highlights the potential of TMS-EEG as a useful tool in the field of clinical neurosciences. Nevertheless, its clinical utility has not yet been established, partly because technical and methodological limitations have created a gap between an evolving scientific tool and standard clinical practice. Here we review some of the identified gaps that still prevent TMS-EEG moving from science laboratories to clinical practice. The principal and partly overlapping gaps include: 1) complex and laborious application, 2) difficulty in obtaining high-quality signals, 3) suboptimal accuracy and reliability, and 4) insufficient understanding of the neurobiological substrate of the responses. All these four aspects need to be satisfactorily addressed for the method to become clinically applicable and enter the diagnostic and therapeutic arena. In the current review, we identify steps that might be taken to address these issues and discuss promising recent studies providing tools to aid bridging the gaps.
Collapse
|
37
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
38
|
Metsomaa J, Belardinelli P, Ermolova M, Ziemann U, Zrenner C. Causal decoding of individual cortical excitability states. Neuroimage 2021; 245:118652. [PMID: 34687858 DOI: 10.1016/j.neuroimage.2021.118652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022] Open
Abstract
Brain responsiveness to stimulation fluctuates with rapidly shifting cortical excitability state, as reflected by oscillations in the electroencephalogram (EEG). For example, the amplitude of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of motor cortex changes from trial to trial. To date, individual estimation of the cortical processes leading to this excitability fluctuation has not been possible. Here, we propose a data-driven method to derive individually optimized EEG classifiers in healthy humans using a supervised learning approach that relates pre-TMS EEG activity dynamics to MEP amplitude. Our approach enables considering multiple brain regions and frequency bands, without defining them a priori, whose compound phase-pattern information determines the excitability. The individualized classifier leads to an increased classification accuracy of cortical excitability states from 57% to 67% when compared to μ-oscillation phase extracted by standard fixed spatial filters. Results show that, for the used TMS protocol, excitability fluctuates predominantly in the μ-oscillation range, and relevant cortical areas cluster around the stimulated motor cortex, but between subjects there is variability in relevant power spectra, phases, and cortical regions. This novel decoding method allows causal investigation of the cortical excitability state, which is critical also for individualizing therapeutic brain stimulation.
Collapse
Affiliation(s)
- J Metsomaa
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen
| | - P Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen; CIMeC, Center for Mind-Brain Sciences, University of Trento, Italy
| | - M Ermolova
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen
| | - U Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen.
| | - C Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Hussain SJ, Vollmer MK, Stimely J, Norato G, Zrenner C, Ziemann U, Buch ER, Cohen LG. Phase-dependent offline enhancement of human motor memory. Brain Stimul 2021; 14:873-883. [PMID: 34048939 DOI: 10.1016/j.brs.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Skill learning engages offline activity in the primary motor cortex (M1). Sensorimotor cortical activity oscillates between excitatory trough and inhibitory peak phases of the mu (8-12 Hz) rhythm. We recently showed that these mu phases influence the magnitude and direction of neuroplasticity induction within M1. However, the contribution of M1 activity during mu peak and trough phases to human skill learning has not been investigated. OBJECTIVE To evaluate the effects of phase-dependent TMS during mu peak and trough phases on offline learning of a newly-acquired motor skill. METHODS On Day 1, three groups of healthy adults practiced an explicit motor sequence learning task with their non-dominant left hand. After practice, phase-dependent TMS was applied to the right M1 during either mu peak or mu trough phases. The third group received sham TMS during random mu phases. On Day 2, all subjects were re-tested on the same task to evaluate offline learning. RESULTS Subjects who received phase-dependent TMS during mu trough phases showed increased offline skill learning compared to those who received phase-dependent TMS during mu peak phases or sham TMS during random mu phases. Additionally, phase-dependent TMS during mu trough phases elicited stronger whole-brain broadband oscillatory power responses than phase-dependent TMS during mu peak phases. CONCLUSIONS We conclude that sensorimotor mu trough phases reflect brief windows of opportunity during which TMS can strengthen newly-acquired skill memories.
Collapse
Affiliation(s)
- Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA; Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Mary K Vollmer
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Stimely
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Zrenner
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Latorre A, Rocchi L, Sadnicka A. The Expanding Horizon of Neural Stimulation for Hyperkinetic Movement Disorders. Front Neurol 2021; 12:669690. [PMID: 34054710 PMCID: PMC8160223 DOI: 10.3389/fneur.2021.669690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Novel methods of neural stimulation are transforming the management of hyperkinetic movement disorders. In this review the diversity of approach available is showcased. We first describe the most commonly used features that can be extracted from oscillatory activity of the central nervous system, and how these can be combined with an expanding range of non-invasive and invasive brain stimulation techniques. We then shift our focus to the periphery using tremor and Tourette's syndrome to illustrate the utility of peripheral biomarkers and interventions. Finally, we discuss current innovations which are changing the landscape of stimulation strategy by integrating technological advances and the use of machine learning to drive optimization.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Anna Sadnicka
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom.,Motor Control and Neuromodulation Group, St George's University of London, London, United Kingdom
| |
Collapse
|
41
|
Early Repetitive Transcranial Magnetic Stimulation Exerts Neuroprotective Effects and Improves Motor Functions in Hemiparkinsonian Rats. Neural Plast 2021; 2021:1763533. [PMID: 34987572 PMCID: PMC8723880 DOI: 10.1155/2021/1763533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson's disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.
Collapse
|