1
|
Thiele C, Rufener KS, Repplinger S, Zaehle T, Ruhnau P. Transcranial temporal interference stimulation (tTIS) influences event-related alpha activity during mental rotation. Psychophysiology 2024; 61:e14651. [PMID: 38997805 DOI: 10.1111/psyp.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.
Collapse
Affiliation(s)
- Carsten Thiele
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Katharina S Rufener
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine of Childhood and Adolescents, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University, University Clinic of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Philipp Ruhnau
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
- School of Psychology and Humanities, University of Central Lancashire, Preston, UK
| |
Collapse
|
2
|
Karimi N, Amirfattahi R, Zeidaabadi Nezhad A. Neuromodulation effect of temporal interference stimulation based on network computational model. Front Hum Neurosci 2024; 18:1436205. [PMID: 39386280 PMCID: PMC11461302 DOI: 10.3389/fnhum.2024.1436205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Deep brain stimulation (DBS) has long been the conventional method for targeting deep brain structures, but noninvasive alternatives like transcranial Temporal Interference Stimulation (tTIS) are gaining traction. Research has shown that alternating current influences brain oscillations through neural modulation. Understanding how neurons respond to the stimulus envelope, particularly considering tTIS's high-frequency carrier, is vital for elucidating its mechanism of neuronal engagement. This study aims to explore the focal effects of tTIS across varying amplitudes and modulation depths in different brain regions. An excitatory-inhibitory network using the Izhikevich neuron model was employed to investigate responses to tTIS and compare them with transcranial Alternating Current Stimulation (tACS). We utilized a multi-scale model that integrates brain tissue modeling and network computational modeling to gain insights into the neuromodulatory effects of tTIS on the human brain. By analyzing the parametric space, we delved into phase, amplitude, and frequency entrainment to elucidate how tTIS modulates endogenous alpha oscillations. Our findings highlight a significant difference in current intensity requirements between tTIS and tACS, with tTIS requiring notably higher intensity. We observed distinct network entrainment patterns, primarily due to tTIS's high-frequency component, whereas tACS exhibited harmonic entrainment that tTIS lacked. Spatial resolution analysis of tTIS, conducted via computational modeling and brain field distribution at a 13 Hz stimulation frequency, revealed modulation in deep brain areas, with minimal effects on the surface. Notably, we observed increased power within intrinsic and stimulation bands beneath the electrodes, attributed to the high stimulus signal amplitude. Additionally, Phase Locking Value (PLV) showed slight increments in non-deep areas. Our analysis indicates focal stimulation using tTIS, prompting further investigation into the necessity of high amplitudes to significantly affect deep brain regions, which warrants validation through clinical experiments.
Collapse
Affiliation(s)
| | - Rassoul Amirfattahi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
3
|
Song X, Guo T, Ma S, Zhou F, Tian J, Liu Z, Liu J, Li H, Chen Y, Chai X, Li L. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Int J Neural Syst 2024:2450066. [PMID: 39318031 DOI: 10.1142/s0129065724500667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Conventional retinal implants involve complex surgical procedures and require invasive implantation. Temporal Interference Stimulation (TIS) has achieved noninvasive and focused stimulation of deep brain regions by delivering high-frequency currents with small frequency differences on multiple electrodes. In this study, we conducted in silico investigations to evaluate extraocular TIS's potential as a novel visual restoration approach. Different from the previously published retinal TIS model, the new model of extraocular TIS incorporated a biophysically detailed retinal ganglion cell (RGC) population, enabling a more accurate simulation of retinal outputs under electrical stimulation. Using this improved model, we made the following major discoveries: (1) the maximum value of TIS envelope electric potential ([Formula: see text] showed a strong correlation with TIS-induced RGC activation; (2) the preferred stimulating/return electrode (SE/RE) locations to achieve focalized TIS were predicted; (3) the performance of extraocular TIS was better than same-frequency sinusoidal stimulation (SSS) in terms of lower RGC threshold and more focused RGC activation; (4) the optimal stimulation parameters to achieve lower threshold and focused activation were identified; and (5) spatial selectivity of TIS could be improved by integrating current steering strategy and reducing electrode size. This study provides insights into the feasibility and effectiveness of a low-invasive stimulation approach in enhancing vision restoration.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Saidong Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaxin Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhengyang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiao Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Lee TW, Li CSR, Tramontano G. Tripod transcranial alternating current stimulation at 5-Hz to alleviate anxiety symptoms: A preliminary report. J Affect Disord 2024; 360:156-162. [PMID: 38821364 DOI: 10.1016/j.jad.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION One of the most common applications of transcranial electrical stimulation (tES) at low current intensity is to induce a relaxed state or reduce anxiety. With technical advancement, different waveforms, montages, and parameters can be incorporated into the treatment regimen. We developed a novel protocol to treat individuals with anxiety disorders by transcranial alternating current stimulation (tACS). METHODS A total of 27 individuals with anxiety disorders underwent tACS treatment for 12 sessions, with each session lasting 25 min. tACS at 5 Hz was applied to F4 (1.0 mA), P4 (1.0 mA), and T8 (2.0 mA) EEG lead positions (tripod), with sinewave oscillation between T8 and F4/P4. We evaluated the primary and secondary outcomes using the Beck Anxiety Inventory (BAI) and neuropsychological assessments. RESULTS Of the 27 patients, 19 (70.4 %) experienced a reduction in symptom severity >50 %, with an average reduction of BAI 58.5 %. All reported side effects were mild, with itching or tingling being the most common complaint. No significant differences were noted in attention, linguistic working memory, visuospatial working memory, or long-term memory in neuropsychological assessments. CONCLUSION The results suggest the potential of this novel tripod tACS design as a rapid anxiety alleviator and the importance of a clinical trial to verify its efficacy.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA.
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA.
| |
Collapse
|
5
|
Wu CW, Lin BS, Zhang Z, Hsieh TH, Liou JC, Lo WL, Li YT, Chiu SC, Peng CW. Pilot study of using transcranial temporal interfering theta-burst stimulation for modulating motor excitability in rat. J Neuroeng Rehabil 2024; 21:147. [PMID: 39215318 PMCID: PMC11365202 DOI: 10.1186/s12984-024-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a promising brain stimulation method that can target deep brain regions by delivering an interfering current from surface electrodes. Most instances of tTIS stimulate the brain with a single-frequency sinusoidal waveform generated by wave interference. Theta burst stimulation is an effective stimulation scheme that can modulate neuroplasticity by generating long-term potentiation- or depression-like effects. To broaden tTIS application, we developed a theta burst protocol using tTIS technique to modulate neuroplasticity in rats. Two cannula electrodes were unilaterally implanted into the intact skull over the primary motor cortex. Electrical field of temporal interference envelopes generated by tTIS through cannula electrodes were recorded from primary motor cortex. Theta burst schemes were characterized, and motor activation induced by the stimulation was also evaluated simultaneously by observing electromyographic signals from the corresponding brachioradialis muscle. After validating the stimulation scheme, we further tested the modulatory effects of theta burst stimulation delivered by tTIS and by conventional transcranial electrical stimulation on primary motor cortex excitability. Changes in the amplitude of motor evoked potentials, elicited when the primary motor cortex was activated by electrical pulses, were measured before and after theta burst stimulation by both techniques. Significant potentiation and suppression were found at 15 to 30 min after the intermittent and continuous theta burst stimulation delivered using tTIS, respectively. However, comparing to theta burst stimulations delivered using conventional form of transcranial electrical stimulation, using tTIS expressed no significant difference in modulating motor evoked potential amplitudes. Sham treatment from both methods had no effect on changing the motor evoked potential amplitude. The present study demonstrated the feasibility of using tTIS to achieve a theta burst stimulation scheme for motor cortical neuromodulation. These findings also indicated the future potential of using tTIS to carry out theta burst stimulation protocols in deep-brain networks for modulating neuroplasticity.
Collapse
Affiliation(s)
- Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237303, Taiwan
| | - Zhao Zhang
- School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan City, Fujian Province, China
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Lun Lo
- Department of Surgery, Division of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Shao-Chu Chiu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
6
|
Demchenko I, Rampersad S, Datta A, Horn A, Churchill NW, Kennedy SH, Krishnan S, Rueda A, Schweizer TA, Griffiths JD, Boyden ES, Santarnecchi E, Bhat V. Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: a protocol for a randomized sham-controlled trial. Front Neurosci 2024; 18:1390250. [PMID: 39268031 PMCID: PMC11390435 DOI: 10.3389/fnins.2024.1390250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background Transcranial temporal interference stimulation (tTIS) is a new, emerging neurostimulation technology that utilizes two or more electric fields at specific frequencies to modulate the oscillations of neurons at a desired spatial location in the brain. The physics of tTIS offers the advantage of modulating deep brain structures in a non-invasive fashion and with minimal stimulation of the overlying cortex outside of a selected target. As such, tTIS can be effectively employed in the context of therapeutics for the psychiatric disease of disrupted brain connectivity, such as major depressive disorder (MDD). The subgenual anterior cingulate cortex (sgACC), a key brain center that regulates human emotions and influences negative emotional states, is a plausible target for tTIS in MDD based on reports of its successful neuromodulation with invasive deep brain stimulation. Methods This pilot, single-site, double-blind, randomized, sham-controlled interventional clinical trial will be conducted at St. Michael's Hospital - Unity Health Toronto in Toronto, ON, Canada. The primary objective is to demonstrate target engagement of the sgACC with 130 Hz tTIS using resting-state magnetic resonance imaging (MRI) techniques. The secondary objective is to estimate the therapeutic potential of tTIS for MDD by evaluating the change in clinical characteristics of participants and electrophysiological outcomes and providing feasibility and tolerability estimates for a large-scale efficacy trial. Thirty participants (18-65 years) with unipolar, non-psychotic MDD will be recruited and randomized to receive 10 sessions of 130 Hz tTIS or sham stimulation (n = 15 per arm). The trial includes a pre- vs. post-treatment 3T MRI scan of the brain, clinical evaluation, and electroencephalography (EEG) acquisition at rest and during the auditory mismatch negativity (MMN) paradigm. Discussion This study is one of the first-ever clinical trials among patients with psychiatric disorders examining the therapeutic potential of repetitive tTIS and its neurobiological mechanisms. Data obtained from this trial will be used to optimize the tTIS approach and design a large-scale efficacy trial. Research in this area has the potential to provide a novel treatment option for individuals with MDD and circuitry-related disorders and may contribute to the process of obtaining regulatory approval for therapeutic applications of tTIS. Clinical Trial Registration ClinicalTrials.gov, identifier NCT05295888.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts Boston, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery & Center for NeuroTechnology and NeuroRecovery (CNTR), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Sridhar Krishnan
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
7
|
Plovie T, Schoeters R, Tarnaud T, Joseph W, Tanghe E. Nonlinearities and timescales in neural models of temporal interference stimulation. Bioelectromagnetics 2024. [PMID: 39183685 DOI: 10.1002/bem.22522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
In temporal interference (TI) stimulation, neuronal cells react to two interfering sinusoidal electric fields with a slightly different frequency (f 1 ${f}_{1}$ ,f 2 ${f}_{2}$ in the range of about 1-4 kHz,∣ f 1 - f 2 ∣ $| {f}_{1}-{f}_{2}| $ in the range of about 1-100 Hz). It has been previously observed that for the same input intensity, the neurons do not react to a purely sinusoidal signal atf 1 ${f}_{1}$ orf 2 ${f}_{2}$ . This study seeks a better understanding of the largely unknown mechanisms underlying TI neuromodulation. To this end, single-compartment models are used to simulate computationally the response of neurons to the sinusoidal and TI waveform. This study compares five different neuron models: Hodgkin-Huxley (HH), Frankenhaeuser-Huxley (FH), along with leaky, exponential, and adaptive-exponential integrate-and-fire (IF). It was found that IF models do not entirely reflect the experimental behavior while the HH and FH model did qualitatively replicate the observed neural responses. Changing the time constants and steady state values of the ion gates in the FH model alters the response to both the sinusoidal and TI signal, possibly reducing the firing threshold of the sinusoidal input below that of the TI input. The results show that in the modified (simplified) model, TI stimulation is not qualitatively impacted by nonlinearities in the current-voltage relation. In contrast, ion channels have a significant impact on the neuronal response. This paper offers insights into neuronal biophysics and computational models of TI stimulation.
Collapse
Affiliation(s)
- Tom Plovie
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Ruben Schoeters
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Thomas Tarnaud
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wout Joseph
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| | - Emmeric Tanghe
- WAVES, Department of Information Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Ahtiainen A, Leydolph L, Tanskanen JMA, Hunold A, Haueisen J, Hyttinen JAK. Electric field temporal interference stimulation of neurons in vitro. LAB ON A CHIP 2024; 24:3945-3957. [PMID: 38994783 DOI: 10.1039/d4lc00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Electrical stimulation (ES) techniques, such as deep brain and transcranial electrical stimulation, have shown promise in alleviating the symptoms of depression and other neurological disorders in vivo. A new noninvasive ES method called temporal interference stimulation (TIS), possesses great potential as it can be used to steer the stimulation and possibly selectively modulate different brain regions. To study TIS in a controlled environment, we successfully established an in vitro 'TIS on a chip' setup using rat cortical neurons on microelectrode arrays (MEAs) in combination with a current stimulator. We validated the developed TIS system and demonstrated the spatial steerability of the stimulation by direct electric field measurements in the chip setup. We stimulated cultures of rat cortical neurons at 28 days in vitro (DIV) by two-channel stimulation delivering 1) TIS at 653 Hz and 643 Hz, resulting in a 10 Hz frequency envelope, 2) low-frequency stimulation (LFS) at 10 Hz and 3) high-frequency stimulation (HFS) at 653 Hz. Unstimulated cultures were used as control/sham. We observed the differences in the electric field strengths during TIS, HFS, and LFS. Moreover, HFS and LFS had the smallest effects on neuronal activity. Instead, TIS elicited neuronal electrophysiological responses, especially 24 hours after stimulation. Our 'TIS on a chip' approach eludicates the applicability of TIS as a method to modulate neuronal electrophysiological activity. The TIS on a chip approach provides spatially steerable stimuli while mitigating the effects of high stimulus fields near the stimulation electrodes. Thus, the approach opens new avenues for stimulation on a chip applications, allowing the study of neuronal responses to gain insights into the potential clinical applications of TIS in treating various brain disorders.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| | - Lilly Leydolph
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Jarno M A Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| | - Alexander Hunold
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- neuroConn GmbH, 98693, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Jari A K Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| |
Collapse
|
9
|
Xu X, Deng B, Wang J, Yi G. Prediction of hippocampal electric field in time series induced by TI-DMS with temporal convolutional network. Cogn Neurodyn 2024; 18:2031-2045. [PMID: 39104691 PMCID: PMC11297876 DOI: 10.1007/s11571-024-10067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/29/2023] [Accepted: 01/06/2024] [Indexed: 08/07/2024] Open
Abstract
Temporal interference deep-brain magnetic stimulation (TI-DMS) induces rhythmic electric field (EF) in the hippocampus to normalize cognitive function. The rhythmic time series of the hippocampal EF is essential for the assessment of TI-DMS. However, the finite element method (FEM) takes several hours to obtain the time series of EF. In order to reduce the time cost, the temporal convolutional network (TCN) model is adopted to predict the time series of hippocampal EF induced by TI-DMS. It takes coil configuration and loaded current as input and predicts the time series of maximum and mean values of the left and right hippocampal EF. The prediction takes only a few seconds. The model parameter combination of kernel size and layers is selected optimally by cross-validation method. The experimental results for multiple subjects show that the R2 of all the time series predicted by the model exceed 0.98. And the prediction accuracy is even higher as the input parameters approach the training set. These results demonstrate that the adopted model can quickly predict the time series of hippocampal EF induced by TI-DMS with relatively high accuracy, which is beneficial for future clinical applications.
Collapse
Affiliation(s)
- Xiangyang Xu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Vassiliadis P, Beanato E, Popa T, Windel F, Morishita T, Neufeld E, Duque J, Derosiere G, Wessel MJ, Hummel FC. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat Hum Behav 2024; 8:1581-1598. [PMID: 38811696 PMCID: PMC11343719 DOI: 10.1038/s41562-024-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study. Striatal tTIS applied at 80 Hz, but not at 20 Hz, abolished the benefits of reinforcement on motor learning. This effect was related to a selective modulation of neural activity within the striatum. Moreover, 80 Hz, but not 20 Hz, tTIS increased the neuromodulatory influence of the striatum on frontal areas involved in reinforcement motor learning. These results show that tTIS can non-invasively and selectively modulate a striatal mechanism involved in reinforcement learning, expanding our tools for the study of causal relationships between deep brain structures and human behaviour.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Lyon Neuroscience Research Center, Impact Team, Inserm U1028, CNRS UMR5292, Lyon 1 University, Bron, France
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
11
|
Wang B, Peterchev AV, Gaugain G, Ilmoniemi RJ, Grill WM, Bikson M, Nikolayev D. Quasistatic approximation in neuromodulation. J Neural Eng 2024; 21:10.1088/1741-2552/ad625e. [PMID: 38994790 PMCID: PMC11370654 DOI: 10.1088/1741-2552/ad625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuromodulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g. Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America
| | - Gabriel Gaugain
- Institut d’Électronique et des Technologies du numéRique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Warren M Grill
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America
- Department of Neurobiology, Duke University, Durham, NC 27710, United States of America
| | - Marom Bikson
- The City College of New York, New York, NY 11238, United States of America
| | - Denys Nikolayev
- Institut d’Électronique et des Technologies du numéRique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| |
Collapse
|
12
|
Modak P, Fine J, Colon B, Need E, Cheng H, Hulvershorn L, Finn P, Brown JW. Temporal interference electrical neurostimulation at 20 Hz beat frequency leads to increased fMRI BOLD activation in orbitofrontal cortex in humans. Brain Stimul 2024; 17:867-875. [PMID: 39059712 DOI: 10.1016/j.brs.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Temporal interference electrical neurostimulation (TI) is a relatively new method of non-invasive neurostimulation that may be able to stimulate deep brain regions without stimulating the overlying superficial regions. Although some recent studies have demonstrated the success of TI in modulating task-induced BOLD activity in humans, there is limited information on intended and off-target effects of TI during resting-state. We simultaneously performed TI stimulation with the set-up optimized for maximum focality in the left caudate and collected resting-state fMRI data to investigate the effects of TI on human BOLD signals. We found increased BOLD activation in a part of the mid-orbitofrontal cortex (OFC) and parahippocampal gyrus. Results indicate that TI can induce increased BOLD activation in the region that receives the highest magnitude of TI amplitude modulation in humans, with good safety and tolerability profiles. We also show the limits of spatial precision and explore the nature and causes of additional off-target effects. TI may be a promising approach for addressing questions about the causal role of deep brain structures in human cognition and may also afford new clinical treatments.
Collapse
Affiliation(s)
- Priyamvada Modak
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Justin Fine
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Brayden Colon
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ella Need
- The Family Institute, Northwestern University, Chicago, Illinois, IL, USA
| | - Hu Cheng
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Leslie Hulvershorn
- Dept. of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Finn
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Joshua W Brown
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
13
|
Stefanski M, Arora Y, Cheung M, Dutta A. Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies-A Review of Technology Concepts. Brain Sci 2024; 14:591. [PMID: 38928591 PMCID: PMC11201600 DOI: 10.3390/brainsci14060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh-Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health.
Collapse
Affiliation(s)
- Marcel Stefanski
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| | - Yashika Arora
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Mancheung Cheung
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
14
|
Liu X, Qi S, Hou L, Liu Y, Wang X. Noninvasive Deep Brain Stimulation via Temporal Interference Electric Fields Enhanced Motor Performance of Mice and Its Neuroplasticity Mechanisms. Mol Neurobiol 2024; 61:3314-3329. [PMID: 37987957 DOI: 10.1007/s12035-023-03721-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
A noninvasive deep brain stimulation via temporal interference (TI) electric fields is a novel neuromodulation technology, but few advances about TI stimulation effectiveness and mechanisms have been reported. One hundred twenty-six mice were selected for the experiment by power analysis. In the present study, TI stimulation was proved to stimulate noninvasively primary motor cortex (M1) of mice, and 7-day TI stimulation with an envelope frequency of 20 Hz (∆f =20 Hz), instead of an envelope frequency of 10 Hz (∆f =10 Hz), could obviously improve mice motor performance. The mechanism of action may be related to enhancing the strength of synaptic connections, improving synaptic transmission efficiency, increasing dendritic spine density, promoting neurotransmitter release, and increasing the expression and activity of synapse-related proteins, such as brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and glutamate receptor protein. Furthermore, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and its upstream BDNF play an important role in the enhancement of locomotor performance in mice by TI stimulation. To our knowledge, it is the first report about TI stimulation promoting multiple motor performances and describing its mechanisms. TI stimulation might serve as a novel promising approach to enhance motor performance and treat dysfunction in deep brain regions.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shuo Qi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yu Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
15
|
Kim Y, Lee JH, Park JC, Kwon J, Kim H, Seo J, Min BK. Neuromodulation of inhibitory control using phase-lagged transcranial alternating current stimulation. J Neuroeng Rehabil 2024; 21:93. [PMID: 38816860 PMCID: PMC11138099 DOI: 10.1186/s12984-024-01385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is a prominent non-invasive brain stimulation method for modulating neural oscillations and enhancing human cognitive function. This study aimed to investigate the effects of individualized theta tACS delivered in-phase and out-of-phase between the dorsal anterior cingulate cortex (dACC) and left dorsolateral prefrontal cortex (lDLPFC) during inhibitory control performance. METHODS The participants engaged in a Stroop task with phase-lagged theta tACS over individually optimized high-density electrode montages targeting the dACC and lDLPFC. We analyzed task performance, event-related potentials, and prestimulus electroencephalographic theta and alpha power. RESULTS We observed significantly reduced reaction times following out-of-phase tACS, accompanied by reduced frontocentral N1 and N2 amplitudes, enhanced parieto-occipital P1 amplitudes, and pronounced frontocentral late sustained potentials. Out-of-phase stimulation also resulted in significantly higher prestimulus frontocentral theta and alpha activity. CONCLUSIONS These findings suggest that out-of-phase theta tACS potently modulates top-down inhibitory control, supporting the feasibility of phase-lagged tACS to enhance inhibitory control performance.
Collapse
Affiliation(s)
- Yukyung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Je-Hyeop Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02841, Korea
| | - Je-Choon Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Jeongwook Kwon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Hyoungkyu Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Jeehye Seo
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02841, Korea
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, 02841, Korea.
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
16
|
Vieira PG, Krause MR, Pack CC. Temporal interference stimulation disrupts spike timing in the primate brain. Nat Commun 2024; 15:4558. [PMID: 38811618 PMCID: PMC11137077 DOI: 10.1038/s41467-024-48962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Electrical stimulation can regulate brain activity, producing clear clinical benefits, but focal and effective neuromodulation often requires surgically implanted electrodes. Recent studies argue that temporal interference (TI) stimulation may provide similar outcomes non-invasively. During TI, scalp electrodes generate multiple electrical fields in the brain, modulating neural activity only at their intersection. Despite considerable enthusiasm for this approach, little empirical evidence demonstrates its effectiveness, especially under conditions suitable for human use. Here, using single-neuron recordings in non-human primates, we establish that TI reliably alters the timing, but not the rate, of spiking activity. However, we show that TI requires strategies-high carrier frequencies, multiple electrodes, and amplitude-modulated waveforms-that also limit its effectiveness. Combined, these factors make TI 80 % weaker than other forms of non-invasive brain stimulation. Although unlikely to cause widespread neuronal entrainment, TI may be ideal for disrupting pathological oscillatory activity, a hallmark of many neurological disorders.
Collapse
Affiliation(s)
- Pedro G Vieira
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Liu R, Zhu G, Wu Z, Gan Y, Zhang J, Liu J, Wang L. Temporal interference stimulation targets deep primate brain. Neuroimage 2024; 291:120581. [PMID: 38508293 DOI: 10.1016/j.neuroimage.2024.120581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
Temporal interference (TI) stimulation, a novel non-invasive stimulation strategy, has recently been shown to modulate neural activity in deep brain regions of living mice. Yet, it is uncertain if this method is applicable to larger brains and whether the electric field produced under traditional safety currents can penetrate deep regions as observed in mice. Despite recent model-based simulation studies offering positive evidence at both macro- and micro-scale levels, the absence of electrophysiological data from actual brains hinders comprehensive understanding and potential application of TI. This study aims to directly measure the spatiotemporal properties of the interfered electric field in the rhesus monkey brain and to validate the effects of TI on the human brain. Two monkeys were involved in the measurement, with implantation of several stereo-electroencephalography (SEEG) depth electrodes. TI stimulation was applied to anesthetized monkeys using two pairs of surface electrodes at differing stimulation parameters. Model-based simulations were also conducted and subsequently compared with actual recordings. Additionally, TI stimulation was administered to patients with motor disorders to validate its effects on motor symptoms. Through the integration of computational electric field simulation with empirical measurements, it was determined that the temporally interfering electric fields in the deep central regions are capable of attaining a magnitude sufficient to induce a subthreshold modulation effect on neural signals. Additionally, an improvement in movement disorders was observed as a result of TI stimulation. This study is the first to systematically measure the TI electric field in living non-human primates, offering empirical evidence that TI holds promise as a more focal and precise method for modulating neural activities in deep regions of a large brain. This advancement paves the way for future applications of TI in treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ruobing Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhengping Wu
- School of Innovations, Sanjiang University, Nanjing, PR China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Jiali Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
18
|
Mojiri Z, Akhavan A, Rouhani E, Zahabi SJ. Quantitative analysis of noninvasive deep temporal interference stimulation: A simulation and experimental study. Heliyon 2024; 10:e29482. [PMID: 38655334 PMCID: PMC11035070 DOI: 10.1016/j.heliyon.2024.e29482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Background Deep brain stimulation (DBS) is a method for stimulating deep regions of the brain for the treatment of various neurological and psychiatric disorders such as depression, obsessive-compulsive disorder, addiction, and Parkinson's disease. Generally, DBS can be performed using both invasive and non-invasive approaches. Invasive DBS is associated with several problems, including intracranial bleeding, infection, and changes in the position of the electrode tip. Temporal interference (TI) stimulation is a non-invasive technique used to stimulate deep regions of the brain by applying two high-frequency sinusoidal currents with slightly different frequencies. New method This paper presents insights into the response of the spiking in the Hodgkin-Huxley (HH) neuron model of the rat somatosensory cortex by changing the parameters carrier frequency, current ratio, and difference frequency of TI stimulation. Furthermore, in order to experimentally evaluate the effect of TI stimulation on the activation of the left motor cortex, an experiment was conducted to measure the motion induced by the balanced and unbalanced TI stimulation. In the experiment, a three-axis accelerometer was attached to the right hand of the animal to determine the position of the hand. Results Simulation results of the HH model showed that the frequency of the envelope of the TI stimulation is identical to the fundamental frequency of the neuron spikes. This result was obtained for difference frequencies of 6 Hz and 9 Hz in balanced and unbalanced TI stimulations. Moreover specifically, when the difference frequency is set to zero, the carrier frequency is within the range of 1300-1400 Hz, and the current range is between 140 and 250 μA/cm2, the firing rate reached to its highest value. In the experimental result, the maximum range of movement at a difference frequency of Δf = 6 Hz was approximately 1.6 mm and 5.3 mm in the z and y directions respectively. Comparison with existing method The results of the spatial spectrum of the rat hand movement were consistent with the spectrum information of the simulation results. Additionally, steering the interfering region to the left motor cortex leads to noticeable contralateral movement of the right hand while no movement was observed in the right hand during the stimulation of the right motor cortex. Conclusion This technique of stimulation for the deep regions of the brain is a promising tool to noninvasively treat various neurological and psychiatric disorders such as morphine dependence in addicted rats.
Collapse
Affiliation(s)
- Zohre Mojiri
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Amir Akhavan
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ehsan Rouhani
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sayed Jalal Zahabi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
19
|
朱 浩, 槐 瑞, 张 平, 汪 慧, 杨 俊, 殷 涛, 于 志, 邵 峰. [A study on the regulation of motor behavior in mouse based on temporal interference]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:342-350. [PMID: 38686416 PMCID: PMC11058503 DOI: 10.7507/1001-5515.202305032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/25/2024] [Indexed: 05/02/2024]
Abstract
Temporal interference (TI) as a new neuromodulation technique can be applied to non-invasive deep brain stimulation. In order to verify its effectiveness in the regulation of motor behavior in animals, this paper uses the TI method to focus the envelope electric field to the ventral posterior lateral nucleus (VPL) of the thalamus in the deep brain of mouse to regulate left- and right-turning motor behavior. The focusability of TI in the mouse VPL was analyzed by finite element method, and the focus area and volume were obtained by numerical calculation. A stimulator was used to generate TI current to stimulate the mouse VPL to verify the effectiveness of the TI stimulation method, and the accuracy of the focus location was further determined by c-Fos immunofluorescence experiments. The results showed that the electric field generated by TI stimulation was able to focus on the VPL nuclei when the stimulation current reached 800 μA; the mouse were able to make corresponding left and right turns according to the stimulation position; and the c-Fos positive cell markers in the VPL nuclei increased significantly after stimulation. This study confirms the feasibility of TI in regulating animal motor behavior and provides a non-invasive stimulation method for brain tissue for animal robots.
Collapse
Affiliation(s)
- 浩然 朱
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 瑞托 槐
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 平丘 张
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 慧 汪
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 俊卿 杨
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 涛 殷
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 志豪 于
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| | - 峰 邵
- 山东科技大学 电气与自动化工程学院(山东青岛 266510)College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shangdong 266510, P. R. China
| |
Collapse
|
20
|
Wang B, Peterchev AV, Gaugain G, Ilmoniemi RJ, Grill WM, Bikson M, Nikolayev D. Quasistatic approximation in neuromodulation. ARXIV 2024:arXiv:2402.00486v5. [PMID: 38351938 PMCID: PMC10862934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuro-modulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g., Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.
Collapse
|
21
|
Yatsuda K, Yu W, Gomez-Tames J. Population-level insights into temporal interference for focused deep brain neuromodulation. Front Hum Neurosci 2024; 18:1308549. [PMID: 38708141 PMCID: PMC11066208 DOI: 10.3389/fnhum.2024.1308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Collapse
Affiliation(s)
- Kanata Yatsuda
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Seo J, Lee J, Min BK. Out-of-phase transcranial alternating current stimulation modulates the neurodynamics of inhibitory control. Neuroimage 2024; 292:120612. [PMID: 38648868 DOI: 10.1016/j.neuroimage.2024.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea
| | - Jehyeop Lee
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
23
|
Zheng S, Fu T, Yan J, Zhu C, Li L, Qian Z, Lü J, Liu Y. Repetitive temporal interference stimulation improves jump performance but not the postural stability in young healthy males: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:38. [PMID: 38509563 PMCID: PMC10953232 DOI: 10.1186/s12984-024-01336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Temporal interference (TI) stimulation, an innovative non-invasive brain stimulation technique, has the potential to activate neurons in deep brain regions. The objective of this study was to evaluate the effects of repetitive TI stimulation targeting the lower limb motor control area (i.e., the M1 leg area) on lower limb motor function in healthy individuals, which could provide evidence for further translational application of non-invasive deep brain stimulation. METHODS In this randomized, double-blinded, parallel-controlled trial, 46 healthy male adults were randomly divided into the TI or sham group. The TI group received 2 mA (peak-to-peak) TI stimulation targeting the M1 leg area with a 20 Hz frequency difference (2 kHz and 2.02 kHz). Stimulation parameters of the sham group were consistent with those of the TI group but the current input lasted only 1 min (30 s ramp-up and ramp-down). Both groups received stimulation twice daily for five consecutive days. The vertical jump test (countermovement jump [CMJ], squat jump [SJ], and continuous jump [CJ]) and Y-balance test were performed before and after the total intervention session. Two-way repeated measures ANOVA (group × time) was performed to evaluate the effects of TI stimulation on lower limb motor function. RESULTS Forty participants completed all scheduled study visits. Two-way repeated measures ANOVA showed significant group × time interaction effects for CMJ height (F = 8.858, p = 0.005) and SJ height (F = 6.523, p = 0.015). The interaction effect of the average CJ height of the first 15 s was marginally significant (F = 3.550, p = 0.067). However, there was no significant interaction effect on the Y balance (p > 0.05). Further within-group comparisons showed a significant post-intervention increase in the height of the CMJ (p = 0.004), SJ (p = 0.010) and the average CJ height of the first 15 s (p = 0.004) in the TI group. CONCLUSION Repetitive TI stimulation targeting the lower limb motor control area effectively increased vertical jump height in healthy adult males but had no significant effect on dynamic postural stability.
Collapse
Affiliation(s)
- Suwang Zheng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Tianli Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jinlong Yan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Chunyue Zhu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Lu Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
24
|
Huang X, Wei X, Wang J, Yi G. Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation. J Neural Eng 2024; 21:016034. [PMID: 38382101 DOI: 10.1088/1741-2552/ad2b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Objective.Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that directly interacts with ongoing brain oscillations in a frequency-dependent manner. However, it remains largely unclear how the cellular effects of tACS vary between cell types and subcellular elements.Approach.In this study, we use a set of morphologically realistic models of neocortical neurons to simulate the cellular response to uniform oscillating electric fields (EFs). We systematically characterize the membrane polarization in the soma, axons, and dendrites with varying field directions, intensities, and frequencies.Main results.Pyramidal cells are more sensitive to axial EF that is roughly parallel to the cortical column, while interneurons are sensitive to axial EF and transverse EF that is tangent to the cortical surface. Membrane polarization in each subcellular element increases linearly with EF intensity, and its slope, i.e. polarization length, highly depends on the stimulation frequency. At each frequency, pyramidal cells are more polarized than interneurons. Axons usually experience the highest polarization, followed by the dendrites and soma. Moreover, a visible frequency resonance presents in the apical dendrites of pyramidal cells, while the other subcellular elements primarily exhibit low-pass filtering properties. In contrast, each subcellular element of interneurons exhibits complex frequency-dependent polarization. Polarization phase in each subcellular element of cortical neurons lags that of field and exhibits high-pass filtering properties. These results demonstrate that the membrane polarization is not only frequency-dependent, but also cell type- and subcellular element-specific. Through relating effective length and ion mechanism with polarization, we emphasize the crucial role of cell morphology and biophysics in determining the frequency-dependent membrane polarization.Significance.Our findings highlight the diverse polarization patterns across cell types as well as subcellular elements, which provide some insights into the tACS cellular effects and should be considered when understanding the neural spiking activity by tACS.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
25
|
Omae E, Shima A, Tanaka K, Yamada M, Cao Y, Nakamura T, Hoshiai H, Chiba Y, Irisawa H, Mizushima T, Mima T, Koganemaru S. Case report: An N-of-1 study using amplitude modulated transcranial alternating current stimulation between Broca's area and the right homotopic area to improve post-stroke aphasia with increased inter-regional synchrony. Front Hum Neurosci 2024; 18:1297683. [PMID: 38454909 PMCID: PMC10917932 DOI: 10.3389/fnhum.2024.1297683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Over one-third of stroke survivors develop aphasia, and language dysfunction persists for the remainder of their lives. Brain language network changes in patients with aphasia. Recently, it has been reported that phase synchrony within a low beta-band (14-19 Hz) frequency between Broca's area and the homotopic region of the right hemisphere is positively correlated with language function in patients with subacute post-stroke aphasia, suggesting that synchrony is important for language recovery. Here, we employed amplitude-modulated transcranial alternating current stimulation (AM-tACS) to enhance synchrony within the low beta band frequency between Broca's area and the right homotopic area, and to improve language function in a case of chronic post-stroke aphasia. According to an N-of-1 study design, the patient underwent short-term intervention with a one-time intervention of 15 Hz-AM-tACS with Broca's and the right homotopic areas (real condition), sham stimulation (sham condition), and 15 Hz-AM-tACS with Broca's and the left parietal areas (control condition) and long-term intervention with sham and real conditions (10 sessions in total, each). In the short-term intervention, the reaction time and accuracy rate of the naming task improved after real condition, not after sham and control conditions. The synchrony between the stimulated areas evaluated by coherence largely increased after the real condition. In the long-term intervention, naming ability, verbal fluency and overall language function improved, with the increase in the synchrony, and those improvements were sustained for more than a month after real condition. This suggests that AM-tACS on Broca's area and the right homotopic areas may be a promising therapeutic approach for patients with poststroke aphasia.
Collapse
Affiliation(s)
- Erika Omae
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurobiology and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Tanaka
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Yamada
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yedi Cao
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Nakamura
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hajime Hoshiai
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yumi Chiba
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Rehabilitation Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
26
|
Narayanan RP, Khaleghi A, Veletić M, Balasingham I. Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference. PLoS One 2024; 19:e0297114. [PMID: 38271467 PMCID: PMC10834063 DOI: 10.1371/journal.pone.0297114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This paper presents an innovative approach to wireless cellular stimulation therapy through the design of a magnetoelectric (ME) microdevice. Traditional electrophysiological stimulation techniques for neural and deep brain stimulation face limitations due to their reliance on electronics, electrode arrays, or the complexity of magnetic induction. In contrast, the proposed ME microdevice offers a self-contained, controllable, battery-free, and electronics-free alternative, holding promise for targeted precise stimulation of biological cells and tissues. The designed microdevice integrates core shell ME materials with remote coils which applies magnetic temporal interference (MTI) signals, leading to the generation of a bipolar local electric stimulation current operating at low frequencies which is suitable for precise stimulation. The nonlinear property of the magnetostrictive core enables the demodulation of remotely applied high-frequency electromagnetic fields, resulting in a localized, tunable, and manipulatable electric potential on the piezoelectric shell surface. This potential, triggers electrical spikes in neural cells, facilitating stimulation. Rigorous computational simulations support this concept, highlighting a significantly high ME coupling factor generation of 550 V/m·Oe. The high ME coupling is primarily attributed to the operation of the device in its mechanical resonance modes. This achievement is the result of a carefully designed core shell structure operating at the MTI resonance frequencies, coupled with an optimal magnetic bias, and predetermined piezo shell thickness. These findings underscore the potential of the engineered ME core shell as a candidate for wireless and minimally invasive cellular stimulation therapy, characterized by high resolution and precision. These results open new avenues for injectable material structures capable of delivering effective cellular stimulation therapy, carrying implications across neuroscience medical devices, and regenerative medicine.
Collapse
Affiliation(s)
- Ram Prasadh Narayanan
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Khaleghi
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Mladen Veletić
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Ilangko Balasingham
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Luff CE, Dzialecka P, Acerbo E, Williamson A, Grossman N. Pulse-width modulated temporal interference (PWM-TI) brain stimulation. Brain Stimul 2024; 17:92-103. [PMID: 38145754 DOI: 10.1016/j.brs.2023.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
| | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom.
| |
Collapse
|
28
|
Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023; 26:2005-2016. [PMID: 37857774 PMCID: PMC10620076 DOI: 10.1038/s41593-023-01457-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pablo Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
29
|
Huang Y. Visualizing interferential stimulation of human brains. Front Hum Neurosci 2023; 17:1239114. [PMID: 37954939 PMCID: PMC10637574 DOI: 10.3389/fnhum.2023.1239114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Transcranial electrical stimulation (TES) is limited in focally stimulating deep-brain regions, even with optimized stimulation montages. Recently, interferential stimulation (IFS), also known as transcranial temporal interference stimulation (TI, TIS, or tTIS), has drawn much attention in the TES community as both computational and experimental studies show that IFS can reach deep-brain areas. However, the underlying electrodynamics of IFS is complicated and difficult to visualize. Existing literature only shows static visualization of the interfered electric field induced by IFS. These could result in a simplified understanding that there is always one static focal spot between the two pairs of stimulation electrodes. This static visualization can be frequently found in the IFS literature. Here, we aimed to systematically visualize the entire dynamics of IFS. Methods and results Following the previous study, the lead field was solved for the MNI-152 head, and optimal montages using either two pairs of electrodes or two arrays of electrodes were found to stimulate a deep-brain region close to the left striatum with the highest possible focality. We then visualized the two stimulating electrical currents injected with similar frequencies. We animated the instant electric field vector at the target and one exemplary off-target location both in 3D space and as a 2D Lissajous curve. We finally visualized the distribution of the interfered electric field and the amplitude modulation envelope at an axial slice going through the target location. These two quantities were visualized in two directions: radial-in and posterior-anterior. Discussion We hope that with intuitive visualization, this study can contribute as an educational resource to the community's understanding of IFS as a powerful modality for non-invasive focal deep-brain stimulation.
Collapse
Affiliation(s)
- Yu Huang
- Research and Development, Soterix Medical Inc., Woodbridge, NJ, United States
| |
Collapse
|
30
|
Xin Z, Abe Y, Kuwahata A, Tanaka KF, Sekino M. Brain Response to Interferential Current Compared with Alternating Current Stimulation. Brain Sci 2023; 13:1317. [PMID: 37759918 PMCID: PMC10526916 DOI: 10.3390/brainsci13091317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Temporal interference (TI) stimulation, which utilizes multiple external electric fields with amplitude modulation for neural modulation, has emerged as a potential noninvasive brain stimulation methodology. However, the clinical application of TI stimulation is inhibited by its uncertain fundamental mechanisms, and research has previously been restricted to numerical simulations and immunohistology without considering the acute in vivo response of the neural circuit. To address the characterization and understanding of the mechanisms underlying the approach, we investigated instantaneous brainwide activation patterns in response to invasive interferential current (IFC) stimulation compared with low-frequency alternative current stimulation (ACS). Results demonstrated that IFC stimulation is capable of inducing regional neural responses and modulating brain networks; however, the activation threshold for significantly recruiting a neural response using IFC was higher (at least twofold) than stimulation via alternating current, and the spatial distribution of the activation signal was restricted. A distinct blood oxygenation level-dependent (BOLD) response pattern was observed, which could be accounted for by the activation of distinct types of cells, such as inhibitory cells, by IFC. These results suggest that IFC stimulation might not be as efficient as conventional brain modulation methods, especially when considering TI stimulation as a potential alternative for stimulating subcortical brain areas. Therefore, we argue that a future transcranial application of TI on human subjects should take these implications into account and consider other stimulation effects using this technique.
Collapse
Affiliation(s)
- Zonghao Xin
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.A.); (K.F.T.)
| | - Akihiro Kuwahata
- Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.A.); (K.F.T.)
| | - Masaki Sekino
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| |
Collapse
|
31
|
Ma S, Song X, Guo T, Zhou F, Liu Z, Chai X, Li L. Improving Spatial Resolution and Selectivity of Transcorneal Electrical Stimulation by Temporal Interference Technology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083661 DOI: 10.1109/embc40787.2023.10341049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transcorneal electrical stimulation (TES) used in a therapeutic device has been demonstrated significant neuroprotective effect for rescuing retinal function. However, the diffuse electric field induced by conventional TES devices reduced their spatial resolution and selectivity, limiting their capability of actively stimulating a severely diseased retina. A cutting-edge neuromodulation approach named temporal interference stimulation (TIS) was reported to induce electric fields focalizing on local neuronal targets. Despite the competent feasibility of application in retinal TIS, the interpretation of characteristics of spatial resolution and selectivity under TIS remains rudimentary. In this study, we conduct in silico investigations to understand the characteristics of spatial selectivity and resolution using a finite element model of a multi-layered eyeball and multiple electrode configuration. By simulating different metrics of electric potentials envelope modulated by TIS, our model supports the possibility of achieving mini-invasive and spatially selective electrical stimulation using retinal TIS. These simulations provide theoretical evidence on the basis of which sophisticated devices for improved spatial selectivity can be designed.Clinical Relevance- This study provides a theoretical basis for understanding how the design of electrode configuration impacts transcorneal TIS performance. This model can guide future development of transcorneal TIS configurations and stimulation strategies that may benefit patients with inherited retinal diseases.
Collapse
|
32
|
Iszak K, Gronemann SM, Meyer S, Hunold A, Zschüntzsch J, Bähr M, Paulus W, Antal A. Why Temporal Inference Stimulation May Fail in the Human Brain: A Pilot Research Study. Biomedicines 2023; 11:1813. [PMID: 37509455 PMCID: PMC10376875 DOI: 10.3390/biomedicines11071813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Temporal interference stimulation (TIS) aims at targeting deep brain areas during transcranial electrical alternating current stimulation (tACS) by generating interference fields at depth. Although its modulatory effects have been demonstrated in animal and human models and stimulation studies, direct experimental evidence is lacking for its utility in humans (in vivo). Herein, we directly test and compare three different structures: firstly, we perform peripheral nerve and muscle stimulation quantifying muscle twitches as readout, secondly, we stimulate peri-orbitally with phosphene perception as a surrogate marker, and thirdly, we attempt to modulate the mean power of alpha oscillations in the occipital area as measured with electroencephalography (EEG). We found strong evidence for stimulation efficacy on the modulated frequency in the PNS, but we found no evidence for its utility in the CNS. Possible reasons for failing to activate CNS targets could be comparatively higher activation thresholds here or inhibitory stimulation components to the carrier frequency interfering with the effects of the modulated signal.
Collapse
Affiliation(s)
- Krisztián Iszak
- Department of Neurology, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
| | - Simon Mathies Gronemann
- Department of Neurology, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
| | - Alexander Hunold
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, 98684 Ilmenau, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians University Munich, Klinikum Großhadern, 81377 München, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Georg-August University, 37075 Göttingen, Germany
| |
Collapse
|
33
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
34
|
Unal G, Poon C, FallahRad M, Thahsin M, Argyelan M, Bikson M. Quasi-static pipeline in electroconvulsive therapy computational modeling. Brain Stimul 2023; 16:607-618. [PMID: 36933652 PMCID: PMC10988926 DOI: 10.1016/j.brs.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Computational models of current flow during Electroconvulsive Therapy (ECT) rely on the quasi-static assumption, yet tissue impedance during ECT may be frequency specific and change adaptively to local electric field intensity. OBJECTIVES We systematically consider the application of the quasi-static pipeline to ECT under conditions where 1) static impedance is measured before ECT and 2) during ECT when dynamic impedance is measured. We propose an update to ECT modeling accounting for frequency-dependent impedance. METHODS The frequency content on an ECT device output is analyzed. The ECT electrode-body impedance under low-current conditions is measured with an impedance analyzer. A framework for ECT modeling under quasi-static conditions based on a single device-specific frequency (e.g., 1 kHz) is proposed. RESULTS Impedance using ECT electrodes under low-current is frequency dependent and subject specific, and can be approximated at >100 Hz with a subject-specific lumped parameter circuit model but at <100 Hz increased non-linearly. The ECT device uses a 2 μA 800 Hz test signal and reports a static impedance that approximate 1 kHz impedance. Combined with prior evidence suggesting that conductivity does not vary significantly across ECT output frequencies at high-currents (800-900 mA), we update the adaptive pipeline for ECT modeling centered at 1 kHz frequency. Based on individual MRI and adaptive skin properties, models match static impedance (at 2 μA) and dynamic impedance (at 900 mA) of four ECT subjects. CONCLUSIONS By considering ECT modeling at a single representative frequency, ECT adaptive and non-adaptive modeling can be rationalized under a quasi-static pipeline.
Collapse
Affiliation(s)
- Gozde Unal
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
| | - Cynthia Poon
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Myesha Thahsin
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Miklos Argyelan
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore- Long Island Jewish Health System, Manhasset, NY, 11030, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
| |
Collapse
|
35
|
Osteocalcin ameliorates cognitive dysfunctions in a mouse model of Alzheimer's Disease by reducing amyloid β burden and upregulating glycolysis in neuroglia. Cell Death Dis 2023; 9:46. [PMID: 36746932 PMCID: PMC9902399 DOI: 10.1038/s41420-023-01343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by the accumulation of amyloid β peptides (Aβ) and impaired glucose metabolism in the brain. Osteocalcin (OCN), an osteoblast-derived protein, has been shown to modulate brain functions but whether it has any effect on AD is undetermined. In this study, daily intraperitoneal injection of OCN for 4 weeks ameliorated the anxiety-like behaviors and cognitive dysfunctions in the APP/PS1 transgenic AD mice model, as shown in the increased entries into the central area in open field test, the increased time and entries into open arms in elevated plus maze test, the increased time spent in the light chamber in light-dark transition test, as well as the reduced escape latency and the increased preference for target quadrant in Morris water maze test. Aβ burden in the hippocampus and cortex of AD mice was ameliorated by OCN. Besides, OCN improved the neural network function of the brain, mainly in the enhanced power of high gamma band in the medial prefrontal cortex of AD mice. The proliferation of astrocytes in the hippocampus in AD mice was also inhibited by OCN as demonstrated by immunofluorescence. Furthermore, OCN enhanced glycolysis in astrocytes and microglia, as evidenced by elevated glucose consumption, lactate production, and increased extracellular acidification rate. Such an effect was abolished when the receptor of OCN - Gpr158 was knockdown in astrocytes. Our study revealed OCN as a novel therapeutic factor for AD potentially through reducing Aβ burden and upregulation of glycolysis in neuroglia.
Collapse
|
36
|
Guo W, He Y, Zhang W, Sun Y, Wang J, Liu S, Ming D. A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Front Neurosci 2023; 17:1092539. [PMID: 36777641 PMCID: PMC9912300 DOI: 10.3389/fnins.2023.1092539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
For decades, neuromodulation technology has demonstrated tremendous potential in the treatment of neuropsychiatric disorders. However, challenges such as being less intrusive, more concentrated, using less energy, and better public acceptance, must be considered. Several novel and optimized methods are thus urgently desiderated to overcome these barriers. In specific, temporally interfering (TI) electrical stimulation was pioneered in 2017, which used a low-frequency envelope waveform, generated by the superposition of two high-frequency sinusoidal currents of slightly different frequency, to stimulate specific targets inside the brain. TI electrical stimulation holds the advantages of both spatial targeting and non-invasive character. The ability to activate deep pathogenic targets without surgery is intriguing, and it is expected to be employed to treat some neurological or psychiatric disorders. Recently, efforts have been undertaken to investigate the stimulation qualities and translation application of TI electrical stimulation via computational modeling and animal experiments. This review detailed the most recent scientific developments in the field of TI electrical stimulation, with the goal of serving as a reference for future research.
Collapse
Affiliation(s)
- Wanting Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenquan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Junling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,*Correspondence: Shuang Liu,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China,Tianjin International Joint Research Center for Neural Engineering, Tianjin, China,Dong Ming,
| |
Collapse
|
37
|
Khalifa A, Abrishami SM, Zaeimbashi M, Tang AD, Coughlin B, Rodger J, Sun NX, Cash SS. Magnetic temporal interference for noninvasive and focal brain stimulation. J Neural Eng 2023; 20. [PMID: 36651596 DOI: 10.1088/1741-2552/acb015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Objective. Noninvasive focal stimulation of deep brain regions has been a major goal for neuroscience and neuromodulation in the past three decades. Transcranial magnetic stimulation (TMS), for instance, cannot target deep regions in the brain without activating the overlying tissues and has poor spatial resolution. In this manuscript, we propose a new concept that relies on the temporal interference (TI) of two high-frequency magnetic fields generated by two electromagnetic solenoids.Approach. To illustrate the concept, custom solenoids were fabricated and optimized to generate temporal interfering electric fields for rodent brain stimulation. C-Fos expression was used to track neuronal activation.Main result. C-Fos expression was not present in regions impacted by only one high-frequency magnetic field indicating ineffective recruitment of neural activity in non-target regions. In contrast, regions impacted by two fields that interfere to create a low-frequency envelope display a strong increase in c-Fos expression.Significance. Therefore, this magnetic temporal interference solenoid-based system provides a framework to perform further stimulation studies that would investigate the advantages it could bring over conventional TMS systems.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
| | - Seyed Mahdi Abrishami
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Mohsen Zaeimbashi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, WA, Australia.,Perron Institute for Neurological and Translational, University of Western Australia, WA, Australia
| | - Brian Coughlin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, WA, Australia.,Perron Institute for Neurological and Translational, University of Western Australia, WA, Australia
| | - Nian X Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
38
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
39
|
Bahn S, Lee C, Kang B. A computational study on the optimization of transcranial temporal interfering stimulation with high-definition electrodes using unsupervised neural networks. Hum Brain Mapp 2022; 44:1829-1845. [PMID: 36527707 PMCID: PMC9980883 DOI: 10.1002/hbm.26181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Transcranial temporal interfering stimulation (tTIS) can focally stimulate deep parts of the brain related to specific functions using beats at two high frequencies that do not individually affect the human brain. However, the complexity and nonlinearity of the simulation limit it in terms of calculation time and optimization precision. We propose a method to quickly optimize the interfering current value of high-definition electrodes, which can finely stimulate the deep part of the brain, using an unsupervised neural network (USNN) for tTIS. We linked a network that generates the values of electrode currents to another network, which is constructed to compute the interference exposure, for optimization by comparing the generated stimulus with the target stimulus. Further, a computational study was conducted using 16 realistic head models. We also compared tTIS with transcranial alternating current stimulation (tACS), in terms of performance and characteristics. The proposed method generated the strongest stimulation at the target, even when targeting deep areas or performing multi-target stimulation. The high-definition tTISl was less affected than tACS by target depth, and mis-stimulation was reduced compared with the case of using two-pair inferential stimulation in deep region. The optimization of the electrode currents for the target stimulus could be performed in 3 min. Using the proposed USNN for tTIS, we demonstrated that the electrode currents of tTIS can be optimized quickly and accurately. Moreover, we confirmed the possibility of precisely stimulating the deep parts of the brain via transcranial electrical stimulation.
Collapse
Affiliation(s)
- Sangkyu Bahn
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chany Lee
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Bo‐Yeong Kang
- School of ConvergenceKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
40
|
Cerpa E, Courdurier M, Hernández E, Medina LE, Paduro E. A partially averaged system to model neuron responses to interferential current stimulation. J Math Biol 2022; 86:8. [PMID: 36469157 DOI: 10.1007/s00285-022-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The interferential current (IFC) therapy is a noninvasive electrical neurostimulation technique intended to activate deep neurons using surface electrodes. In IFC, two independent kilohertz-frequency currents purportedly intersect where an interference field is generated. However, the effects of IFC on neurons within and outside the interference field are not completely understood, and it is unclear whether this technique can reliable activate deep target neurons without side effects. In recent years, realistic computational models of IFC have been introduced to quantify the effects of IFC on brain cells, but they are often complex and computationally costly. Here, we introduce a simplified model of IFC based on the FitzHugh-Nagumo (FHN) model of a neuron. By considering a modified averaging method, we obtain a non-autonomous approximated system, with explicit representation of relevant IFC parameters. For this approximated system we determine conditions under which it reliably approximates the complete FHN system under IFC stimulation, and we mathematically prove its ability to predict nonspiking states. In addition, we perform numerical simulations that show that the interference effect is observed only for a narrow set of IFC parameters and, in particular, for a beat frequency no higher than about 100 [Hz]. Our novel model tailored to the IFC technique contributes to the understanding of neurostimulation modalities using this type of signals, and can have implications in the design of noninvasive electrical stimulation therapies.
Collapse
Affiliation(s)
- Eduardo Cerpa
- Facultad de Matemáticas, Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile.,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile
| | - Matías Courdurier
- Departamento de Matemática, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile.,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile
| | - Esteban Hernández
- Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, 2390123, Chile
| | - Leonel E Medina
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Avda. Víctor Jara 3659, Estación Central, Santiago, 9170124, Chile.,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile
| | - Esteban Paduro
- Facultad de Matemáticas, Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile. .,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile.
| |
Collapse
|
41
|
Ko H, Yoon SP. Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:269-277. [PMID: 35152662 PMCID: PMC9580057 DOI: 10.12701/jyms.2021.01683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.
Collapse
Affiliation(s)
- Haneol Ko
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
42
|
Stoupis D, Samaras T. Non-invasive stimulation with Temporal Interference: Optimization of the electric field deep in the brain with the use of a genetic algorithm. J Neural Eng 2022; 19. [PMID: 35970146 DOI: 10.1088/1741-2552/ac89b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Since the introduction of transcranial temporal interference stimulation (tTIS), there has been an ever-growing interest in this novel method, as it theoretically allows non-invasive stimulation of deep brain target regions. To date, attempts have been made to optimize the electrode montages and injected current to achieve personalized area targeting using two electrode pairs. Most of these methods use exhaustive search to find the best match, but faster and, at the same time, reliable solutions are required. In this study, the electrode combinations as well as the injected current for a two-electrode pair stimulation were optimized using a genetic algorithm, considering the right hippocampus as the region of interest (ROI). METHODS Simulations were performed on head models from the Population Head Model (PHM) repository. First, each model was fitted with an electrode array based on the 10-10 international EEG electrode placement system. Following electrode placement, the models were meshed and solved for all single-pair electrode combinations, using an electrode on the left mastoid as a reference (ground). At the optimization stage, different electrode pairs and injection currents were tested using a genetic algorithm to obtain the optimal combination for each model, by setting three different maximum electric field thresholds (0.2, 0.5, and 0.8 V/m) in the ROI. The combinations below the set threshold were given a high penalty. RESULTS Greater focality was achieved with our optimization, specifically in the ROI, with a significant decrease in the surrounding electric field intensity. In the non-optimized case, the mean brain volumes stimulated above 0.2 V/m were 99.9% in the ROI, and 76.4% in the rest of the gray matter. In contrast, the stimulated mean volumes were 91.4% and 29.6%, respectively, for the best optimization case with a threshold of 0.8 V/m. Additionally, the maximum electric field intensity inside the ROI was consistently higher than that outside of the ROI for all optimized cases. SIGNIFICANCE Given that the accomplishment of a globally optimal solution requires a brute-force approach, the use of a genetic algorithm can significantly decrease the optimization time, while achieving personalized deep brain stimulation. The results of this work can be used to facilitate further studies that are more clinically oriented; thus, enabling faster and at the same time accurate treatment planning for the stimulation sessions.
Collapse
Affiliation(s)
- D Stoupis
- Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Central Macedonia, 54124, GREECE
| | - T Samaras
- Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, GREECE
| |
Collapse
|
43
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
44
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
45
|
Plovie T, Schoeters R, Tarnaud T, Martens L, Joseph W, Tanghe E. Influence of Temporal Interference Stimulation Parameters on Point Neuron Excitability. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2365-2368. [PMID: 36085979 DOI: 10.1109/embc48229.2022.9871641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal interference (TI) stimulation is a technique in which two high frequency sinusoidal electric fields, oscillating at a slightly different frequency are sent into the brain. The goal is to achieve stimulation at the place where both fields interfere. This study uses a simplified version of the Hodgkin - Huxley model to analyse the different parameters of the TI-waveform and how the neuron reacts to this waveform. In this manner, the underlying mechanism of the reaction of the neuron to a TI -signal is investigated. Clinical relevance- This study shows the importance of the parameter choice of the temporal interference waveform and provides insights into the underlying mechanism of the neuronal response to a beating sine for the application of temporal interference stimulation.
Collapse
|
46
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
47
|
Jabban L, Ribeiro M, Andreis FR, Dos Santos Nielsen TGN, Metcalfe BW. Pig Ulnar Nerve Recording with Sinusoidal and Temporal Interference Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5084-5088. [PMID: 36086016 DOI: 10.1109/embc48229.2022.9871603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal interference stimulation has been suggested as a method to reach deep targets during transcutaneous electrical stimulation. Despite its growing use in transcutaneous stimulation therapies, the mechanism of its operation is not fully understood. Recent efforts to fill that gap have focused on computational modelling, in vitro and in vivo experiments relying on physical observations - e.g., sensation or movement. This paper expands the current range of experimental methods by demonstrating in vivo extraneural recordings from the ulnar nerve of a pig while applying temporal interference stimulation at a location targeting a distal part of the nerve. The main aim of the experiment was to compare neural activation using sinusoidal stimulation (100 Hz, 2 kHz, 4 kHz) and temporal interference stimulation (2 kHz and 4 kHz). The recordings showed a significant increase in the magnitude of stimulation artefacts at higher frequencies. While those artefacts could be removed and provided an indication of the depth of modulation, they resulted in the saturation of the amplifiers, limiting the stimulation currents and amplifier gains used. The results of the 100 Hz sine wave stimulation showed clear neural activity correlated to the stimulation waveform. However, this was not observed with temporal interference stimulation. The results suggest that, despite its greater penetration, higher currents might be required to observe a neural response with temporal interference stimulation, and more complex artefact rejection techniques may be required to validate the method.
Collapse
|
48
|
Nasr K, Haslacher D, Dayan E, Censor N, Cohen LG, Soekadar SR. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216:102311. [PMID: 35750290 DOI: 10.1016/j.pneurobio.2022.102311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.
Collapse
Affiliation(s)
- Khaled Nasr
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
49
|
von Conta J, Kasten FH, Schellhorn K, Curcic-Blake B, Aleman A, Herrmann CS. Benchmarking the Effects of Transcranial Temporal Interference Stimulation (tTIS) in Humans. Cortex 2022; 154:299-310. [DOI: 10.1016/j.cortex.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
50
|
Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci 2022; 15:820017. [PMID: 35145384 PMCID: PMC8823253 DOI: 10.3389/fnbeh.2021.820017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Brain stimulation is a critical technique in neuroscience research and clinical application. Traditional transcranial brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) have been widely investigated in neuroscience for decades. However, TMS and tDCS have poor spatial resolution and penetration depth, and DBS requires electrode implantation in deep brain structures. These disadvantages have limited the clinical applications of these techniques. Owing to developments in science and technology, substantial advances in noninvasive and precise deep stimulation have been achieved by neuromodulation studies. Second-generation brain stimulation techniques that mainly rely on acoustic, electronic, optical, and magnetic signals, such as focused ultrasound, temporal interference, near-infrared optogenetic, and nanomaterial-enabled magnetic stimulation, offer great prospects for neuromodulation. This review summarized the mechanisms, development, applications, and strengths of these techniques and the prospects and challenges in their development. We believe that these second-generation brain stimulation techniques pave the way for brain disorder therapy.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| |
Collapse
|