1
|
Feng J, Li Z. Progress in Noninvasive Low-Intensity Focused Ultrasound Neuromodulation. Stroke 2024; 55:2547-2557. [PMID: 39145391 DOI: 10.1161/strokeaha.124.046679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Low-intensity focused ultrasound represents groundbreaking medical advancements, characterized by its noninvasive feature, safety, precision, and broad neuromodulatory capabilities. This technology operates through mechanisms, for example, acoustic radiation force, cavitation, and thermal effects. Notably, with the evolution of medical technology, ultrasound neuromodulation has been gradually applied in treating central nervous system diseases, especially stroke. Furthermore, burgeoning research areas such as sonogenetics and nanotechnology show promising potential. Despite the benefit of low-intensity focused ultrasound the precise biophysical mechanism of ultrasound neuromodulation still need further exploration. This review discusses the recent and ongoing developments of low-intensity focused ultrasound for neurological regulation, covering the underlying rationale to current utility and the challenges that impede its further development and broader adoption of this promising alternative to noninvasive therapy.
Collapse
Affiliation(s)
- Jinru Feng
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
| | - Zixiao Li
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases (Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- Chinese Institute for Brain Research, Beijing, China (Z.L.)
| |
Collapse
|
2
|
Murphy K, Fouragnan E. The future of transcranial ultrasound as a precision brain interface. PLoS Biol 2024; 22:e3002884. [PMID: 39471185 PMCID: PMC11521279 DOI: 10.1371/journal.pbio.3002884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Our understanding of brain circuit operations and disorders has rapidly outpaced our ability to intervene and restore them. Developing technologies that can precisely interface with any brain region and circuit may combine diagnostics with therapeutic intervention, expediting personalised brain medicine. Transcranial ultrasound stimulation (TUS) is a promising noninvasive solution to this challenge, offering focal precision and scalability. By exploiting the biomechanics of pressure waves on brain tissue, TUS enables multi-site targeted neuromodulation across distributed circuits in the cortex and deeper areas alike. In this Essay, we explore the emergent evidence that TUS can functionally test and modify dysfunctional regions, effectively serving as a search and rescue tool for the brain. We define the challenges and opportunities faced by TUS as it moves towards greater target precision and integration with advanced brain monitoring and interventional technology. Finally, we propose a roadmap for the evolution of TUS as it progresses from a research tool to a clinically validated therapeutic for brain disorders.
Collapse
Affiliation(s)
- Keith Murphy
- Department of Radiology, Stanford University, Stanford, California, United States of America
- Attune Neurosciences, San Francisco, California, United States of America
| | - Elsa Fouragnan
- Brain Research and Imaging Centre, University of Plymouth, Plymouth, United Kingdom
- School of psychology, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
3
|
Egawa S, Ader J, Claassen J. Recovery of consciousness after acute brain injury: a narrative review. J Intensive Care 2024; 12:37. [PMID: 39327599 PMCID: PMC11425956 DOI: 10.1186/s40560-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DoC) are frequently encountered in both, acute and chronic brain injuries. In many countries, early withdrawal of life-sustaining treatments is common practice for these patients even though the accuracy of predicting recovery is debated and delayed recovery can be seen. In this review, we will discuss theoretical concepts of consciousness and pathophysiology, explore effective strategies for management, and discuss the accurate prediction of long-term clinical outcomes. We will also address research challenges. MAIN TEXT DoC are characterized by alterations in arousal and/or content, being classified as coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state, and confusional state. Patients with willful modulation of brain activity detectable by functional MRI or EEG but not by behavioral examination is a state also known as covert consciousness or cognitive motor dissociation. This state may be as common as every 4th or 5th patient without behavioral evidence of verbal command following and has been identified as an independent predictor of long-term functional recovery. Underlying mechanisms are uncertain but intact arousal and thalamocortical projections maybe be essential. Insights into the mechanisms underlying DoC will be of major importance as these will provide a framework to conceptualize treatment approaches, including medical, mechanical, or electoral brain stimulation. CONCLUSIONS We are beginning to gain insights into the underlying mechanisms of DoC, identifying novel advanced prognostication tools to improve the accuracy of recovery predictions, and are starting to conceptualize targeted treatments to support the recovery of DoC patients. It is essential to determine how these advancements can be implemented and benefit DoC patients across a range of clinical settings and global societal systems. The Curing Coma Campaign has highlighted major gaps knowledge and provides a roadmap to advance the field of coma science with the goal to support the recovery of patients with DoC.
Collapse
Affiliation(s)
- Satoshi Egawa
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jeremy Ader
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
4
|
Cox SS, Connolly DJ, Peng X, Badran BW. A Comprehensive Review of Low-Intensity Focused Ultrasound Parameters and Applications in Neurologic and Psychiatric Disorders. Neuromodulation 2024:S1094-7159(24)00662-7. [PMID: 39230530 DOI: 10.1016/j.neurom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Low-intensity focused ultrasound (LIFU) is gaining increased interest as a potential therapeutic modality for a range of neuropsychiatric diseases. Current neuromodulation modalities often require a choice between high spatial fidelity or invasiveness. LIFU is unique in this regard because it provides high spatial acuity of both superficial and deep neural structures while remaining noninvasive. This new form of noninvasive brain stimulation may provide exciting potential treatment options for a variety of neuropsychiatric disorders involving aberrant neurocircuitry within deep brain structures, including pain and substance use disorders. Furthermore, LIFU is compatible with noninvasive neuroimaging techniques, such as functional magnetic resonance imaging and electroencephalography, making it a useful tool for more precise clinical neuroscience research to further understand the central nervous system. MATERIALS AND METHODS In this study, we provide a review of the most recent LIFU literature covering three key domains: 1) the history of focused ultrasound technology, comparing it with other forms of neuromodulation, 2) the parameters and most up-to-date proposed mechanisms of LIFU, and finally, 3) a consolidation of the current literature to date surrounding the clinical research that has used LIFU for the modification or amelioration of several neuropsychiatric conditions. RESULTS The impact of LIFU including poststroke motor changes, pain, mood disorders, disorders of consciousness, dementia, and substance abuse is discussed. CONCLUSIONS Although still in its infancy, LIFU is a promising tool that has the potential to change the way we approach and treat neuropsychiatric disorders. In this quickly evolving field, this review serves as a snapshot of the current understanding of LIFU in neuropsychiatric research.
Collapse
Affiliation(s)
- Stewart S Cox
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA.
| | - Dillon J Connolly
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Ham H, Kim KS, Lee JH, Kim DN, Choi HJ, Yoh JJ. Acoustic deep brain modulation: Enhancing neuronal activation and neurogenesis. Brain Stimul 2024; 17:1060-1075. [PMID: 39218349 DOI: 10.1016/j.brs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-invasive deep brain modulation (DBM) stands as a promising therapeutic avenue to treat brain diseases. Acoustic DBM represents an innovative and targeted approach to modulate the deep brain, employing techniques such as focused ultrasound and shock waves. Despite its potential, the optimal mechanistic parameters, the effect in the brain and behavioral outcomes of acoustic DBM remains poorly understood. OBJECTIVE To establish a robust protocol for the shock wave DBM by optimizing its mechanistic profile of external stimulation, and to assess its efficacy in preclinical settings. METHODS We used shockwaves due to their capacity to leverage a broader spectrum of peak intensity (10-127 W/mm2) in contrast to ultrasound (0.1-5.0 W/mm2), thereby enabling a more extensive range of neuromodulation effects. We established various types of shockwave pressure profiles of DBM and compared neural and behavioral responses. To ascertain the anticipated cause of the heightened neural activity response, numerical analysis was employed to examine the mechanical dynamics within the brain. RESULTS An optimized profile led to an enhancement in neuronal activity within the hypothalamus of mouse models. The optimized profile in the hippocampus elicited a marked increase in neurogenesis without neuronal damage. Behavioral analyses uncovered a noteworthy reduction in locomotion without significant effects on spatial memory function. CONCLUSIONS The present study provides an optimized shock wave stimulation protocol for non-invasive DBM. Our optimized stimulation profile selectively triggers neural functions in the deep brain. Our protocol paves the way for new non-invasive DBM devices to treat brain diseases.
Collapse
Affiliation(s)
- Hwichan Ham
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jee-Hwan Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyung-Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, South Korea.
| | - Jack J Yoh
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Oh J, Ryu JS, Kim J, Kim S, Jeong HS, Kim KR, Kim HC, Yoo SS, Seok JH. Effect of Low-Intensity Transcranial Focused Ultrasound Stimulation in Patients With Major Depressive Disorder: A Randomized, Double-Blind, Sham-Controlled Clinical Trial. Psychiatry Investig 2024; 21:885-896. [PMID: 39111747 PMCID: PMC11321877 DOI: 10.30773/pi.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE Low-intensity transcranial focused ultrasound (tFUS) has emerged as a promising non-invasive brain stimulation modality with high spatial selectivity and the ability to reach deep brain areas. The present study aimed to investigate the safety and effectiveness of low-intensity tFUS in treating major depressive disorder. METHODS Participants were recruited in an outpatient clinic and randomly assigned to either the verum tFUS or sham stimulation group. The intervention group received six sessions of tFUS stimulation to the left dorsolateral prefrontal cortex over two weeks. Neuropsychological assessments were conducted before and after the sessions. Resting-state functional magnetic resonance imaging (rsfMRI) was also performed to evaluate changes in functional connectivity (FC). The primary outcome measure was the change in depressive symptoms, assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). RESULTS The tFUS stimulation sessions were well tolerated without any undesirable side effects. The analysis revealed a significant main effect of session sequence on the MADRS scores and significant interactions between the session sequences and groups. The rsfMRI analysis showed a higher FC correlation between the right superior part of the subgenual anterior cingulate cortex (sgACC) and several other brain regions in the verum group compared with the sham group. CONCLUSION Our results reveal that tFUS stimulation clinically improved MADRS scores with network-level modulation of a sgACC subregion. This randomized, sham-controlled clinical trial, the first study of its kind, demonstrated the safety and probable efficacy of tFUS stimulation for the treatment of depression.
Collapse
Affiliation(s)
- Jooyoung Oh
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Ryu
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhyung Kim
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soojeong Kim
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyu Seok Jeong
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ran Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Ho Seok
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Thibaut A, Martens G. Neuromodulation for severe brain injury: time for a paradigm shift? Nat Rev Neurol 2024; 20:441-442. [PMID: 38945982 DOI: 10.1038/s41582-024-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Affiliation(s)
- Aurore Thibaut
- GIGA-Consciousness, University of Liège, Liège, Belgium.
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium.
| | - Géraldine Martens
- GIGA-Consciousness, University of Liège, Liège, Belgium
- Sport and Trauma Applied Research Lab, Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
9
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
10
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
11
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
12
|
Wan X, Zhang Y, Li Y, Song W. An update on noninvasive neuromodulation in the treatment of patients with prolonged disorders of consciousness. CNS Neurosci Ther 2024; 30:e14757. [PMID: 38747078 PMCID: PMC11094579 DOI: 10.1111/cns.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.
Collapse
Affiliation(s)
- Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yanhua Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Meng W, Lin Z, Lu Y, Long X, Meng L, Su C, Wang Z, Niu L. Spatiotemporal Distributions of Acoustic Propagation in Skull During Ultrasound Neuromodulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:584-595. [PMID: 38557630 DOI: 10.1109/tuffc.2024.3383027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.
Collapse
|
14
|
Lee K, Park TY, Lee W, Kim H. A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound. Biomed Eng Lett 2024; 14:407-438. [PMID: 38645585 PMCID: PMC11026350 DOI: 10.1007/s13534-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/23/2024] Open
Abstract
Transcranial ultrasonic neuromodulation is a rapidly burgeoning field where low-intensity transcranial focused ultrasound (tFUS), with exquisite spatial resolution and deep tissue penetration, is used to non-invasively activate or suppress neural activity in specific brain regions. Over the past decade, there has been a rapid increase of tFUS neuromodulation studies in healthy humans and subjects with central nervous system (CNS) disease conditions, including a recent surge of clinical investigations in patients. This narrative review summarized the findings of human neuromodulation studies using either tFUS or unfocused transcranial ultrasound (TUS) reported from 2013 to 2023. The studies were categorized into two separate sections: healthy human research and clinical studies. A total of 42 healthy human investigations were reviewed as grouped by targeted brain regions, including various cortical, subcortical, and deep brain areas including the thalamus. For clinical research, a total of 22 articles were reviewed for each studied CNS disease condition, including chronic pain, disorder of consciousness, Alzheimer's disease, Parkinson's disease, depression, schizophrenia, anxiety disorders, substance use disorder, drug-resistant epilepsy, and stroke. Detailed information on subjects/cohorts, target brain regions, sonication parameters, outcome readouts, and stimulatory efficacies were tabulated for each study. In later sections, considerations for planning tFUS neuromodulation in humans were also concisely discussed. With an excellent safety profile to date, the rapid growth of human tFUS research underscores the increasing interest and recognition of its significant potential in the field of non-invasive brain stimulation (NIBS), offering theranostic potential for neurological and psychiatric disease conditions and neuroscientific tools for functional brain mapping.
Collapse
Affiliation(s)
- Kyuheon Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Wonhye Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| |
Collapse
|
15
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Osou S, Radjenovic S, Bender L, Gaal M, Zettl A, Dörl G, Matt E, Beisteiner R. Novel ultrasound neuromodulation therapy with transcranial pulse stimulation (TPS) in Parkinson's disease: a first retrospective analysis. J Neurol 2024; 271:1462-1468. [PMID: 38032371 PMCID: PMC10896933 DOI: 10.1007/s00415-023-12114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Transcranial Pulse Stimulation (TPS) has been recently introduced as a novel ultrasound neuromodulation therapy with the potential to stimulate the human brain in a focal and targeted manner. Here, we present a first retrospective analysis of TPS as an add-on therapy for Parkinson's disease (PD), focusing on feasibility, safety, and clinical effects. We also discuss the placebo response in non-invasive brain stimulation studies as an important context. METHODS This retrospective clinical data analysis included 20 PD patients who received ten sessions of TPS intervention focused on the individual motor network. Safety evaluations were conducted throughout the intervention period. We analyzed changes in motor symptoms before and after TPS treatment using Unified Parkinson's Disease Rating Scale part III (UPDRS-III). RESULTS We found significant improvement in UPDRS-III scores after treatment compared to baseline (pre-TPS: 16.70 ± 8.85, post-TPS: 12.95 ± 8.55; p < 0.001; Cohen's d = 1.38). Adverse events monitoring revealed no major side effects. CONCLUSION These preliminary findings suggest that TPS can further improve motor symptoms in PD patients already on optimized standard therapy. Findings have to be evaluated in context with the current literature on placebo effects.
Collapse
Affiliation(s)
- Sarah Osou
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sonja Radjenovic
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Lena Bender
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Gaal
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anna Zettl
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gregor Dörl
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Eva Matt
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Zeng K, Li Z, Xia X, Wang Z, Darmani G, Li X, Chen R. Effects of different sonication parameters of theta burst transcranial ultrasound stimulation on human motor cortex. Brain Stimul 2024; 17:258-268. [PMID: 38442800 DOI: 10.1016/j.brs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Theta burst TUS (tbTUS) can induce increased cortical excitability in human, but how different sonication parameters influence the effects are still unknown. OBJECTIVE To examine how a range of sonication parameters, including acoustic intensity, pulse repetition frequency, duty cycle and sonication duration, influence the effects of tbTUS on human motor cortical excitability. METHODS 14 right-handed healthy subjects underwent 8 sessions with different tbTUS parameters in a randomized, cross-over design on separate days. The original tbTUS protocol was studied in one session and one parameter was changed in each of the seven sessions. To examine changes in cortical excitability induced by tbTUS, we measured the motor-evoked potential (MEP) amplitude, resting motor threshold, short-interval intracortical inhibition and intracortical facilitation, as well as short-interval intracortical facilitation before and up to 90 min after tbTUS. RESULTS All conditions increased MEP amplitudes except the condition with low acoustic intensity of 10 W/cm2. Pulse repetition frequency of 5 Hz produced higher MEP amplitudes compared to pulse repetition frequencies of 2 and 10 Hz. In addition, higher duty cycles (5%, 10%, and 15%) and longer sonication durations (40, 80, and 120 s) were associated with longer duration of increased MEP amplitudes. Resting motor threshold remained stable in all conditions. For paired-pulse TMS measures, tbTUS reduced short-interval intracortical inhibition and enhanced short-interval intracortical facilitation, but had no effect on intracortical facilitation. CONCLUSIONS Ultrasound bursts repeated at theta (∼5 Hz) frequency is optimal to produce increased cortical excitability with the range of 2-10 Hz. Furthermore, there was a dose-response effect regarding duty cycle and sonication duration in tbTUS for plasticity induction. The aftereffects of tbTUS were associated with a shift of the inhibition/excitation balance toward less inhibition and more excitation in the motor cortex. These findings can be used to determine the optimal tbTUS parameters in neuroscience research and treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ke Zeng
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, Guangdong, China; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhiwei Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Xue Xia
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zhen Wang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoli Li
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, Guangdong, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
19
|
Franzova E, Shen Q, Doyle K, Chen JM, Egbebike J, Vrosgou A, Carmona JC, Grobois L, Heinonen GA, Velazquez A, Gonzales IJ, Egawa S, Agarwal S, Roh D, Park S, Connolly ES, Claassen J. Injury patterns associated with cognitive motor dissociation. Brain 2023; 146:4645-4658. [PMID: 37574216 PMCID: PMC10629765 DOI: 10.1093/brain/awad197] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 08/15/2023] Open
Abstract
In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.
Collapse
Affiliation(s)
- Eva Franzova
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Qi Shen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Kevin Doyle
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Justine M Chen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jennifer Egbebike
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Athina Vrosgou
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jerina C Carmona
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Lauren Grobois
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Gregory A Heinonen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Angela Velazquez
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Satoshi Egawa
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
20
|
Mahdavi KD, Jordan SE, Jordan KG, Rindner ES, Haroon JM, Habelhah B, Becerra SA, Surya JR, Venkatraman V, Zielinski MA, Spivak NM, Bystritsky A, Kuhn TP. A pilot study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder. J Psychiatr Res 2023; 168:125-132. [PMID: 39491902 DOI: 10.1016/j.jpsychires.2023.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVE This study intended to evaluate a possible therapeutic effect among patients with treatment-refractory generalized anxiety disorder (trGAD) by using transcranial focused ultrasound (tfUS) to modulate amygdalar activity. METHODS Twenty-five participants with severe trGAD as outlined in the DSM-V were recruited from Los Angeles neurology and psychiatry clinics. All participants completed eight weekly 10-min tfUS sessions targeting the right amygdala. Functional and structural neuroimaging were used to navigate individual targets. Outcome measures including the Hamilton Anxiety Inventory (HAM-A, primary outcome) and Beck Anxiety Inventory (BAI) were collected at baseline and protocol completion. Upon study completion, participants were asked to report perceived change in clinical status using the Patient Global Impression - Improvement (PGI-I) scale. Data was collected from May 2020 through January 2023. RESULTS All participants were able to tolerate treatment without notable side effects. No adverse events were reported. A Wilcoxon Signed-Rank Test was conducted to compare pre- and post-tfUS measures of anxiety. tfUS resulted in a significant decrease in anxiety as measured by the HAM-A (W = -3.69, p < 0.001, pre-post-Δ = -12.64 ± 12.51) and the BAI (W = -3.94, p < 0.001, pre-post-Δ = -12.88 ± 10.42). Sixteen (16) of twenty-five (25) total participants indicated clinically significant benefit on PGI-I scores at completion. CONCLUSION This study provides preliminary evidence supporting the safety and efficacy of tfUS as a clinical intervention. These results warrant further investigation of tfUS as a therapeutic intervention for anxiety and other psychiatric and neurological disorders. CLINICALTRIALS GOV IDENTIFIER NCT04250441.
Collapse
Affiliation(s)
- Kennedy D Mahdavi
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA.
| | - Sheldon E Jordan
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA; Department of Neurology, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| | - Kaya G Jordan
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Elisabeth S Rindner
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Jonathan M Haroon
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Barshen Habelhah
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Sergio A Becerra
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Jean Rama Surya
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Victoria Venkatraman
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Margaret A Zielinski
- The Regenesis Project, 2811 Wilshire Blvd, Suite 790, Los Angeles, CA, 90403, USA
| | - Norman M Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| | - Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| | - Taylor P Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, B8-169, Los Angeles, CA, 90025, USA
| |
Collapse
|
21
|
Monti MM, Spivak NM, Edlow BL, Bodien YG. What is a minimal clinically important difference for clinical trials in patients with disorders of consciousness? a novel probabilistic approach. PLoS One 2023; 18:e0290290. [PMID: 37616196 PMCID: PMC10449161 DOI: 10.1371/journal.pone.0290290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Over the last 30 years, there has been a growing trend in clinical trials towards assessing novel interventions not only against the benchmark of statistical significance, but also with respect to whether they lead to clinically meaningful changes for patients. In the context of Disorders of Consciousness (DOC), despite a growing landscape of experimental interventions, there is no agreed standard as to what counts as a minimal clinically important difference (MCID). In part, this issue springs from the fact that, by definition, DOC patients are either unresponsive (i.e., in a Vegetative State; VS) or non-communicative (i.e., in a Minimally Conscious State; MCS), which renders it impossible to assess any subjective perception of benefit, one of the two core aspects of MCIDs. Here, we develop a novel approach that leverages published, international diagnostic guidelines to establish a probability-based minimal clinically important difference (pMCID), and we apply it to the most validated and frequently used scale in DOC: the Coma Recovery Scale-Revised (CRS-R). This novel method is objective (i.e., based on published criteria for patient diagnosis) and easy to recalculate as the field refines its agreed-upon criteria for diagnosis. We believe this new approach can help clinicians determine whether observed changes in patients' behavior are clinically important, even when patients cannot communicate their experiences, and can align the landscape of clinical trials in DOC with the practices in other medical fields.
Collapse
Affiliation(s)
- Martin M. Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, Brain Injury Research Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Norman M. Spivak
- Department of Neurosurgery, Brain Injury Research Center, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Charlestown, Massachusetts, United States of America
| |
Collapse
|
22
|
Song M, Zhang M, He S, Li L, Hu H. Ultrasonic neuromodulation mediated by mechanosensitive ion channels: current and future. Front Neurosci 2023; 17:1232308. [PMID: 37583416 PMCID: PMC10423872 DOI: 10.3389/fnins.2023.1232308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Ultrasound neuromodulation technology is a promising neuromodulation approach, with the advantages of noninvasiveness, high-resolution, deep penetration and good targeting, which aid in circumventing the side effects of drugs and invasive therapeutic interventions. Ultrasound can cause mechanical effects, activate mechanosensitive ion channels and alter neuronal excitability, producing biological effects. The structural determination of mechanosensitive ion channels will greatly contribute to our understanding of the molecular mechanisms underlying mechanosensory transduction. However, the underlying biological mechanism of ultrasonic neuromodulation remains poorly understood. Hence, this review aims to provide an outline of the properties of ultrasound, the structures of specific mechanosensitive ion channels, and their role in ultrasound neuromodulation.
Collapse
Affiliation(s)
- Mengyao Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Mingxia Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Sixuan He
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|
23
|
Luauté J, Beaudoin-Gobert M. Optimising recovery of consciousness after coma. From bench to bedside and vice versa. Presse Med 2023; 52:104165. [PMID: 36948412 DOI: 10.1016/j.lpm.2023.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Several methods have been proposed to foster recovery of consciousness in patients with disorders of consciousness (DoC). OBJECTIVE Critically assess pharmacological and non-pharmacological treatments for patients with chronic DoC. METHODS A narrative mini-review, and critical analysis of the scientific literature on the various proposed therapeutic approaches, with particular attention to level of evidence, risk-benefit ratio, and feasibility. RESULTS AND DISCUSSION Personalised sensory stimulation, median nerve stimulation, transcranial direct current stimulation (tDCS), amantadine and zolpidem all have favourable risk-benefit ratios and are easy to implement in clinical practice. These treatments should be proposed to every patient with chronic DoC. Comprehensive patient management should also include regular lifting, pain assessment and treatment, attempts to restore sleep and circadian rhythms, implementation of rest periods, comfort and nursing care, and a rehabilitation program with a multi-disciplinary team with expertise in this field. More invasive treatments may cause adverse effects and require further investigation to confirm preliminary, encouraging results and to better define responders' intervention parameters. Scientific studies are essential and given the severity of the disability and handicap that results from DoC, research in this area should aim to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Luauté
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France; Hôpital Henry Gabrielle, Saint-Genis Laval, Hospices Civils de Lyon, 69230 France.
| | - Maude Beaudoin-Gobert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France
| |
Collapse
|
24
|
Liu Z, Zhang X, Yu B, Wang J, Lu X. Effectiveness on level of consciousness of non-invasive neuromodulation therapy in patients with disorders of consciousness: a systematic review and meta-analysis. Front Hum Neurosci 2023; 17:1129254. [PMID: 37292582 PMCID: PMC10246452 DOI: 10.3389/fnhum.2023.1129254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Background Disorders of consciousness (DoC) commonly occurs secondary to severe neurological injury. A considerable volume of research has explored the effectiveness of different non-invasive neuromodulation therapy (NINT) on awaking therapy, however, equivocal findings were reported. Objective The aim of this study was to systematically investigate the effectiveness on level of consciousness of different NINT in patients with DoC and explore optimal stimulation parameters and characteristics of patients. Methods PubMed, Embase, Web of Science, Scopus, and Cochrane central register of controlled trials were searched from their inception through November 2022. Randomized controlled trials, that investigated effectiveness on level of consciousness of NINT, were included. Mean difference (MD) with 95% confidence interval (CI) was evaluated as effect size. Risk of bias was assessed with revised Cochrane risk-of-bias tool. Results A total of 15 randomized controlled trials with 345 patients were included. Meta-analysis was performed on 13 out of 15 reviewed trials indicating that transcranial Direct Current Stimulation (tDCS), Transcranial Magnetic Stimulation (TMS), and median nerve stimulation (MNS) all had a small but significant effect (MD 0.71 [95% CI 0.28, 1.13]; MD 1.51 [95% CI 0.87, 2.15]; MD 3.20 [95%CI: 1.45, 4.96]) on level of consciousness. Subgroup analyses revealed that patients with traumatic brain injury, higher initial level of consciousness (minimally conscious state), and shorter duration of prolonged DoC (subacute phase of DoC) reserved better awaking ability after tDCS. TMS also showed encouraging awaking effect when stimulation was applied on dorsolateral prefrontal cortex in patients with prolonged DoC. Conclusion tDCS and TMS appear to be effective interventions for improving level of consciousness of patients with prolonged DoC. Subgroup analyses identified the key parameters required to enhance the effects of tDCS and TMS on level of consciousness. Etiology of DoC, initial level of consciousness, and phase of DoC could act as significant characteristics of patients related to the effectiveness of tDCS. Stimulation site could act as significant stimulation parameter related to the effectiveness of TMS. There is insufficient evidence to support the use of MNS in clinical practice to improve level of consciousness in patients with coma. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=337780, identifier: CRD42022337780.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Beisteiner R, Hallett M, Lozano AM. Ultrasound Neuromodulation as a New Brain Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205634. [PMID: 36961104 PMCID: PMC10190662 DOI: 10.1002/advs.202205634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Within the last decade, ultrasound has been "rediscovered" as a technique for brain therapies. Modern technologies allow focusing ultrasound through the human skull for highly focal tissue ablation, clinical neuromodulatory brain stimulation, and targeted focal blood-brain-barrier opening. This article gives an overview on the state-of-the-art of the most recent application: ultrasound neuromodulation as a new brain therapy. Although research centers have existed for decades, the first treatment centers were not established until 2020, and clinical applications are spreading rapidly.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of NeurologyFunctional Brain Diagnostics and TherapyHigh Field MR CenterMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Mark Hallett
- Human Motor Control SectionNational Institute of Neurological Disorders and StrokeNational Institutes of Health10 Center DriveBethesdaMD20892–1428USA
| | - Andres M. Lozano
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoONM5T 2S8Canada
| |
Collapse
|
26
|
Kathofer M, Leder H, Crone JS. Bridging neurodegenerative diseases and artistic expressivity: The significance of testable models and causal inference: Comment on "Can we really 'read' art to see the changing brain? A review and empirical assessment of clinical case reports and published artworks for systematic evidence of quality and style changes linked to damage or neurodegenerative disease" by Pelowski et al. (2022). Phys Life Rev 2023; 45:66-70. [PMID: 37167925 DOI: 10.1016/j.plrev.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Affiliation(s)
| | - Helmut Leder
- Vienna Cognitive Science Hub, University of Vienna, Austria; Faculty of Psychology, University of Vienna, Austria
| | - Julia Sophia Crone
- Vienna Cognitive Science Hub, University of Vienna, Austria; University of California Los Angeles, Department of Psychology, USA
| |
Collapse
|
27
|
Zhao Z, Ji H, Zhang C, Pei J, Zhang X, Yuan Y. Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice. Neuroimage 2023; 270:119952. [PMID: 36805093 DOI: 10.1016/j.neuroimage.2023.119952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) has been effective in modulating several neurological and psychiatric disorders. However, how TUS modulates neuronal firing activity and synaptic plasticity remains unclear. Thus, we behaviorally tested the whisker-dependent novel object discrimination ability in mice after ultrasound stimulation and examined the cortical neuronal firing activity and synaptic plasticity in awake mice after ultrasound stimulation by two-photon fluorescence imaging. The current study presented the following results: (1) TUS could significantly improve the whisker-dependent new object discrimination ability of mice, suggesting that their learning and memory abilities were significantly enhanced; (2) TUS significantly enhanced neuronal firing activity; and (3) TUS increased the growth rate of dendritic spines in the barrel cortex, but did not promote the extinction of dendritic spines, resulting in enhanced synaptic plasticity. The above results indicate that TUS can improve the learning and memory ability of mice and enhance the neuronal firing activity and synaptic plasticity that are closely related to it. This study provides a research basis for the application of ultrasound stimulation in the treatment of learning- and memory-related diseases.
Collapse
Affiliation(s)
- Zhe Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Cong Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jiamin Pei
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
28
|
Kuhn T, Spivak NM, Dang BH, Becerra S, Halavi SE, Rotstein N, Rosenberg BM, Hiller S, Swenson A, Cvijanovic L, Dang N, Sun M, Kronemyer D, Berlow R, Revett MR, Suthana N, Monti MM, Bookheimer S. Transcranial focused ultrasound selectively increases perfusion and modulates functional connectivity of deep brain regions in humans. Front Neural Circuits 2023; 17:1120410. [PMID: 37091318 PMCID: PMC10114286 DOI: 10.3389/fncir.2023.1120410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundLow intensity, transcranial focused ultrasound (tFUS) is a re-emerging brain stimulation technique with the unique capability of reaching deep brain structures non-invasively.Objective/HypothesisWe sought to demonstrate that tFUS can selectively and accurately target and modulate deep brain structures in humans important for emotional functioning as well as learning and memory. We hypothesized that tFUS would result in significant longitudinal changes in perfusion in the targeted brain region as well as selective modulation of BOLD activity and BOLD-based functional connectivity of the target region.MethodsIn this study, we collected MRI before, simultaneously during, and after tFUS of two deep brain structures on different days in sixteen healthy adults each serving as their own control. Using longitudinal arterial spin labeling (ASL) MRI and simultaneous blood oxygen level dependent (BOLD) functional MRI, we found changes in cerebral perfusion, regional brain activity and functional connectivity specific to the targeted regions of the amygdala and entorhinal cortex (ErC).ResultstFUS selectively increased perfusion in the targeted brain region and not in the contralateral homolog or either bilateral control region. Additionally, tFUS directly affected BOLD activity in a target specific fashion without engaging auditory cortex in any analysis. Finally, tFUS resulted in selective modulation of the targeted functional network connectivity.ConclusionWe demonstrate that tFUS can selectively modulate perfusion, neural activity and connectivity in deep brain structures and connected networks. Lack of auditory cortex findings suggests that the mechanism of tFUS action is not due to auditory or acoustic startle response but rather a direct neuromodulatory process. Our findings suggest that tFUS has the potential for future application as a novel therapy in a wide range of neurological and psychiatric disorders associated with subcortical pathology.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Taylor Kuhn,
| | - Norman M. Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-Caltech Medical Scientist Training Program, Los Angeles, CA, United States
| | - Bianca H. Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sergio Becerra
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sabrina E. Halavi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Natalie Rotstein
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrew Swenson
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Luka Cvijanovic
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nolan Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Sun
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - David Kronemyer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rustin Berlow
- American Brain Stimulation Clinic, Del Mar, CA, United States
| | - Malina R. Revett
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Martin M. Monti
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Marino MH, Koffer J, Nalla S. Update on Disorders of Consciousness. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023. [DOI: 10.1007/s40141-023-00384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
30
|
Arnts H, Coolen SE, Fernandes FW, Schuurman R, Krauss JK, Groenewegen HJ, van den Munckhof P. The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun 2023; 5:fcad003. [PMID: 37292456 PMCID: PMC10244065 DOI: 10.1093/braincomms/fcad003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 09/29/2023] Open
Abstract
The intralaminar thalamus, in particular the centromedian-parafascicular complex, forms a strategic node between ascending information from the spinal cord and brainstem and forebrain circuitry that involves the cerebral cortex and basal ganglia. A large body of evidence shows that this functionally heterogeneous region regulates information transmission in different cortical circuits, and is involved in a variety of functions, including cognition, arousal, consciousness and processing of pain signals. Not surprisingly, the intralaminar thalamus has been a target area for (radio)surgical ablation and deep brain stimulation (DBS) in different neurological and psychiatric disorders. Historically, ablation and stimulation of the intralaminar thalamus have been explored in patients with pain, epilepsy and Tourette syndrome. Moreover, DBS has been used as an experimental treatment for disorders of consciousness and a variety of movement disorders. In this review, we provide a comprehensive analysis of the underlying mechanisms of stimulation and ablation of the intralaminar nuclei, historical clinical evidence, and more recent (experimental) studies in animals and humans to define the present and future role of the intralaminar thalamus as a target in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan E Coolen
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Ren L, Zhai Z, Xiang Q, Zhuo K, Zhang S, Zhang Y, Jiao X, Tong S, Liu D, Sun J. Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. J Neural Eng 2023; 20. [PMID: 36669203 DOI: 10.1088/1741-2552/acb50d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Background. Low-intensity transcranial ultrasound stimulation (TUS) could induce both immediate and long-lasting neuromodulatory effects in human brains. Interhemispheric imbalance at prefrontal or motor cortices generally associates with various cognitive decline in aging and mental disorders. However, whether TUS could modulate the interhemispheric balance of excitability in human brain remains unknown.Objective. This study aims to explore whether repetitive TUS (rTUS) intervention can modulate the interhemispheric balance of excitability between bilateral motor cortex (M1) in healthy subjects.Approach. Motor evoked potentials (MEPs) at bilateral M1 were measured at 15 min and 0 min before a 15 min active or sham rTUS intervention on left M1 and at 0 min, 15 min and 30 min after the intervention, and the Chinese version of brief neurocognitive test battery (C-BCT) was conducted before and after the intervention respectively. Cortical excitability was quantified by MEPs, and the long-lasting changes of MEP amplitude was used as an index of plasticity.Results. In the active rTUS group (n= 20), the ipsilateral MEP amplitude increased significantly compared with baselines and lasted for up to 30 min after intervention, while the contralateral MEP amplitude decreased lasting for 15 min, yielding increased laterality between bilateral MEPs. Furthermore, rTUS intervention induced changes in some C-BCT scores, and the changes of scores correlated with the changes of MEP amplitudes induced by rTUS intervention. The sham rTUS group (n= 20) showed no significant changes in MEPs and C-BCT scores. In addition, no participants reported any adverse effects during and after the rTUS intervention, and no obvious temperature increase appeared in skull or brain tissues in simulation.Significance. rTUS intervention modulated the plasticity of ipsilateral M1 and the interhemispheric balance of M1 excitability in human brain, and improved cognitive performance, suggesting a considerable potential of rTUS in clinical interventions.
Collapse
Affiliation(s)
- Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Zhaolin Zhai
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Suzhen Zhang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Institute of Mental Health, Fudan University, Shanghai 200030, People's Republic of China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| |
Collapse
|
32
|
Attali D, Tiennot T, Schafer M, Fouragnan E, Sallet J, Caskey CF, Chen R, Darmani G, Bubrick EJ, Butler C, Stagg CJ, Klein-Flügge M, Verhagen L, Yoo SS, Pauly KB, Aubry JF. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation. Brain Stimul 2023; 16:48-55. [PMID: 36549480 DOI: 10.1016/j.brs.2022.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue. Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications if the same guidelines were to be adopted. Here we propose a three-layer model including bone absorption to calculate the maximum pressure transmission through the human skull for frequencies ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the frequency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of 20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between 40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum pressure transmission for each ultrasound beam diameter and each frequency.
Collapse
Affiliation(s)
- David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8063, PSL University, Paris, France; Pôle Paris 16 (Secteurs 17-18) et Pôle Neuro Sainte-Anne, Centre Hospitalier Sainte-Anne, GHU Paris Psychiatrie & Neurosciences, Université Paris Cité, Paris, France
| | - Thomas Tiennot
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8063, PSL University, Paris, France
| | - Mark Schafer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Elsa Fouragnan
- Brain Research Imaging Center and School of Psychology, University of Plymouth, Plymouth, UK; School of Psychology, Portland Square, Plymouth PL4 8AA, UK
| | - Jérôme Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Sciences, VU Medical Center, Nashville, TN, United States
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ellen J Bubrick
- Brigham and Women's Hospital, Harvard Medical School, Department of Neurology, 75 Francis St., Boston, MA, USA
| | - Christopher Butler
- Department of Brain Sciences, Imperial College London, 9th Floor, Sir Michael Uren Hub, 86 Wood Lane, London, W12 0BZ, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriam Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, the Netherlands
| | - Seung-Schik Yoo
- Brigham and Women's Hospital, Harvard Medical School, Department of Radiology, 75 Francis St., Boston, MA, USA
| | - Kim Butts Pauly
- Stanford University, Department of Radiology, Stanford CA, 94305, USA
| | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8063, PSL University, Paris, France.
| |
Collapse
|
33
|
Wang T, Wang X, Tian Y, Gang W, Li X, Yan J, Yuan Y. Modulation effect of low-intensity transcranial ultrasound stimulation on REM and NREM sleep. Cereb Cortex 2022; 33:5238-5250. [PMID: 36376911 DOI: 10.1093/cercor/bhac413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Previous studies have shown that modulating neural activity can affect rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Low-intensity transcranial ultrasound stimulation (TUS) can effectively modulate neural activity. However, the modulation effect of TUS on REM and NREM sleep is still unclear. In this study, we used ultrasound to stimulate motor cortex and hippocampus, respectively, and found the following: (i) In healthy mice, TUS increased the NREM sleep ratio and decreased the REM sleep ratio, and altered the relative power and sample entropy of the delta band and spindle in NREM sleep and that of the theta and gamma bands in REM sleep. (ii) In sleep-deprived mice, TUS decreased the ratio of REM sleep or the relative power of the theta band during REM sleep. (iii) In sleep-disordered Alzheimer’s disease (AD) mice, TUS increased the total sleep time and the ratio of NREM sleep and modulated the relative power and the sample entropy of the delta and spindle bands during NREM and that of the theta band during REM sleep. These results demonstrated that TUS can effectively modulate REM and NREM sleep and that modulation effect depends on the sleep state of the samples, and can improve sleep in sleep-disordered AD mice.
Collapse
Affiliation(s)
- Teng Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Xingran Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Yanfei Tian
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Wei Gang
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Xiaoli Li
- Beijing Normal University State Key Laboratory of Cognitive Neuroscience and Learning, , Beijing 100875 , China
| | - Jiaqing Yan
- North China University of Technology College of Electrical and Control Engineering, , Beijing 100041 , China
| | - Yi Yuan
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| |
Collapse
|
34
|
Radjenovic S, Dörl G, Gaal M, Beisteiner R. Safety of Clinical Ultrasound Neuromodulation. Brain Sci 2022; 12:1277. [PMID: 36291211 PMCID: PMC9599299 DOI: 10.3390/brainsci12101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Transcranial ultrasound holds much potential as a safe, non-invasive modality for navigated neuromodulation, with low-intensity focused ultrasound (FUS) and transcranial pulse stimulation (TPS) representing the two main modalities. While neuroscientific and preclinical applications have received much interest, clinical applications are still relatively scarce. For safety considerations, the current literature is largely based on guidelines for ultrasound imaging that uses various physical parameters to describe the ultrasound pulse form and expected bioeffects. However, the safety situation for neuromodulation is inherently different. This article provides an overview of relevant ultrasound parameters with a focus on bioeffects relevant for safe clinical applications. Further, a retrospective analysis of safety data for clinical TPS applications in patients is presented.
Collapse
Affiliation(s)
| | | | | | - Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| |
Collapse
|
35
|
Arvin S, Yonehara K, Glud AN. Therapeutic Neuromodulation toward a Critical State May Serve as a General Treatment Strategy. Biomedicines 2022; 10:biomedicines10092317. [PMID: 36140418 PMCID: PMC9496064 DOI: 10.3390/biomedicines10092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Brain disease has become one of this century’s biggest health challenges, urging the development of novel, more effective treatments. To this end, neuromodulation represents an excellent method to modulate the activity of distinct neuronal regions to alleviate disease. Recently, the medical indications for neuromodulation therapy have expanded through the adoption of the idea that neurological disorders emerge from deficits in systems-level structures, such as brain waves and neural topology. Connections between neuronal regions are thought to fluidly form and dissolve again based on the patterns by which neuronal populations synchronize. Akin to a fire that may spread or die out, the brain’s activity may similarly hyper-synchronize and ignite, such as seizures, or dwindle out and go stale, as in a state of coma. Remarkably, however, the healthy brain remains hedged in between these extremes in a critical state around which neuronal activity maneuvers local and global operational modes. While it has been suggested that perturbations of this criticality could underlie neuropathologies, such as vegetative states, epilepsy, and schizophrenia, a major translational impact is yet to be made. In this hypothesis article, we dissect recent computational findings demonstrating that a neural network’s short- and long-range connections have distinct and tractable roles in sustaining the critical regime. While short-range connections shape the dynamics of neuronal activity, long-range connections determine the scope of the neuronal processes. Thus, to facilitate translational progress, we introduce topological and dynamical system concepts within the framework of criticality and discuss the implications and possibilities for therapeutic neuromodulation guided by topological decompositions.
Collapse
Affiliation(s)
- Simon Arvin
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45 6083-1275
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
| |
Collapse
|
36
|
Benoit LJ, Canetta S, Kellendonk C. Thalamocortical Development: A Neurodevelopmental Framework for Schizophrenia. Biol Psychiatry 2022; 92:491-500. [PMID: 35550792 PMCID: PMC9999366 DOI: 10.1016/j.biopsych.2022.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Adolescence is a period of increased vulnerability for the development of psychiatric disorders, including schizophrenia. The prefrontal cortex (PFC) undergoes substantial maturation during this period, and PFC dysfunction is central to cognitive impairments in schizophrenia. As a result, impaired adolescent maturation of the PFC has been proposed as a mechanism in the etiology of the disorder and its cognitive symptoms. In adulthood, PFC function is tightly linked to its reciprocal connections with the thalamus, and acutely inhibiting thalamic inputs to the PFC produces impairments in PFC function and cognitive deficits. Here, we propose that thalamic activity is equally important during adolescence because it is required for proper PFC circuit development. Because thalamic abnormalities have been observed early in the progression of schizophrenia, we further postulate that adolescent thalamic dysfunction can have long-lasting consequences for PFC function and cognition in patients with schizophrenia.
Collapse
Affiliation(s)
- Laura J Benoit
- Graduate Program in Neurobiology and Behavior, Columbia University Medical Center, New York, New York
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Department of Pharmacology, Columbia University Medical Center, New York, New York; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
37
|
Zheng ZS, Monti MM. Cortical and thalamic connections of the human globus pallidus: Implications for disorders of consciousness. Front Neuroanat 2022; 16:960439. [PMID: 36093291 PMCID: PMC9453545 DOI: 10.3389/fnana.2022.960439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
A dominant framework for understanding loss and recovery of consciousness in the context of severe brain injury, the mesocircuit hypothesis, focuses on the role of cortico-subcortical recurrent interactions, with a strong emphasis on excitatory thalamofugal projections. According to this view, excess inhibition from the internal globus pallidus (GPi) on central thalamic nuclei is key to understanding prolonged disorders of consciousness (DOC) and their characteristic, brain-wide metabolic depression. Recent work in healthy volunteers and patients, however, suggests a previously unappreciated role for the external globus pallidus (GPe) in maintaining a state of consciousness. This view is consistent with empirical findings demonstrating the existence of “direct” (i.e., not mediated by GPi/substantia nigra pars reticulata) GPe connections with cortex and thalamus in animal models, as well as their involvement in modulating arousal and sleep, and with theoretical work underscoring the role of GABA dysfunction in prolonged DOC. Leveraging 50 healthy subjects' high angular resolution diffusion imaging (HARDI) dataset from the Human Connectome Project, which provides a more accurate representation of intravoxel water diffusion than conventional diffusion tensor imaging approaches, we ran probabilistic tractography using extensive a priori exclusion criteria to limit the influence of indirect connections in order to better characterize “direct” pallidal connections. We report the first in vivo evidence of highly probable “direct” GPe connections with prefrontal cortex (PFC) and central thalamic nuclei. Conversely, we find direct connections between the GPi and PFC to be sparse (i.e., less likely indicative of true “direct” connectivity) and restricted to the posterior border of PFC, thus reflecting an extension from the cortical motor zones (i.e., motor association areas). Consistent with GPi's preferential connections with sensorimotor cortices, the GPi appears to predominantly connect with the sensorimotor subregions of the thalamus. These findings are validated against existing animal tracer studies. These findings suggest that contemporary mechanistic models of loss and recovery of consciousness following brain injury must be updated to include the GPe and reflect the actual patterns of GPe and GPi connectivity within large-scale cortico-thalamo-cortical circuits.
Collapse
Affiliation(s)
- Zhong S. Zheng
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, United States
- *Correspondence: Zhong S. Zheng
| | - Martin M. Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Pang N, Meng W, Zhong Y, Liu X, Lin Z, Guo T, Zhou H, Qi L, Meng L, Xu L, Niu L. Ultrasound Deep Brain Stimulation Modulates Body Temperature in Mice. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1851-1857. [PMID: 35788458 DOI: 10.1109/tnsre.2022.3188516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Body temperature plays a critical role in rehabilitation, and numerous studies proved that the regulation of body temperature contributes to the sensorimotor recovery of patients with brain diseases such as stroke. The hypothalamus plays a key role in thermoregulation. Ultrasound deep brain stimulation (UDBS) can noninvasively modulate deep brain nuclei and have potential applications in the treatment of Parkinson's disease, Alzheimer's disease, and depression, among others. The purpose of this study was to investigate whether ultrasound stimulation of the hypothalamus could regulate body temperature in free-moving mice. Results showed that thermoregulation was related to ultrasonic parameters (pulse repetition frequency (PRF), duty cycle, total time, and acoustic pressure). UDBS of the preoptic area of the anterior hypothalamus at 500 Hz PRF could significantly reduce body temperature ( [Formula: see text] at t = 5 min, [Formula: see text] at t = 10 min, [Formula: see text] at t = 15 min). Meanwhile, UDBS of the dorsomedial hypothalamus at 10 Hz PRF triggered a significant increase in body temperature ( [Formula: see text] at t = 5 min, [Formula: see text] at t = 10 min). These results suggest that UDBS, as a noninvasive neuromodulation tool, may play a key role in the future clinical treatment of malignant hyperthermia and hypothermia.
Collapse
|
39
|
Barra A, Monti M, Thibaut A. Noninvasive Brain Stimulation Therapies to Promote Recovery of Consciousness: Where We Are and Where We Should Go. Semin Neurol 2022; 42:348-362. [PMID: 36100229 DOI: 10.1055/s-0042-1755562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Therapeutic options for patients with disorders of consciousness (DoC) are still underexplored. Noninvasive brain stimulation (NIBS) techniques modulate neural activity of targeted brain areas and hold promise for the treatment of patients with DoC. In this review, we provide a summary of published research using NIBS as therapeutic intervention for DoC patients, with a focus on (but not limited to) randomized controlled trials (RCT). We aim to identify current challenges and knowledge gaps specific to NIBS research in DoC. Furthermore, we propose possible solutions and perspectives for this field. Thus far, the most studied technique remains transcranial electrical stimulation; however, its effect remains moderate. The identified key points that NIBS researchers should focus on in future studies are (1) the lack of large-scale RCTs; (2) the importance of identifying the endotypes of responders; and (3) the optimization of stimulation parameters to maximize the benefits of NIBS.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
40
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
41
|
Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN, Lozano AM, Chen R. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul 2022; 15:737-746. [DOI: 10.1016/j.brs.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
|
42
|
Cain JA, Spivak NM, Coetzee JP, Crone JS, Johnson MA, Lutkenhoff ES, Real C, Buitrago-Blanco M, Vespa PM, Schnakers C, Monti MM. Ultrasonic Deep Brain Neuromodulation in Acute Disorders of Consciousness: A Proof-of-Concept. Brain Sci 2022; 12:428. [PMID: 35447960 PMCID: PMC9032970 DOI: 10.3390/brainsci12040428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The promotion of recovery in patients who have entered a disorder of consciousness (DOC; e.g., coma or vegetative states) following severe brain injury remains an enduring medical challenge despite an ever-growing scientific understanding of these conditions. Indeed, recent work has consistently implicated altered cortical modulation by deep brain structures (e.g., the thalamus and the basal ganglia) following brain damage in the arising of, and recovery from, DOCs. The (re)emergence of low-intensity focused ultrasound (LIFU) neuromodulation may provide a means to selectively modulate the activity of deep brain structures noninvasively for the study and treatment of DOCs. This technique is unique in its combination of relatively high spatial precision and noninvasive implementation. Given the consistent implication of the thalamus in DOCs and prior results inducing behavioral recovery through invasive thalamic stimulation, here we applied ultrasound to the central thalamus in 11 acute DOC patients, measured behavioral responsiveness before and after sonication, and applied functional MRI during sonication. With respect to behavioral responsiveness, we observed significant recovery in the week following thalamic LIFU compared with baseline. With respect to functional imaging, we found decreased BOLD signals in the frontal cortex and basal ganglia during LIFU compared with baseline. In addition, we also found a relationship between altered connectivity of the sonicated thalamus and the degree of recovery observed post-LIFU.
Collapse
Affiliation(s)
- Josh A. Cain
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.P.C.); (J.S.C.); (M.A.J.); (E.S.L.)
| | - Norman M. Spivak
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA; (N.M.S.); (C.R.); (M.B.-B.); (P.M.V.)
- UCLA-Caltech Medical Scientist Training Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John P. Coetzee
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.P.C.); (J.S.C.); (M.A.J.); (E.S.L.)
- Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA 94304, USA
- Palo Alto VA Medical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Julia S. Crone
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.P.C.); (J.S.C.); (M.A.J.); (E.S.L.)
| | - Micah A. Johnson
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.P.C.); (J.S.C.); (M.A.J.); (E.S.L.)
| | - Evan S. Lutkenhoff
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.P.C.); (J.S.C.); (M.A.J.); (E.S.L.)
| | - Courtney Real
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA; (N.M.S.); (C.R.); (M.B.-B.); (P.M.V.)
| | - Manuel Buitrago-Blanco
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA; (N.M.S.); (C.R.); (M.B.-B.); (P.M.V.)
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul M. Vespa
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA; (N.M.S.); (C.R.); (M.B.-B.); (P.M.V.)
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA 91767, USA;
| | - Martin M. Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.P.C.); (J.S.C.); (M.A.J.); (E.S.L.)
- Brain Injury Research Center (BIRC), Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA; (N.M.S.); (C.R.); (M.B.-B.); (P.M.V.)
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Darmani G, Bergmann T, Butts Pauly K, Caskey C, de Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy K, Nandi T, Phipps M, Pinton G, Ramezanpour H, Sallet J, Yaakub S, Yoo S, Chen R. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol 2022; 135:51-73. [DOI: 10.1016/j.clinph.2021.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
44
|
Cosgrove ME, Saadon JR, Mikell CB, Stefancin PL, Alkadaa L, Wang Z, Saluja S, Servider J, Razzaq B, Huang C, Mofakham S. Thalamo-Prefrontal Connectivity Correlates With Early Command-Following After Severe Traumatic Brain Injury. Front Neurol 2022; 13:826266. [PMID: 35250829 PMCID: PMC8895046 DOI: 10.3389/fneur.2022.826266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Recovery of consciousness after traumatic brain injury (TBI) is heterogeneous and difficult to predict. Structures such as the thalamus and prefrontal cortex are thought to be important in facilitating consciousness. We sought to investigate whether the integrity of thalamo-prefrontal circuits, assessed via diffusion tensor imaging (DTI), was associated with the return of goal-directed behavior after severe TBI. We classified a cohort of severe TBI patients (N = 25, 20 males) into Early and Late/Never outcome groups based on their ability to follow commands within 30 days post-injury. We assessed connectivity between whole thalamus, and mediodorsal thalamus (MD), to prefrontal cortex (PFC) subregions including dorsolateral PFC (dlPFC), medial PFC (mPFC), anterior cingulate (ACC), and orbitofrontal (OFC) cortices. We found that the integrity of thalamic projections to PFC subregions (L OFC, L and R ACC, and R mPFC) was significantly associated with Early command-following. This association persisted when the analysis was restricted to prefrontal-mediodorsal (MD) thalamus connectivity. In contrast, dlPFC connectivity to thalamus was not significantly associated with command-following. Using the integrity of thalamo-prefrontal connections, we created a linear regression model that demonstrated 72% accuracy in predicting command-following after a leave-one-out analysis. Together, these data support a role for thalamo-prefrontal connectivity in the return of goal-directed behavior following TBI.
Collapse
Affiliation(s)
- Megan E. Cosgrove
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Jordan R. Saadon
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Charles B. Mikell
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | | | - Leor Alkadaa
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Zhe Wang
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Sabir Saluja
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - John Servider
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Bayan Razzaq
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Chuan Huang
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Sima Mofakham
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Sima Mofakham
| |
Collapse
|
45
|
Matt E, Dörl G, Beisteiner R. Transcranial pulse stimulation (TPS) improves depression in AD patients on state-of-the-art treatment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12245. [PMID: 35169611 PMCID: PMC8829892 DOI: 10.1002/trc2.12245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 01/11/2023]
Abstract
Introduction Ultrasound‐based brain stimulation is a novel, non‐invasive therapeutic approach to precisely target regions of interest. Data from a first clinical trial of patients with Alzheimer's disease (AD) receiving 2‐4 weeks transcranial pulse stimulation (TPS) have shown memory and cognitive improvements for up to 3 months, despite ongoing state‐of‐the‐art treatment. Importantly, depressive symptoms also improved. Methods We analyzed changes in Beck Depression Inventory (BDI‐II) and functional connectivity (FC) changes with functional magnetic resonance imaging in 18 AD patients. Results We found significant improvement in BDI‐II after TPS therapy. FC analysis showed a normalization of the FC between the salience network (right anterior insula) and the ventromedial network (left frontal orbital cortex). Discussion Stimulation of areas related to depression (including extended dorsolateral prefrontal cortex) appears to alleviate depressive symptoms and induces FC changes in AD patients. TPS may be a novel add‐on therapy for depression in AD and as a neuropsychiatric diagnosis.
Collapse
Affiliation(s)
- Eva Matt
- Department of Neurology Medical University of Vienna Vienna Austria
| | - Gregor Dörl
- Department of Neurology Medical University of Vienna Vienna Austria
| | | |
Collapse
|
46
|
Tsytsarev V. Methodological aspects of studying the mechanisms of consciousness. Behav Brain Res 2022; 419:113684. [PMID: 34838578 DOI: 10.1016/j.bbr.2021.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
There are at least two approaches to the definition of consciousness. In the first case, certain aspects of consciousness, called qualia, are considered inaccessible for research from a third person and can only be described through subjective experience. This approach is inextricably linked with the so-called "hard problem of consciousness", that is, the question of why consciousness has qualia or how any physical changes in the environment can generate subjective experience. With this approach, some aspects of consciousness, by definition, cannot be explained on the basis of external observations and, therefore, are outside the scope of scientific research. In the second case, a priori constraints do not constrain the field of scientific investigation, and the best explanation of the experience in the first person is included as a possible subject of empirical research. Historically, in the study of cause-and-effect relationships in biology, it was customary to distinguish between proximate causation and ultimate causation existing in biological systems. Immediate causes are based on the immediate influencing factors [1]. Proximate causation has evolutionary explanations. When studying biological systems themselves, such an approach is undoubtedly justified, but it often seems insufficient when studying the interaction of consciousness and the brain [2,3]. Current scientific communities proceed from the assumption that the physical substrate for the generation of consciousness is a neural network that unites various types of neurons located in various brain structures. Many neuroscientists attach a key role in this process to the cortical and thalamocortical neural networks. This question is directly related to experimental and clinical research in the field of disorder of consciousness. Progress in this area of medicine depends on advances in neuroscience in this area and is also a powerful source of empirical information. In this area of consciousness research, a large amount of experimental data has been accumulated, and in this review an attempt was made to generalize and systematize.
Collapse
|
47
|
Spivak NM, Sanguinetti JL, Monti MM. Focusing in on the Future of Focused Ultrasound as a Translational Tool. Brain Sci 2022; 12:158. [PMID: 35203922 PMCID: PMC8870102 DOI: 10.3390/brainsci12020158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022] Open
Abstract
This article summarizes the field of focused ultrasound for use in neuromodulation and discusses different ways of targeting, delivering, and validating focused ultrasound. A discussion is focused on parameter space and different ongoing theories of ultrasonic neuromodulation. Current and future applications of the technique are discussed.
Collapse
Affiliation(s)
- Norman M. Spivak
- UCLA—Caltech Medical Scientist Training Program, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA;
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - Joseph L. Sanguinetti
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA;
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Martin M. Monti
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA;
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Spivak NM, Tyler WJ, Bari AA, Kuhn TP. Ultrasound as a Neurotherapeutic: A Circuit- and System-Based Interrogation. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:32-35. [PMID: 35746933 PMCID: PMC9063590 DOI: 10.1176/appi.focus.20210022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Focused ultrasound is a novel brain stimulation modality that combines the noninvasiveness of repetitive transcranial magnetic stimulation and the precision of deep brain stimulation. In this review, the authors examine low-intensity focused ultrasound for brain mapping and neuromodulation. They also discuss high-intensity focused ultrasound, which is used for incisionless surgeries, such as capsulotomies for obsessive-compulsive disorder. Future potential applications of focused ultrasound are also presented.
Collapse
|
49
|
Arulpragasam AR, van 't Wout-Frank M, Barredo J, Faucher CR, Greenberg BD, Philip NS. Low Intensity Focused Ultrasound for Non-invasive and Reversible Deep Brain Neuromodulation-A Paradigm Shift in Psychiatric Research. Front Psychiatry 2022; 13:825802. [PMID: 35280168 PMCID: PMC8907584 DOI: 10.3389/fpsyt.2022.825802] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 01/15/2023] Open
Abstract
This article describes an emerging non-invasive neuromodulatory technology, called low intensity focused ultrasound (LIFU). This technology is potentially paradigm shifting as it can deliver non-invasive and reversible deep brain neuromodulation through acoustic sonication, at millimeter precision. Low intensity focused ultrasound's spatial precision, yet non-invasive nature sets it apart from current technologies, such as transcranial magnetic or electrical stimulation and deep brain stimulation. Additionally, its reversible effects allow for the causal study of deep brain regions implicated in psychiatric illness. Studies to date have demonstrated that LIFU can safely modulate human brain activity at cortical and subcortical levels. Due to its novelty, most researchers and clinicians are not aware of the potential applications and promise of this technique, underscoring the need for foundational papers to introduce the community to LIFU. This mini-review and synthesis of recent advances examines several key papers on LIFU administered to humans, describes the population under study, parameters used, and relevant findings that may guide future research. We conclude with a concise overview of some of the more pressing questions to date, considerations when interpreting new data from an emerging field, and highlight the opportunities and challenges in this exciting new area of study.
Collapse
Affiliation(s)
- Amanda R Arulpragasam
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States
| | - Mascha van 't Wout-Frank
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| | - Jennifer Barredo
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| | - Christiana R Faucher
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States
| | - Benjamin D Greenberg
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| | - Noah S Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.,COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, United States
| |
Collapse
|
50
|
Yi SS, Zou JJ, Meng L, Chen HM, Hong ZQ, Liu XF, Farooq U, Chen MX, Lin ZR, Zhou W, Ao LJ, Hu XQ, Niu LL. Ultrasound Stimulation of Prefrontal Cortex Improves Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice. Front Psychiatry 2022; 13:864481. [PMID: 35573384 PMCID: PMC9099414 DOI: 10.3389/fpsyt.2022.864481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence indicates that inflammatory responses may influence brain neurochemical pathways, inducing depressive-like behaviors. Ultrasound stimulation (US) is a promising non-invasive treatment for neuropsychiatric diseases. We investigated whether US can suppress inflammation and improve depressive-like behaviors. Mice were intraperitoneally injected with lipopolysaccharide to induce depressive-like behaviors. Ultrasound wave was delivered into the prefrontal cortex (PFC) for 30 min. Depressive- and anxiety-like behaviors were evaluated through the forced swimming test (FST), tail suspension test (TST), and elevated plus maze (EPM). Biochemical analyses were performed to assess the expression of inflammatory cytokines in the PFC and serum. The results indicated that US of the PFC significantly improved depressive-like behaviors in the TST (p < 0.05) and FST (p < 0.05). Anxiety-like behaviors also improved in the EPM (p < 0.05). Furthermore, the lipopolysaccharide-mediated upregulation of IL-6, IL-1β, and TNF-α in the PFC was significantly reduced (p < 0.05) by US. In addition, no tissue damage was observed. Overall, US of PFC can effectively improve lipopolysaccharide-induced depressive-like behaviors, possibly through the downregulation of inflammatory cytokines in the PFC. US may be a safe and promising tool for improvement of depression.
Collapse
Affiliation(s)
- Sha-Sha Yi
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Jun-Jie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hou-Minji Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhong-Qiu Hong
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiu-Fang Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Umar Farooq
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Zheng-Rong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Li Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|