1
|
Souza AOD, Amorim DJ, Pinto E. Correlation Analysis Between Physical-Chemical and Biological Conditions in the River and the Incidence of Diseases in the City of Piracicaba, Brazil. TOXICS 2025; 13:359. [PMID: 40423439 DOI: 10.3390/toxics13050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025]
Abstract
The Piracicaba River basin, in the State of São Paulo, Brazil, covers approximately 12,400 km2 and plays a crucial economic role in São Paulo's agribusiness corridor. However, it faces recurrent episodes of pollution, impacting water quality and public health, especially in urban areas exposed to contamination. Despite this, few studies have investigated the ecological and epidemiological consequences of this environmental degradation. Therefore, this study analyzed the correlation between physicochemical and biological variables of the Piracicaba River and the incidence of diseases in the city of Piracicaba between January 2019 and September 2024. Data on hospital admissions for respiratory, neurological, and liver symptoms were used, as well as environmental and water quality information, such as dissolved oxygen, turbidity, conductivity, and the presence of cyanobacteria, obtained from public databases. The results showed seasonal patterns and long-term trends, highlighting the health risks associated with the river's pollution. Parameters such as phosphorus, pH, cyanobacteria concentration and climatic factors (temperature and humidity) showed an influence on the occurrence of respiratory, digestive, and neurological diseases. The study reinforces the need for continuous monitoring of water quality and public policies to mitigate impacts on the population's health.
Collapse
Affiliation(s)
- Alexander Ossanes de Souza
- Center of Nuclear Energy in Agriculture, Av. Centenário, 303-São Dimas, University of São Paulo, Piracicaba 13416-000, SP, Brazil
| | - Deoclecio Jardim Amorim
- Center of Nuclear Energy in Agriculture, Av. Centenário, 303-São Dimas, University of São Paulo, Piracicaba 13416-000, SP, Brazil
| | - Ernani Pinto
- Center of Nuclear Energy in Agriculture, Av. Centenário, 303-São Dimas, University of São Paulo, Piracicaba 13416-000, SP, Brazil
| |
Collapse
|
2
|
Qin T, Chen Y, Miao X, Shao M, Xu N, Mou C, Chen Z, Yin Y, Chen S, Yin Y, Gao L, Peng D, Liu X. Low-Temperature Adaptive Single-Atom Iron Nanozymes against Viruses in the Cold Chain. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309669. [PMID: 38216154 DOI: 10.1002/adma.202309669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Indexed: 01/14/2024]
Abstract
Outbreaks of viral infectious diseases, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV), pose a great threat to human health. Viral spread is accelerated worldwide by the development of cold chain logistics; Therefore, an effective antiviral approach is required. In this study, it is aimed to develop a distinct antiviral strategy using nanozymes with low-temperature adaptability, suitable for cold chain logistics. Phosphorus (P) atoms are added to the remote counter position of Fe-N-C center to prepare FeN4P2-single-atom nanozymes (SAzymes), exhibiting lipid oxidase (OXD)-like activity at cold chain temperatures (-20, and 4 °C). This feature enables FeN4P2-SAzymes to disrupt multiple enveloped viruses (human, swine, and avian coronaviruses, and H1-H11 subtypes of IAV) by catalyzing lipid peroxidation of the viral lipid envelope. Under the simulated conditions of cold chain logistics, FeN4P2-SAzymes are successfully applied as antiviral coatings on outer packaging and personal protective equipment; Therefore, FeN4P2-SAzymes with low-temperature adaptability and broad-spectrum antiviral properties may serve as key materials for developing specific antiviral approaches to interrupt viral transmission through the cold chain.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Mengjuan Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yinyan Yin
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Guangling College, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100700, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan, 451163, P. R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
3
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
4
|
Meo SA, Alsomali AH, Almushawah AA, Halepoto DM. Seasonal variations impact on SARS-CoV-2 incidence and mortality in southern and northern hemispheres: Two years pandemic period based study. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102335. [PMID: 36157716 PMCID: PMC9491009 DOI: 10.1016/j.jksus.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection is a highly challenging problem in the world. The impact of weather conditions on the spread of SARS-CoV-2 has been hypothesized, but the level of understanding remains lacking. This study investigates the impact of seasonal variations on SARS-CoV-2 incidence and mortality in the Southern and Northern hemispheres. Methods We enlisted all the countries from both hemispheres and then randomly selected 20 countries, 10 countries from each hemisphere. After that, we recorded the SARS-CoV-2 daily cases and deaths in these selected countries from the Worldometer for the period of two years from December 31, 2019, to December 31, 2021. Results During the study period, in 10 selected countries of the Northern hemisphere, the number of SARS-CoV-2 cases was 18381.6 ± 419.7 and deaths 300.4 ± 6.4. However, the number of cases in the southern hemisphere is 6282.9 ± 205.8, and mortality was 210.0 ± 7.7. In the Northern hemisphere, the number of SARS-CoV-2 cases (p = 0.001) and deaths (p = 0.001) significantly increased compared to the southern hemisphere. The maximum number of cases and deaths occurred during the winter (18806.4 ± 785.3) and autumn (17034.1 ± 538.4) periods in both the hemisphere compared to spring and summer. Similarly, the number of deaths increased in winter (391.0 ± 13.4, p = 0.001) and autumn (308.6 ± 11.6) compared to spring and summer in both hemispheres. Conclusions The highest occurrence of SARS-CoV-2 cases and deaths was found during the winter and autumn seasons, while the lowest was found in the spring and summer during the study period of two years. The health officials inform the public about the seasonal occurrence of the SARS-CoV-2 outbreak and take priority preventive measures to minimize the disease burden.
Collapse
Affiliation(s)
- Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Dost Muhammad Halepoto
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Conjugated polymer materials for detection and discrimination of pathogenic microorganisms: Guarantee of biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Hawryłkowicz V, Lietz-Kijak D, Kaźmierczak-Siedlecka K, Sołek-Pastuszka J, Stachowska L, Folwarski M, Parczewski M, Stachowska E. Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021? Nutrients 2021; 13:3385. [PMID: 34684384 PMCID: PMC8538178 DOI: 10.3390/nu13103385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main nutritional consequences of COVID-19 include reduced food intake, hypercatabolism, and rapid muscle wasting. Some studies showed that malnutrition is a significant problem among patients hospitalized due to COVID-19 infection, and the outcome of patients with SARS-CoV-2 is strongly associated with their nutritional status. The purpose of this study was to collect useful information about the possible elements of nutritional and probiotic therapy in patients infected with the SARS-CoV-2 virus. METHODS A narrative review of the literature, including studies published up to 13 September 2021. RESULTS Probiotics may support patients by inhibiting the ACE2 receptor, i.e., the passage of the virus into the cell, and may also be effective in suppressing the immune response caused by the proinflammatory cytokine cascade. In patients' diet, it is crucial to ensure an adequate intake of micronutrients, such as omega-3 fatty acids (at 2-4 g/d), selenium (300-450 μg/d) and zinc (30-50 mg/d), and vitamins A (900-700 µg/d), E (135 mg/d), D (20,000-50,000 IU), C (1-2 g/d), B6, and B12. Moreover, the daily calorie intake should amount to ≥1500-2000 with 75-100 g of protein. CONCLUSION In conclusion, the treatment of gut dysbiosis involving an adequate intake of prebiotic dietary fiber and probiotics could turn out to be an immensely helpful instrument for immunomodulation, both in COVID-19 patients and prophylactically in individuals with no history of infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Danuta Lietz-Kijak
- Department of Propedeutics, Physiodiagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Marcin Folwarski
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical and Acquired Immunological Diseases, Pomeranian Medical University, 71-455 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| |
Collapse
|