1
|
Dirican CD, Nelson PS. Y Chromosome Loss and Implications for Oncology. Mol Cancer Res 2024; 22:603-612. [PMID: 38647375 PMCID: PMC11217729 DOI: 10.1158/1541-7786.mcr-24-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
The Y chromosome has recognized functions in promoting male sex determination and regulating aspects of fertility. However, recent work has demonstrated important roles for the Y chromosome and Y-encoded genes in multiple domains of male health, including cancer. It is well established that males experience shorter lifespans than females, and this sex bias on overall mortality is accentuated in populations with longer life expectancy, in part related to elevated rates of cancer. The majority of human malignancies exhibit a sex bias with elevated frequencies in males. For many of these cancer types, the disparity has not been explained by environmental risk factors such as tobacco use. Notably, loss of the Y chromosome (LOY) detected in blood cells, termed mosaic LOY, is a common event that is related to advancing age and is associated with a shortened lifespan. Mosaic LOY is linked to increased incidence and mortality across a range of malignancies. Furthermore, tumors arising in different anatomic sites exhibit different frequencies of partial or complete Y chromosome loss. Causal oncogenic or tumor-suppressive roles have been documented for several Y-encoded genes, such as lysine-specific demethylase 5 D, that exert pleiotropic effects on cellular functions by virtue of genome-wide regulation of gene activity. In this review, we discuss aspects of the Y chromosome relevant to oncology. The recent completion of the entire human Y-chromosome sequence provides a reference map of Y-encoded genes and regulatory elements to enable causal molecular studies that may explain and exploit the marked disparity in male cancer risk and mortality.
Collapse
Affiliation(s)
- Canan D. Dirican
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
2
|
Zhou S, Sarabia SF, Estrine D, Ostrow D, Schmidt RJ, Warren M, Raca G, Shillingford N, Wang L, Pawel B, Stein JE, Biegel JA, Lopez-Terrada D, Mascarenhas L, Ji J. Comparative Clinicopathologic and Genomic Analysis of Hepatocellular Neoplasm, Not Otherwise Specified, and Hepatoblastoma. Mod Pathol 2024; 37:100385. [PMID: 37992967 DOI: 10.1016/j.modpat.2023.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.
Collapse
Affiliation(s)
- Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Dolores Estrine
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nick Shillingford
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Larry Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James E Stein
- Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Leo Mascarenhas
- Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Hematology/Oncology, Department of Pediatrics, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Thierry AR, Sanchez C, Colinge J, Pisareva E. Circulating DNA reveals a specific and higher fragmentation of the Y chromosome. Hum Genet 2023; 142:1603-1609. [PMID: 37743368 DOI: 10.1007/s00439-023-02600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Chromosome stability is a key point in genome evolution, particularly that of the Y chromosome. The Y chromosome loss in blood and tumor cells is well established. Through processes that are common to other chromosomes too, the Y chromosome undergoes degradation and fragmentation in the blood stream before elimination. This process gives rise to circulating DNA (cirDNA) fragments, whose examination may provide potential insight into the role of DNA fragmentation in blood for the Y chromosome elimination. In this study, we employed shallow whole genome sequencing (sWGS) to comprehensively assess the total cirDNA and the individual chromosome fragment size profiles in the plasma of healthy male individuals. Here, we show that (i) the fragment size profiles of total circulating DNA (cirDNA) and DNA fragments originating from autosomes and the X chromosome in blood plasma are homogeneous, and have a remarkably low variability (mean CV = 7%) among healthy individuals, (ii) the Y chromosome has a distinct fragment size profile with the accumulation of the fragment < 145 bp and depletion of the dinucleosome-associated fragments (290-390 bp), and its fragment fraction in blood decreases with age. These results indicate a higher fragmentation of the Y chromosome compared to other chromosomes and this in turn might be due to its increased susceptibility to degradation. Our findings pave the way for an elucidation of the impact of chromosomal origin on DNA degradation and the Y chromosome biology.
Collapse
Affiliation(s)
- Alain R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France.
- ICM, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France.
| | - Cynthia Sanchez
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Ekaterina Pisareva
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Batdorj E, AlOgayil N, Zhuang QKW, Galvez JH, Bauermeister K, Nagata K, Kimura T, Ward MA, Taketo T, Bourque G, Naumova AK. Genetic variation in the Y chromosome and sex-biased DNA methylation in somatic cells in the mouse. Mamm Genome 2023; 34:44-55. [PMID: 36454369 PMCID: PMC9947081 DOI: 10.1007/s00335-022-09970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Several lines of evidence suggest that the presence of the Y chromosome influences DNA methylation of autosomal loci. To better understand the impact of the Y chromosome on autosomal DNA methylation patterns and its contribution to sex bias in methylation, we identified Y chromosome dependent differentially methylated regions (yDMRs) using whole-genome bisulfite sequencing methylation data from livers of mice with different combinations of sex-chromosome complement and gonadal sex. Nearly 90% of the autosomal yDMRs mapped to transposable elements (TEs) and most of them had lower methylation in XY compared to XX or XO mice. Follow-up analyses of four reporter autosomal yDMRs showed that Y-dependent methylation levels were consistent across most somatic tissues but varied in strains with different origins of the Y chromosome, suggesting that genetic variation in the Y chromosome influenced methylation levels of autosomal regions. Mice lacking the q-arm of the Y chromosome (B6.NPYq-2) as well as mice with a loss-of-function mutation in Kdm5d showed no differences in methylation levels compared to wild type mice. In conclusion, the Y-linked modifier of TE methylation is likely to reside on the short arm of Y chromosome and further studies are required to identify this gene.
Collapse
Affiliation(s)
- Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Kei Nagata
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, HonoluluHonolulu, HIHI, 96822, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montréal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Su J, Han X, Xu X, Ding W, Li M, Wang W, Tian M, Chen X, Xu B, Chen Z, Yuan J, Qin X, Lin D, Wang R, Gong Y, Pan L, Wang J, Wang M. Simultaneous Detection of Pathogens and Tumors in Patients With Suspected Infections by Next-Generation Sequencing. Front Cell Infect Microbiol 2022; 12:892087. [PMID: 35755839 PMCID: PMC9218804 DOI: 10.3389/fcimb.2022.892087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Differential diagnosis of patients with suspected infections is particularly difficult, but necessary for prompt diagnosis and rational use of antibiotics. A substantial proportion of these patients have non-infectious diseases that include malignant tumors. This study aimed to explore the clinical value of metagenomic next-generation sequencing (mNGS) for tumor detection in patients with suspected infections. Methods A multicenter, prospective case study involving patients diagnosed with suspected infections was conducted in four hospitals in Shanghai, China between July 2019 and January 2020. Based upon mNGS technologies and chromosomal copy number variation (CNV) analysis on abundant human genome, a new procedure named Onco-mNGS was established to simultaneously detect pathogens and malignant tumors in all of the collected samples from patients. Results Of 140 patients screened by Onco-mNGS testing, 115 patients were diagnosed with infections; 17 had obvious abnormal CNV signals indicating malignant tumors that were confirmed clinically. The positive percent agreement and negative percent agreement of mNGS testing compared to clinical diagnosis was 53.0% (61/115) and 60% (15/25), vs. 20.9% (24/115) and 96.0% (24/25), respectively, for conventional microbiological testing (both P <0.01). Klebsiella pneumoniae (14.8%, 9/61) was the most common pathogen detected by mNGS, followed by Escherichia coli (11.5%, 7/61) and viruses (11.5%, 7/61). The chromosomal abnormalities of the 17 cases included genome-wide variations and local variations of a certain chromosome. Five of 17 patients had a final confirmed with malignant tumors, including three lung adenocarcinomas and two hematological tumors; one patient was highly suspected to have lymphoma; and 11 patients had a prior history of malignant tumor. Conclusion This preliminary study demonstrates the feasibility and clinical value of using Onco-mNGS to simultaneously search for potential pathogens and malignant tumors in patients with suspected infections.
Collapse
Affiliation(s)
- Jiachun Su
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Han
- Research and Development Department, MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai, China
| | - Wenchao Ding
- Research and Development Department, MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Ming Li
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqin Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyuan Chen
- Department of Critical Care Medicine, Jing'an District Centre Hospital, Fudan University, Shanghai, China
| | - Binbin Xu
- Department of Neurosurgery, Putuo District People's Hospital, Tongji University, Shanghai, China
| | - Zhongqing Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyi Yuan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongfang Lin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liping Pan
- Department of Critical Care Medicine, Jing'an District Centre Hospital, Fudan University, Shanghai, China
| | - Jun Wang
- Research and Development Department, MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai, China
| |
Collapse
|
6
|
Heydari R, Jangravi Z, Maleknia S, Seresht-Ahmadi M, Bahari Z, Salekdeh GH, Meyfour A. Y chromosome is moving out of sex determination shadow. Cell Biosci 2022; 12:4. [PMID: 34983649 PMCID: PMC8724748 DOI: 10.1186/s13578-021-00741-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male‑specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Abstract
Nanomedicine has demonstrated substantial potential to improve the quality and efficacy of healthcare systems. Although the promise of nanomedicine to transform conventional medicine is evident, significant numbers of therapeutic nanomedicine products have failed in clinical trials. Most studies in nanomedicine have overlooked several important factors, including the significance of sex differences at various physiological levels. This report attempts to highlight the importance of sex in nanomedicine at cellular and molecular level. A more thorough consideration of sex physiology, among other critical variations (e.g., health status of individuals), would enable researchers to design and develop safer and more-efficient sex-specific diagnostic and therapeutic nanomedicine products.
Collapse
|
8
|
Kim JY, Min K, Paik HY, Lee SK. Sex omission and male bias are still widespread in cell experiments. Am J Physiol Cell Physiol 2021; 320:C742-C749. [PMID: 33656929 DOI: 10.1152/ajpcell.00358.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Integrating sex as an important biological variable is imperative to enhance the accuracy and reproducibility of cell-based studies, which provide basic information for subsequent preclinical and clinical study designs. Recently, international funding agencies and renowned journals have been attempting to integrate sex as a variable in every research step. To understand what progress has been made in reporting of cell sex in the articles published in AJP-Cell Physiology since the analysis in 2013, we examined the sex notation of the cells in relevant articles published in the same journal in 2018. Of the 107 articles reporting cell experiments, 53 reported the sex of the cells, 18 used both male and female cells, 23 used male cells only, and 12 used female cells only. Sex omission was more frequent when cell lines were used than when primary cells were used. In the articles describing experiments performed using rodent primary cells, more than half of the studies used only male cells. Our results showed an overall improvement in sex reporting for cells in AJP-Cell Physiology articles from 2013 (25%) to 2018 (50%). However, sex omission and male bias were often found still. Furthermore, the obtained results were rarely analyzed by sex even when both male and female cells were used in the experiments. To boost sex-considerate research implementation in basic biomedical studies, cooperative efforts of the research community, funders, and publishers are urged.
Collapse
Affiliation(s)
- Jun Yeob Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoungmi Min
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee Young Paik
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Ouseph MM, Hasserjian RP, Dal Cin P, Lovitch SB, Steensma DP, Nardi V, Weinberg OK. Genomic alterations in patients with somatic loss of the Y chromosome as the sole cytogenetic finding in bone marrow cells. Haematologica 2021; 106:555-564. [PMID: 32193254 PMCID: PMC7849577 DOI: 10.3324/haematol.2019.240689] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 01/23/2023] Open
Abstract
Loss of the Y chromosome (LOY) is one of the most common somatic genomic alterations in hematopoietic cells in men. However, due to the high prevalence of LOY as the sole cytogenetic finding in the healthy older population, differentiating isolated LOY associated with clonal hematologic processes from aging-associated mosaicism can be difficult in the absence of definitive morphological features of disease. In the past, various investigators have proposed that a high percentage of metaphases with LOY is more likely to represent expansion of a clonal myeloid disease-associated population. It is unknown whether the proportion of metaphases with LOY is associated with the incidence of myeloid neoplasia-associated genomic alterations. To address this question, we identified bone marrow samples with LOY as an isolated cytogenetic finding and used targeted next generation sequencing-based molecular analysis to identify common myeloid neoplasia-associated somatic mutations. Among 73 patients with a median age of 75 years (range, 29-90), the percentage of metaphases with LOY was <25% in 23 patients, 25-49% in 10, 50-74% in 8 and ≥75% in 32. A threshold of ≥75% LOY was significantly associated with a morphological diagnosis of myeloid neoplasm (P=0.004). Furthermore, ≥75% LOY was associated with a higher lifetime incidence of a diagnosis of myelodysplastic syndromes (MDS) (P<0.0001), and in multivariate analysis ≥75% LOY was a statistically significant independent predictor of myeloid neoplasia (odds ratio 6.17; 95% confidence interval: 2.15-17.68; P=0.0007]. Higher LOY percentage (≥75%) was associated with greater likelihood of having somatic mutations (P=0.0009) and a higher number of these mutations (P=0.0002). Our findings indicate that ≥75% LOY in bone marrow cells is associated with an increased likelihood of molecular aberrations in genes commonly seen to be altered in myeloid neoplasia and with morphological features of MDS. These observations suggest that ≥75% LOY in bone marrow should be considered an MDS-associated cytogenetic aberration.
Collapse
Affiliation(s)
- Madhu M Ouseph
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | | | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - Scott B Lovitch
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - David P Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, USA
| | - Olga K Weinberg
- Department of Pathology, Boston Children Hospital, Boston, USA
| |
Collapse
|
10
|
Chen Y, Xu Y, Cao X, Zheng C, Lin L, Zhu Z, Hu J. Three patients with 46,X,inv(Y)(p11.2q11.2)pat/45,X and their pedigree analysis. Ann Hum Genet 2020; 84:331-338. [PMID: 32162681 PMCID: PMC7318165 DOI: 10.1111/ahg.12381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
The present study aimed to perform chromosome examination and pedigree analysis on three patients with semen abnormality who had undergone in vitro fertilization–embryo transfer (IVF‐ET). Peripheral blood cell culture and chromosome karyotyping were performed on 4,200 individuals who had undergone chromosome examination. Among them, 155 pregnant women who had successfully conceived were subjected to amniotic cell culture and chromosome karyotyping and those with abnormal chromosome karyotype were further subjected to C‐banding and whole‐genome sequencing. Mosaicism for a 46,X,inv(Y)(p11.2q11.2)pat/45,X karyotype was identified in the probands and immediate adult male relatives. The incidence of this mosaicism in the study population was only 0.07% (3/4,200), which is reported for the first time. For the proband of pedigree A, the results of whole‐genome sequencing and other tests were normal, and the chromosome karyotype of IVF fetuses was 46,X,inv(Y)(p11.2q11.2)pat. All the male members of three pedigrees have normal phenotypes, with no features of Turner's syndrome (45,X) or hermaphroditism (45,X/46,XY), suggesting that the inverted Y chromosome is extremely unstable and particularly susceptible to loss in somatic cells. So we speculate this karyotype may be a unique type of inverted Y chromosome in somatic cells.
Collapse
Affiliation(s)
- Yunchun Chen
- Department of Laboratory Medicine, Haikou Branch of Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (Haikou Hospital of Traditional Chinese Medicine), Hainan, Haikou, China
| | - Yuni Xu
- Department of Laboratory Medicine, Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou, China
| | - Xiaoqiang Cao
- Department of Laboratory Medicine, Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou, China
| | - Chunqiao Zheng
- Department of Laboratory Medicine, Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou, China
| | - Liying Lin
- Department of Laboratory Medicine, Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou, China
| | - Zhongyuan Zhu
- Department of Laboratory Medicine, Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou, China
| | - Jiandong Hu
- Internal Medicine, Haikou Branch of Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (Haikou Hospital of Traditional Chinese Medicine), Hainan, Haikou, China
| |
Collapse
|
11
|
Axelrad DA, Setzer RW, Bateson TF, DeVito M, Dzubow RC, Fitzpatrick JW, Frame AM, Hogan KA, Houck K, Stewart M. Methods for evaluating variability in human health dose-response characterization. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2019; 25:1-24. [PMID: 31404325 PMCID: PMC6688638 DOI: 10.1080/10807039.2019.1615828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 05/21/2023]
Abstract
The Reference Dose (RfD) and Reference Concentration (RfC) are human health reference values (RfVs) representing exposure concentrations at or below which there is presumed to be little risk of adverse effects in the general human population. The 2009 National Research Council report Science and Decisions recommended redefining RfVs as "a risk-specific dose (for example, the dose associated with a 1 in 100,000 risk of a particular end point)." Distributions representing variability in human response to environmental contaminant exposures are critical for deriving risk-specific doses. Existing distributions estimating the extent of human toxicokinetic and toxicodynamic variability are based largely on controlled human exposure studies of pharmaceuticals. New data and methods have been developed that are designed to improve estimation of the quantitative variability in human response to environmental chemical exposures. Categories of research with potential to provide new database useful for developing updated human variability distributions include controlled human experiments, human epidemiology, animal models of genetic variability, in vitro estimates of toxicodynamic variability, and in vitro-based models of toxicokinetic variability. In vitro approaches, with further development including studies of different cell types and endpoints, and approaches to incorporate non-genetic sources of variability, appear to provide the greatest opportunity for substantial near-term advances.
Collapse
Affiliation(s)
- Daniel A. Axelrad
- Office of Policy, U.S. Environmental Protection Agency, Washington, DC, USA
| | - R. Woodrow Setzer
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas F. Bateson
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Michael DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | - Rebecca C. Dzubow
- Office of Children’s Health Protection, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Julie W. Fitzpatrick
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Alicia M. Frame
- Office of Land and Emergency Management, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Karen A. Hogan
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Keith Houck
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Stewart
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Povey JF, Saintas E, Aderemi AV, Rothweiler F, Zehner R, Dirks WG, Cinatl J, Racher AJ, Wass MN, Smales CM, Michaelis M. Intact-Cell MALDI-ToF Mass Spectrometry for the Authentication of Drug-Adapted Cancer Cell Lines. Cells 2019; 8:cells8101194. [PMID: 31581737 PMCID: PMC6830094 DOI: 10.3390/cells8101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
The use of cell lines in research can be affected by cell line misidentification. Short tandem repeat (STR) analysis is an effective method, and the gold standard, for the identification of the genetic origin of a cell line, but methods that allow the discrimination between cell lines of the same genetic origin are lacking. Here, we use intact cell MALDI-ToF mass spectrometry analysis, routinely used for the identification of bacteria in clinical diagnostic procedures, for the authentication of a set of cell lines consisting of three parental neuroblastoma cell lines (IMR-5, IMR-32 and UKF-NB-3) and eleven drug-adapted sublines. Principal component analysis (PCA) of intact-cell MALDI-ToF mass spectrometry data revealed clear differences between most, but not all, of the investigated cell lines. Mass spectrometry whole-cell fingerprints enabled the separation of IMR-32 and its clonal subline IMR-5. Sublines that had been adapted to closely related drugs, for example, the cisplatin- and oxaliplatin-resistant UKF-NB-3 sublines and the vincristine- and vinblastine-adapted IMR-5 sublines, also displayed clearly distinctive patterns. In conclusion, intact whole-cell MALDI-ToF mass spectrometry has the potential to be further developed into an authentication method for mammalian cells of a common genetic origin.
Collapse
Affiliation(s)
- Jane F. Povey
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - Emily Saintas
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - Adewale V. Aderemi
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, 60596 Frankfurt am Main, Germany; (F.R.)
| | - Richard Zehner
- Institut für Rechtsmedizin, Klinikum der Goethe-Universität, 60596 Frankfurt am Main, Germany;
| | - Wilhelm G. Dirks
- Leibniz-Institute Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig, Germany;
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, 60596 Frankfurt am Main, Germany; (F.R.)
| | | | - Mark N. Wass
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - C. Mark Smales
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
- Correspondence: (C.M.S); (M.M.); Tel.: +44-1227-82-3746 (C.M.S); Tel.: +44-1227-82-7804 (M.M.)
| | - Martin Michaelis
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
- Correspondence: (C.M.S); (M.M.); Tel.: +44-1227-82-3746 (C.M.S); Tel.: +44-1227-82-7804 (M.M.)
| |
Collapse
|
13
|
Meta-Analysis of Cancer Triploidy: Rearrangements of Genome Complements in Male Human Tumors Are Characterized by XXY Karyotypes. Genes (Basel) 2019; 10:genes10080613. [PMID: 31412657 PMCID: PMC6723511 DOI: 10.3390/genes10080613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Triploidy in cancer is associated with poor prognosis, but its origins remain unclear. Here, we attempted to differentiate between random chromosomal and whole-genome origins of cancer triploidy. In silico meta-analysis was performed on 15 male malignant and five benign tumor cohorts (2928 karyotypes) extracted from the Mitelman Database, comparing their ploidy and combinations of sex chromosomes. A distinct near-triploid fraction was observed in all malignant tumor types, and was especially high in seminoma. For all tumor types, X-chromosome doubling, predominantly observed as XXY, correlated strongly with the near-triploid state (r ≈ 0.9, p < 0.001), negatively correlated with near-diploidy, and did not correlate with near-tetraploidy. A smaller near-triploid component with a doubled X-chromosome was also present in three of the five benign tumor types, especially notable in colon adenoma. Principal component analysis revealed a non-random correlation structure shaping the X-chromosome disomy distribution across all tumor types. We suggest that doubling of the maternal genome followed by pedogamic fusion with a paternal genome (a possible mimic of the fertilization aberration, 69, XXY digyny) associated with meiotic reprogramming may be responsible for the observed rearrangements of genome complements leading to cancer triploidy. The relatively frequent loss of the Y-chromosome results as a secondary factor from chromosome instability.
Collapse
|
14
|
Tang D, Han Y, Lun Y, Jiang H, Xin S, Duan Z, Zhang J. Y chromosome loss is associated with age-related male patients with abdominal aortic aneurysms. Clin Interv Aging 2019; 14:1227-1241. [PMID: 31413553 PMCID: PMC6662525 DOI: 10.2147/cia.s202188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Abdominal aortic aneurysm (AAA) demonstrates many features of autoimmune diseases. Y chromosome, sex-determining region of the Y chromosome (SRY) gene, androgen receptor (AR) gene, and androgen appear as potential candidates for influence of the male immune function. This study investigated Y chromosome numbers, SRY gene, AR gene, and androgen levels in male AAAs. We also investigated the correlation between Y chromosome loss (LOY) ratio, SRY expression, androgen levels, and age. Patients and methods We investigated LOY by fluorescence in situ hybridization (FISH) in 37 AAAs and compared with 12 patients with abdominal aortic atherosclerotic occlusive disease (AOD) and 91 healthy controls (HC). We investigated SRY and AR expression at mRNA level by real-time PCR in peripheral T lymphocytes in AAA compared with AOD and HC, and AR protein levels by immunohistochemistry (IHC) in AAA. LOY, SRY expression, androgen levels, and age were examined for correlations using the Spearman’s rank correlation coefficient. Results LOY ratio in peripheral T lymphocytes was significantly higher in the AAA group compared with the HC (9.11% vs 5.56%, P<0.001) and AOD groups (9.11% vs 6.42%, P=0.029). The SRY mRNA expression in peripheral T lymphocytes was 4.7-fold lower expressed in the AAA group than in the HC group (P<0.001). Free plasma testosterone levels were lower in the AAA group compared with the HC group (P=0.036), whereas sex hormone-binding globulin levels were higher (P=0.020). LOY ratio and expression of SRY mRNA level increased with age in the AAA group (R=0.402 and, R=0.366, respectively). A significant correlation between AR mRNA level (R=0.692) and aortic diameter was detected. Simultaneously, in AAA tissue, the rate of LOY increased with age (R=0.547) and also positively associated with LOY in peripheral blood T lymphocytes (R=0.661). Conclusion This study identified a prominent Y chromosome loss in male AAAs, which is correlated to age, lower level of SRY expression and free testosterone, providing a new clue for the mechanisms of AAA.
Collapse
Affiliation(s)
- Dianjun Tang
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm Liaoning Province, Shenyang, People's Republic of China.,Department of Vascular Surgery, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu Lun
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm Liaoning Province, Shenyang, People's Republic of China
| | - Han Jiang
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm Liaoning Province, Shenyang, People's Republic of China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm Liaoning Province, Shenyang, People's Republic of China
| | - Zhiquan Duan
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm Liaoning Province, Shenyang, People's Republic of China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Vaeteewoottacharn K, Pairojkul C, Kariya R, Muisuk K, Imtawil K, Chamgramol Y, Bhudhisawasdi V, Khuntikeo N, Pugkhem A, Saeseow OT, Silsirivanit A, Wongkham C, Wongkham S, Okada S. Establishment of Highly Transplantable Cholangiocarcinoma Cell Lines from a Patient-Derived Xenograft Mouse Model. Cells 2019; 8:496. [PMID: 31126020 PMCID: PMC6562875 DOI: 10.3390/cells8050496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly malignant tumor of the liver. It is a significant health problem in Thailand. The critical obstacles of CCA diagnosis and treatment are the high heterogeneity of disease and considerable resistance to treatment. Recent multi-omics studies revealed the promising targets for CCA treatment; however, limited models for drug discovery are available. This study aimed to develop a patient-derived xenograft (PDX) model as well as PDX-derived cell lines of CCA for future drug screening. From a total of 16 CCA frozen tissues, 75% (eight intrahepatic and four extrahepatic subtypes) were successfully grown and subpassaged in Balb/c Rag-2-/-/Jak3-/- mice. A shorter duration of PDX growth was observed during F0 to F2 transplantation; concomitantly, increased Oct-3/4 and Sox2 were evidenced in 50% and 33%, respectively, of serial PDXs. Only four cell lines were established. The cell lines exhibited either bile duct (KKK-D049 and KKK-D068) or combined hepatobiliary origin (KKK-D131 and KKK-D138). These cell lines acquired high transplantation efficiency in both subcutaneous (100%) and intrasplenic (88%) transplantation models. The subcutaneously transplanted xenograft retained the histological architecture as in the patient tissues. Our models of CCA PDX and PDX-derived cell lines would be a useful platform for CCA precision medicine.
Collapse
Affiliation(s)
- Kulthida Vaeteewoottacharn
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Pathology, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Kanha Muisuk
- Department of Forensic Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kanokwan Imtawil
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Pathology, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Vajarabhongsa Bhudhisawasdi
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ake Pugkhem
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - O-Tur Saeseow
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Atit Silsirivanit
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Chaisiri Wongkham
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sopit Wongkham
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
16
|
Ruf-Zamojski F, Ge Y, Pincas H, Shan J, Song Y, Hines N, Kelley K, Montagna C, Nair P, Toufaily C, Bernard DJ, Mellon PL, Nair V, Turgeon JL, Sealfon SC. Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. J Endocr Soc 2019; 3:902-920. [PMID: 31020055 PMCID: PMC6469952 DOI: 10.1210/js.2019-00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
LβT2 and αT3-1 are important, widely studied cell line models for the pituitary gonadotropes that were generated by targeted tumorigenesis in transgenic mice. LβT2 cells are more mature gonadotrope precursors than αT3-1 cells. Microsatellite authentication patterns, chromosomal characteristics, and their intercellular variation have not been reported. We performed microsatellite and cytogenetic analysis of both cell types at early passage numbers. Short tandem repeat (STR) profiling was consistent with a mixed C57BL/6J × BALB/cJ genetic background, with distinct patterns for each cell type. Spectral karyotyping in αT3-1 cells revealed cell-to-cell variation in chromosome composition and pseudodiploidy. In LβT2 cells, chromosome counting and karyotyping demonstrated pseudotriploidy and high chromosomal variation among cells. Chromosome copy number variation was confirmed by single-cell DNA sequencing. Chromosomal compositions were consistent with a male sex for αT3-1 and a female sex for LβT2 cells. Among LβT2 stocks used in multiple laboratories, we detected two genetically similar but distinguishable lines via STR authentication, LβT2a and LβT2b. The two lines differed in morphological appearance, with LβT2a having significantly smaller cell and nucleus areas. Analysis of immediate early gene and gonadotropin subunit gene expression revealed variations in basal expression and responses to continuous and pulsatile GnRH stimulation. LβT2a showed higher basal levels of Egr1, Fos, and Lhb but lower Fos induction. Fshb induction reached significance only in LβT2b cells. Our study highlights the heterogeneity in gonadotrope cell line genomes and provides reference STR authentication patterns that can be monitored to improve experimental reproducibility and facilitate comparisons of results within and across laboratories.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jidong Shan
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Yinghui Song
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Nika Hines
- Mouse Genetics and Gene Targeting CoRE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Kelley
- Mouse Genetics and Gene Targeting CoRE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cristina Montagna
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Pranav Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Venugopalan Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judith L Turgeon
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Li Y, Xu A, Jia S, Huang J. Recent advances in the molecular mechanism of sex disparity in hepatocellular carcinoma. Oncol Lett 2019; 17:4222-4228. [PMID: 30988804 DOI: 10.3892/ol.2019.10127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is more frequently observed and aggressive in men compared with women. Increasing evidence demonstrates that the sex disparity appears to be mediated by the stimulatory effects of androgens and the protective effects of estrogen in the development and progression of HCC. In the past few decades, studies on the sex difference of HCC mainly focused on the effect of sex hormones on the transactivation of hepatitis B virus X protein and the release of inflammatory cytokines, and these studies have further intensified in recent years. Sex hormones are also involved in genetic alterations and DNA damage repair in hepatocytes through binding to their specific cellular receptors and affecting the corresponding signaling pathways. Furthermore, the theory of sex chromosomes participating in HCC has been considered. The present review discussed the recent advances in the molecular mechanisms of sex disparity in HCC, with the aim of improving the understanding of the underlying critical factors and exploring more effective methods for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Yanmeng Li
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,National Clinical Research Center for Digestive Disease, Beijing 100050, P.R. China
| | - Anjian Xu
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,National Clinical Research Center for Digestive Disease, Beijing 100050, P.R. China
| | - Siyu Jia
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,National Clinical Research Center for Digestive Disease, Beijing 100050, P.R. China
| | - Jian Huang
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,National Clinical Research Center for Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
18
|
Mauvais-Jarvis F, Arnold AP, Reue K. A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metab 2017; 25:1216-1230. [PMID: 28591630 PMCID: PMC5516948 DOI: 10.1016/j.cmet.2017.04.033] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In animal models, the physiological systems involved in metabolic homeostasis exhibit a sex difference. Investigators often use male rodents because they show metabolic disease better than females. Thus, females are not used precisely because of an acknowledged sex difference that represents an opportunity to understand novel factors reducing metabolic disease more in one sex than the other. The National Institutes of Health (NIH) mandate to consider sex as a biological variable in preclinical research places new demands on investigators and peer reviewers who often lack expertise in model systems and experimental paradigms used in the study of sex differences. This Perspective discusses experimental design and interpretation in studies addressing the mechanisms of sex differences in metabolic homeostasis and disease, using animal models and cells. We also highlight current limitations in research tools and attitudes that threaten to delay progress in studies of sex differences in basic animal research.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Diabetes Discovery & Gender Medicine Laboratory, Section of Endocrinology & Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Forsberg LA. Loss of chromosome Y (LOY) in blood cells is associated with increased risk for disease and mortality in aging men. Hum Genet 2017; 136:657-663. [PMID: 28424864 PMCID: PMC5418310 DOI: 10.1007/s00439-017-1799-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/08/2017] [Indexed: 11/26/2022]
Abstract
Recent discoveries have shown that harboring cells without the Y chromosome in the peripheral blood is associated with increased risk for all-cause mortality and disease such as different forms of cancer, Alzheimer’s disease, as well as other conditions in aging men. In the entire world, the life expectancy of men is shorter compared to women, a sex difference that has been known for centuries, but the underlying mechanism(s) are not well understood. As a male-specific genetic risk factor, an increased risk for pathology and mortality associated with mosaic loss of chromosome Y (LOY) in blood cells could help to explain that men on average live shorter lives compared to women. This review primarily focuses on observed associations between LOY in blood and various diseases in aging men. Other topics covered are known risk factors for LOY, methods to detect LOY, and a discussion regarding mechanisms such as immunosurveillance, that could possibly explain how an acquired mutation in blood cells can be associated with disease processes in other organs.
Collapse
Affiliation(s)
- Lars A Forsberg
- Science for Life Laboratory, Beijer Laboratory of Genome Research, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Qiu Z, Zou K, Zhuang L, Qin J, Li H, Li C, Zhang Z, Chen X, Cen J, Meng Z, Zhang H, Li Y, Hui L. Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers. Sci Rep 2016; 6:27411. [PMID: 27273737 PMCID: PMC4895220 DOI: 10.1038/srep27411] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) cell lines are useful in vitro models for the study of primary HCCs. Because cell lines acquire additional mutations in culture, it is important to understand to what extent HCC cell lines retain the genetic landscapes of primary HCCs. Most HCC cell lines were established during the last century, precluding comparison between cell lines and primary cancers. In this study, 9 Chinese HCC cell lines with matched patient-derived cells at low passages (PDCs) were established in the defined culture condition. Whole genome analyses of 4 HCC cell lines showed that genomic mutation landscapes, including mutations, copy number alterations (CNAs) and HBV integrations, were highly stable during cell line establishment. Importantly, genetic alterations in cancer drivers and druggable genes were reserved in cell lines. HCC cell lines also retained gene expression patterns of primary HCCs during in vitro culture. Finally, sequential analysis of HCC cell lines and PDCs at different passages revealed their comparable and stable genomic and transcriptomic levels if maintained within proper passages. These results show that HCC cell lines largely retain the genomic and transcriptomic landscapes of primary HCCs, thus laying the rationale for testing HCC cell lines as preclinical models in precision medicine.
Collapse
Affiliation(s)
- Zhixin Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Keke Zou
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Liping Zhuang
- Department of Minimally Invasive Therapy, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032 Shanghai, China
| | - Jianjie Qin
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China
| | - Hong Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Chao Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhengtao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032 Shanghai, China
| | - Haibin Zhang
- Fifth Department of Hepatic Surgery, Eastern Hepatobilliary Surgery Hospital, Second Military Medical University, 200438 Shanghai, China
| | - Yixue Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| |
Collapse
|
21
|
Ren J, Chen GG, Liu Y, Su X, Hu B, Leung BCS, Wang Y, Ho RLK, Yang S, Lu G, Lee CG, Lai PBS. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma. PLoS One 2016; 11:e0153863. [PMID: 27093553 PMCID: PMC4836701 DOI: 10.1371/journal.pone.0153863] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy.
Collapse
Affiliation(s)
- Jianwai Ren
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute (SZRI), Shenzhen, 518057, China
| | - George G. Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute (SZRI), Shenzhen, 518057, China
- * E-mail: (GGC); (PBSL)
| | - Yi Liu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xianwei Su
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Baoguang Hu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Billy C. S. Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Y. Wang
- National Cancer Centre, Division of Medical Sciences, Singapore, Singapore
| | - Rocky L. K. Ho
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Shengli Yang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Gang Lu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - C. G. Lee
- National Cancer Centre, Division of Medical Sciences, Singapore, Singapore
| | - Paul B. S. Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| |
Collapse
|
22
|
Noveski P, Madjunkova S, Sukarova Stefanovska E, Matevska Geshkovska N, Kuzmanovska M, Dimovski A, Plaseska-Karanfilska D. Loss of Y Chromosome in Peripheral Blood of Colorectal and Prostate Cancer Patients. PLoS One 2016; 11:e0146264. [PMID: 26745889 PMCID: PMC4706411 DOI: 10.1371/journal.pone.0146264] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Although age-related loss of chromosome Y (LOY) in normal hematopoietic cells is a well-known phenomenon, the phenotypic consequences of LOY have been elusive. However, LOY has been found in association with smoking, shorter survival and higher risk of cancer. It was suggested that LOY in blood cells could become a predictive biomarker of male carcinogenesis. Aims, Methods & Findings To investigate the association of LOY in blood cells with the risk for development of colorectal (CC) and prostate cancers (PC), we have analyzed DNA samples from peripheral blood of 101 CC male patients (mean age 60.5±11.9 yrs), 70 PC patients (mean age 68.8±8.0 yrs) and 93 healthy control males (mean age 65.8±16.6 yrs). The methodology included co-amplification of homologous sequences on chromosome Y and other chromosomes using multiplex quantitative fluorescent (QF) PCR followed by automatic detection and analysis on ABI 3500 Genetic Analyzer. The mean Y/X ratio was significantly lower in the whole group of cancer patients (0.907±0.12; p = 1.17x10-9) in comparison to the controls (1.015±0.15), as well as in CC (0.884±0.15; p = 3.76x10-9) and PC patients (0.941±0.06; p = 0.00012), when analyzed separately. Multivariate logistic regression analysis adjusting for LOY and age showed that LOY is a more significant predictor of cancer presence than age, and that age probably does not contribute to the increased number of subjects with detectable LOY in cancer patients cohort. Conclusion In conclusion, our results support the recent findings of association of LOY in blood cells with carcinogenesis in males.
Collapse
Affiliation(s)
- Predrag Noveski
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Svetlana Madjunkova
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Emilija Sukarova Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Nadica Matevska Geshkovska
- Center for Biomolecular Pharmaceutical Analysis, Faculty of Pharmacy, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Maja Kuzmanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Aleksandar Dimovski
- Center for Biomolecular Pharmaceutical Analysis, Faculty of Pharmacy, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| |
Collapse
|
23
|
Murakami S, Ninomiya W, Sakamoto E, Shibata T, Akiyama H, Tashiro F. SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets. Stem Cells 2015; 33:2652-63. [PMID: 26013162 DOI: 10.1002/stem.2059] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
The acquisition of stemness is a hallmark of aggressive human hepatocellular carcinoma (hHCC). The stem cell marker OCT4 is frequently expressed in HCCs, and its expression correlates with those of putative cancer stem cell (CSC) markers and CSC properties. Here, we describe a novel mechanism of CSC maintenance by SRY through OCT4. We previously reported that Sry is involved in tumor malignancy in rodent HCCs. However, the oncogenic function of SRY in hHCCs is poorly understood. Ectopic expression of SRY increased multiple stem cell factors, including OCT4 and CD13. The OCT4 promoter contained SRY-binding sites that were directly activated by SRY. In HCC-derived cells, SRY knockdown decreased OCT4 expression and cancer stem-like phenotypes such as self-renewal, chemoresistance, and tumorigenicity. Conversely, OCT4 and SRY overexpression promoted cancer stem-like phenotypes. OCT4 knockdown in SRY clones downregulated the self-renewal capacity and chemoresistance. These data suggest that SRY is involved in the maintenance of cancer stem-like characteristics through OCT4. Moreover, CSCs of HCC-derived cells differentiated into Tuj1-positive neuron-like cells by retinoic acid. Noteworthily, SRY was highly expressed in some hHCC patients. Taken together, our findings imply a novel therapeutic strategy against CSCs of hHCCs.
Collapse
Affiliation(s)
- Shigekazu Murakami
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Wataru Ninomiya
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Erina Sakamoto
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo Japan
| | - Hirotada Akiyama
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Fumio Tashiro
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
24
|
Cannon-Albright LA, Farnham JM, Bailey M, Albright FS, Teerlink CC, Agarwal N, Stephenson RA, Thomas A. Identification of specific Y chromosomes associated with increased prostate cancer risk. Prostate 2014; 74:991-8. [PMID: 24796687 PMCID: PMC4109644 DOI: 10.1002/pros.22821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/15/2014] [Indexed: 11/06/2022]
Abstract
BACKGROUND Evidence supports the possibility of a role of the Y chromosome in prostate cancer, but controversy exists. METHODS A novel analysis of a computerized population-based resource linking genealogy and cancer data was used to test the hypothesis of a role of the Y chromosome in prostate cancer predisposition. Using a statewide cancer registry from 1966 linked to a computerized genealogy representing over 1.2 million descendants of the Utah pioneers, 1,000 independent sets of males, each set hypothesized to share the same Y chromosome as represented in genealogy data, were tested for a significant excess of prostate cancer. RESULTS Multiple Y chromosomes representing thousands of potentially at-risk males were identified to have a significant excess risk for prostate cancer. CONCLUSIONS This powerful and efficient in silico test of an uncommon mode of inheritance has confirmed evidence for Y chromosome involvement in prostate cancer.
Collapse
Affiliation(s)
- Lisa A. Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- corresponding author: Lisa Cannon-Albright, PhD, Division of Genetic Epidemiology, 391 Chipeta Way, Suite D, Salt Lake City, UT 84108, , Tel 801 587 9300, Fax 801 581 6052
| | - James M. Farnham
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Matthew Bailey
- Department of Biology, Brigham Young University, Provo, Utah
| | | | - Craig C Teerlink
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Neeraj Agarwal
- Huntsman Cancer Institute, Salt Lake City, Utah
- Division of Oncology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Robert A. Stephenson
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Alun Thomas
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108
| |
Collapse
|
25
|
Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells? Am J Physiol Cell Physiol 2014; 306:C3-18. [PMID: 24196532 PMCID: PMC3919971 DOI: 10.1152/ajpcell.00281.2013] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
Abstract
Do you know the sex of your cells? Not a question that is frequently heard around the lab bench, yet thanks to recent research is probably one that should be asked. It is self-evident that cervical epithelial cells would be derived from female tissue and prostate cells from a male subject (exemplified by HeLa and LnCaP, respectively), yet beyond these obvious examples, it would be true to say that the sex of cell lines derived from non-reproductive tissue, such as lung, intestine, kidney, for example, is given minimal if any thought. After all, what possible impact could the presence of a Y chromosome have on the biochemistry and cell biology of tissues such as the exocrine pancreatic acini? Intriguingly, recent evidence has suggested that far from being irrelevant, genes expressed on the sex chromosomes can have a marked impact on the biology of such diverse tissues as neurons and renal cells. It is also policy of AJP-Cell Physiology that the source of all cells utilized (species, sex, etc.) should be clearly indicated when submitting an article for publication, an instruction that is rarely followed (http://www.the-aps.org/mm/Publications/Info-For-Authors/Composition). In this review we discuss recent data arguing that the sex of cells being used in experiments can impact the cell's biology, and we provide a table outlining the sex of cell lines that have appeared in AJP-Cell Physiology over the past decade.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | |
Collapse
|
26
|
Lleo A, Oertelt-Prigione S, Bianchi I, Caliari L, Finelli P, Miozzo M, Lazzari R, Floreani A, Donato F, Colombo M, Gershwin ME, Podda M, Invernizzi P. Y chromosome loss in male patients with primary biliary cirrhosis. J Autoimmun 2013; 41:87-91. [PMID: 23375847 DOI: 10.1016/j.jaut.2012.12.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022]
Abstract
Sex chromosome abnormalities have been advocated to be involved in the striking female prevalence of primary biliary cirrhosis (PBC) and women with PBC manifest an increased X chromosome loss in peripheral blood mononuclear cells compared to age-matched healthy women. Our knowledge of the etiopathogenesis of autoimmunity in male patients remains, however, limited. Next to the possible role of androgens and their imbalances, the Y chromosome appears as a potential candidate for influence of the immune function in men. Herein we analyzed a population of male patients with primary biliary cirrhosis (n = 26) and healthy controls (n = 88) to define a potential association of disease and the loss of the Y chromosome. We demonstrate that Y chromosome loss indeed is higher in PBC males compared to healthy controls, and this phenomenon increases with aging. We were, thus, able to confirm the existence of an analogous mechanism in the male population to previously identified X haploinsufficiency in female patients with organ-specific autoimmune disease. We propose that this commonality might represent a relevant feature in the etiopathogenesis of autoimmune diseases that should be further investigated.
Collapse
Affiliation(s)
- Ana Lleo
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, MI, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carcinoma of donor origin after allogeneic peripheral blood stem cell transplantation. Am J Surg Pathol 2012; 36:1376-84. [PMID: 22895271 DOI: 10.1097/pas.0b013e318261089c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Secondary cancers developing after allogeneic hematopoietic stem cell transplantation generally originate from recipient-derived cells. In this study, we analyzed the tumor cell origin of 5 epithelial malignant tumors (esophageal squamous cell carcinoma, lung adenocarcinoma, gastric adenocarcinoma, pharyngeal squamous cell carcinoma, and thyroid papillary carcinoma) that developed after allogeneic peripheral blood stem cell transplantation using anti-AE1/3 immunofluorescence with fluorescence in situ hybridization analysis for sex chromosomes and/or short-tandem repeat microsatellite analysis of laser-microdissected tumor cells. The results revealed that 1 of these 5 cancers was derived from donor cells. In this case, transfused pluripotent cells, which include both mesenchymal stem cells and hematopoietic stem cells, might have given rise to epithelial malignant cells. Our observations suggest that transfused peripheral blood cells may be involved in the development of cancers after allogeneic peripheral blood stem cell transplantation.
Collapse
|
28
|
Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J Autoimmun 2012; 38:J193-6. [PMID: 22196921 DOI: 10.1016/j.jaut.2011.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
29
|
Park SJ, Jung EH, Ryu RS, Kang HW, Ko JM, Kim HJ, Cheon CK, Hwang SH, Kang HY. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases. Mol Cytogenet 2011; 4:12. [PMID: 21549014 PMCID: PMC3114015 DOI: 10.1186/1755-8166-4-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023] Open
Abstract
Background Array comparative genomic hybridization (CGH) is currently the most powerful method for detecting chromosomal alterations in pre and postnatal clinical cases. In this study, we developed a BAC based array CGH analysis platform for detecting whole genome DNA copy number changes including specific micro deletion and duplication chromosomal disorders. Additionally, we report our experience with the clinical implementation of our array CGH analysis platform. Array CGH was performed on 5080 pre and postnatal clinical samples from patients referred with a variety of clinical phenotypes. Results A total of 4073 prenatal cases (4033 amniotic fluid and 40 chorionic villi specimens) and 1007 postnatal cases (407 peripheral blood and 600 cord blood) were studied with complete concordance between array CGH, karyotype and fluorescence in situ hybridization results. Among 75 positive prenatal cases with DNA copy number variations, 60 had an aneuploidy, seven had a deletion, and eight had a duplication. Among 39 positive postnatal cases samples, five had an aneuploidy, 23 had a deletion, and 11 had a duplication. Conclusions This study demonstrates the utility of using our newly developed whole-genome array CGH as first-tier test in 5080 pre and postnatal cases. Array CGH has increased the ability to detect segmental deletion and duplication in patients with variable clinical features and is becoming a more powerful tool in pre and postnatal diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Min Ko
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Hyon J Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, School of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Gyeonggi-do, Korea
| | | |
Collapse
|
30
|
Jeong SY, Park SJ, Lee SJ, Park HJ, Kim HJ. Loss of Y chromosome in the malignant peripheral nerve sheet tumor of a patient with Neurofibromatosis type 1. J Korean Med Sci 2010; 25:804-8. [PMID: 20436723 PMCID: PMC2858846 DOI: 10.3346/jkms.2010.25.5.804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 09/11/2009] [Indexed: 01/16/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most commonly inherited autosomal dominant disorders. In order to determine whether genomic alterations and/or chromosomal aberrations involved in the malignant progression of NF1 were present in a Korean patient with NF1, molecular and cytogenetic analyses were performed on the pathologically normal, benign, and malignant tissues and primary cells cultured from those tissues of the patient. The comparative genomic hybridization (CGH) array revealed a Y chromosome loss in the malignant peripheral nerve sheet tumor (MPNST) tissue. G-banding analysis of 50 metaphase cells showed normal chromosomal patterns in the histopathologically normal and benign cultured cells, but a mosaic Y chromosome loss in the malignant cells. The final karyotype for the malignant cells from MPNST tissue was 45,X,-Y[28]/46,XY[22]. The data suggest that the somatic Y chromosome loss may be involved in the transformation of benign tumors to MPNSTs.
Collapse
Affiliation(s)
- Seon-Yong Jeong
- Department of Medical Genetics, School of Medicine, Ajou University, Suwon, Korea
| | | | - Su-Jin Lee
- Department of Medical Genetics, School of Medicine, Ajou University, Suwon, Korea
| | - Ho-Jin Park
- Department of Medical Genetics, School of Medicine, Ajou University, Suwon, Korea
| | - Hyon J. Kim
- Department of Medical Genetics, School of Medicine, Ajou University, Suwon, Korea
| |
Collapse
|
31
|
Qesaraku B, Dudas J, Rave-Fränk M, Hess CF, Ramadori G, Saile B, Christiansen H. Effect of tumour necrosis factor-alpha and irradiation alone or in combination on the viability of hepatocellular and biliary adenocarcinoma cell lines in vitro. Liver Int 2009; 29:910-21. [PMID: 19226333 DOI: 10.1111/j.1478-3231.2009.01980.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Tumour necrosis factor alpha (TNF-alpha) may exhibit antitumoral activity and can influence the reaction of both tumour and normal tissue to radiation. AIMS To test the effect of TNF-alpha and/or irradiation on hepatocellular (HepG2, Hep3B, Sk-Hep1, HuH7) and cholangiocellular (Sk-chA1, Mz-chA1) tumour cell lines. METHODS Colony formation, apoptosis analysis and trypan blue exclusion were used to assess cell viability. Doses of radiation (2-25 Gy) and TNF-alpha (100-50,000 U) as well as their respective sequencing were varied (24 and 12 h before and 6 h after). The expression of TNF-alpha and TNF receptors 1/2 was determined using real-time polymerase chain reaction and IkappaBalpha protein expression was detected by Western blot. RESULTS Sole irradiation induced a reduction in colony formation in all cell lines and sole TNF-alpha in HepG2 and Sk-chA1 cells only. No difference in apoptosis induction after TNF-alpha or irradiation was observed. Cellular death induced by the combination of TNF-alpha and radiation was not superior to the use of any of the two agents alone. All cell lines revealed that radiation induced upregulation of TNF-alpha whereas the extent of TNF receptor-specific transcription did not change. Furthermore, radiation-induced changes in IkappaBalpha expression were not detectable. CONCLUSIONS Our data suggest that both TNF-alpha and radiation may be treatment options for hepatocellular and cholangiocellular carcinomas. Because TNF-alpha and radiation do not interact in terms of radiosensitization, anti-TNF-alpha treatment may have the potential to protect against hepatocellular injury after abdominal irradiation. However, further in vivo studies are needed to confirm that anti-TNF-alpha treatment does not compromise tumour control and actually attenuates radiation-induced liver injury.
Collapse
Affiliation(s)
- Blendi Qesaraku
- Department of Radiotherapy, University Hospital Goettingen, Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Chochi Y, Kawauchi S, Nakao M, Furuya T, Hashimoto K, Oga A, Oka M, Sasaki K. A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study. J Pathol 2009; 217:677-84. [PMID: 19097070 DOI: 10.1002/path.2491] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In accordance with cancer progression, genomic aberrations accumulate in cancer cells in a stepwise fashion. However, whether there are genomic changes linked with tumour progression remains unclarified. The purpose of this study is to elucidate the relationship between genomic alterations and clinical stages in hepatocellular carcinoma (HCC). A technology of array-based CGH using DNA chips spotted with 1440 BAC clones was applied to 42 surgically removed HCCs to examine the DNA copy number aberrations. A frequent copy number gain was detected on chromosomal regions 1q, 8q and Xq. In particular, gains of 1q42.12, 1q43 and 8q24.3 were detected in more than 65% of tumours. A frequent copy number loss was detected on chromosomal regions 1p, 4q, 6q, 8p and 17p. Losses of 8p21 and 17p13 were detected in more than 55% of HCCs. However, the DNA copy number gains of clones on 6p and 8q24.12 were more frequent in stage III/IV tumours than in stage I/II tumours (p < 0.001). In particular, the gain of the whole 6p was virtually limited to advanced-staged HCCs. The gain of the whole 6p is suggested to be a genomic marker for the late stages in HCCs. These observations therefore support the concept of genomic staging in HCC.
Collapse
Affiliation(s)
- Yasuyo Chochi
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pei Y, Zhang T, Renault V, Zhang X. An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai) 2009; 41:1-15. [PMID: 19129945 DOI: 10.1093/abbs/gmn001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly malignancies worldwide. Scientists have been studying the molecular mechanism of HCC for years, but the understanding of it remains incomplete and scattered across the literature at different molecular levels. Chromosomal aberrations, epigenetic abnormality and changes of gene expression have been reported in HCC. High-throughput omics technologies have been widely applied, aiming at the discovery of candidate biomarkers for cancer staging, prediction of recurrence and prognosis, and treatment selection. Large amounts of data on genetic and epigenetic abnormalities, gene expression profiles, microRNA expression profiles and proteomics have been accumulating, and bioinformatics is playing a more and more important role. In this paper, we review the current omics-based studies on HCC at the levels of genomics, transcriptomics and proteomics. Integrating observations from multiple aspects is an essential step toward the systematic understanding of the disease.
Collapse
Affiliation(s)
- Yunfei Pei
- TNLIST/Department of Automation, Bioinformatics and Bioinformatics Division, MOE Key Laboratory, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
34
|
Shin YB, Nam SO, Seo EJ, Kim HH, Chang CL, Lee EY, Son HC, Hwang SH. Partial trisomy 1q41 syndrome delineated by whole genomic array comparative genome hybridization. J Korean Med Sci 2008; 23:1097-101. [PMID: 19119457 PMCID: PMC2610647 DOI: 10.3346/jkms.2008.23.6.1097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 12/28/2007] [Indexed: 11/20/2022] Open
Abstract
Partial trisomy 1q syndrome is a rare chromosomal abnormality. We report on a male infant with 46,XY,der(11)t(1;11)(q41;p15.5) due to unbalanced segregation of the maternal reciprocal balanced translocation 46,XX,t(1;11)(q41;p15.5). The baby presented with a mild phenotype, characterized by a triangular face, almond-shaped eyes, low ears, short stature with relatively long legs, and mild psychomotor retardation. We utilized whole genomic array comparative genome hybridization (CGH) with 4,000 selected bacterial artificial chromosomes (BACs) to define the chromosomal breakpoints and to delineate the extent of the partial trisomy in more detail. To our knowledge, this is the first case of nearly pure "partial trisomy 1q41" defined by whole genomic array CGH.
Collapse
Affiliation(s)
- Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University, School of Medicine, Busan, Korea
| | - Sang Ook Nam
- Department of Pediatrics, Pusan National University, School of Medicine, Busan, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Busan, Korea
| | - Chulhun L. Chang
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Busan, Korea
| | - Eun-Yup Lee
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Busan, Korea
| | - Han-Chul Son
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Busan, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Pusan National University, School of Medicine, Busan, Korea
- Medical Research Institute, Pusan National University, Busan, Korea
| |
Collapse
|
35
|
Puces à ADN (CGH-array) : application pour le diagnostic de déséquilibres cytogénétiques cryptiques. ACTA ACUST UNITED AC 2008; 56:368-74. [DOI: 10.1016/j.patbio.2008.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/16/2008] [Indexed: 01/05/2023]
|
36
|
Identification of origin of unknown derivative chromosomes by array-based comparative genomic hybridization using pre- and postnatal clinical samples. J Hum Genet 2007; 52:934-942. [PMID: 17940726 DOI: 10.1007/s10038-007-0199-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/08/2007] [Indexed: 02/04/2023]
Abstract
Microarray-based comparative genomic hybridization (array CGH) is a high-resolution and comprehensive method for detecting both genome-wide and chromosome-specific copy-number imbalance. We have developed an array CGH analysis system (consisting of an array CGH chip plus its exclusive analysis software) for constitutional genetic diagnosis and have evaluated the suitability of our system for molecular diagnosis using pre- and postnatal clinical samples. In a blind study, each of the 264 sample karyotypes identified by array CGH analysis was consistent with that identified by traditional karyotype analysis--with one exception, case (47, XXX)--and we were able to identify origins, such as small supernumerary marker chromosomes, which cannot be determined by conventional cytogenetics. We also acquired very accurate, fast and reliable results using a diminutive amount of clinical samples. Taken together, the array CGH platform developed in this study is a rapid, powerful and sensitive technology for pre- and postnatal diagnosis using a very small amount of clinical sample.
Collapse
|
37
|
Park JJ, Kang JK, Hong S, Ryu ES, Kim JI, Lee JH, Seo JS. Genome-wide combination profiling of copy number and methylation offers an approach for deciphering misregulation and development in cancer cells. Gene 2007; 407:139-47. [PMID: 17997235 DOI: 10.1016/j.gene.2007.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 12/31/2022]
Abstract
Copy number changes and DNA methylation alterations are crucial to gene regulation in mammals. Recently, a number of microarray studies have been based on copy number and DNA methylation alterations in order to find clinical biomarkers of carcinogenesis. In this study, we attempted to combine profiles of copy number and methylation patterns in four human cancer cell lines using BAC microarray-based approaches and we detected several clinically important genes which showed genetic and epigenetic relationships. Within the clones analyzed, many contained cancer-related genes involved in cell cycle regulation, cell division, signal transduction, tumor necrosis, cell differentiation, and cell proliferation. One clone included the FHIT gene, a well-known tumor suppressor gene involved in various human cancers. Our combined profiling techniques may provide a method by which to find new clinicopathologic cancer biomarkers, and support the idea that systematic characterization of the genetic and epigenetic events in cancers may rapidly become a reality.
Collapse
Affiliation(s)
- Jung Jun Park
- Macrogen Inc., World Meridian Venture Center, 60-24 Gasan-dong, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|