1
|
Li J, Wang Y, Wang Z, Wei Y, Diao P, Wu Y, Wang D, Jiang H, Wang Y, Cheng J. Super-Enhancer Driven LIF/LIFR-STAT3-SOX2 Regulatory Feedback Loop Promotes Cancer Stemness in Head and Neck Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404476. [PMID: 39206755 PMCID: PMC11516160 DOI: 10.1002/advs.202404476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Super-enhancers (SEs) have been recognized as key epigenetic regulators underlying cancer stemness and malignant traits by aberrant transcriptional control and promising therapeutic targets against human cancers. However, the SE landscape and their roles during head and neck squamous cell carcinoma (HNSCC) development especially in cancer stem cells (CSCs) maintenance remain underexplored yet. Here, we identify leukemia inhibitory factor (LIF)-SE as a representative oncogenic SE to activate LIF transcription in HNSCC. LIF secreted from cancer cells and cancer-associated fibroblasts promotes cancer stemness by driving SOX2 transcription in an autocrine/paracrine manner, respectively. Mechanistically, enhancer elements E1, 2, 4 within LIF-SE recruit SOX2/SMAD3/BRD4/EP300 to facilitate LIF transcription; LIF activates downstream LIFR-STAT3 signaling to drive SOX2 transcription, thus forming a previously unknown regulatory feedback loop (LIF-SE-LIF/LIFR-STAT3-SOX2) to maintain LIF overexpression and CSCs stemness. Clinically, increased LIF abundance in clinical samples correlate with malignant clinicopathological features and patient prognosis; higher LIF concentrations in presurgical plasma dramatically diminish following cancer eradication. Therapeutically, pharmacological targeting LIF-SE-LIF/LIFR-STAT3 significantly impairs tumor growth and reduces CSC subpopulations in xenograft and PDX models. Our findings reveal a hitherto uncharacterized LIF-SE-mediated auto-regulatory loop in regulating HNSCC stemness and highlight LIF as a novel noninvasive biomarker and potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yuhan Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Ziyu Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yuxiang Wei
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yanling Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
| | - Jie Cheng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| |
Collapse
|
2
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
3
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Petersen SH, Al Badawy K, Hopkins R, Vu DL, Rahmani M, Maia SM, Connolly JE. A novel GPI-anchored dominant-negative TGF-β receptor II renders T cells unresponsive to TGF-β signaling. Mol Ther Oncolytics 2023; 31:100730. [PMID: 37829123 PMCID: PMC10565558 DOI: 10.1016/j.omto.2023.100730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine expressed by a wide range of cell types and is known for hampering the effectiveness of cancer immune cell therapeutic approaches. We have designed a novel construct containing the extracellular domain of the TGF-β receptor II linked to a glycosylphosphatidylinositol (GPI) anchor (GPI-ecto-TβRII) lacking the transmembrane and cytoplasmic signaling domain of TGF-β receptor II (TβRII). T cells transduced with lentivirus expressing the GPI-ecto-TβRII construct show 5 to 15 times higher membrane expression compared with a previously established dominant-negative receptor carrying a truncated signaling domain. GPI-ecto-TβRII expression renders T cells unresponsive to TGF-β-induced signaling seen by a lack of SMAD phosphorylation upon exogeneous TGF-β treatment. Transduced T cells continue to express high levels of IFNγ and granulocyte-macrophage colony-stimulating factor (GM-CSF), among other cytokines, in the presence of TGF-β while cytokine expression in untransduced T cells is being markedly suppressed. Furthermore, T cells expressing GPI-ecto-TβRII constructs have been shown to efficiently capture and inactivate TGF-β from their environment. These results indicate the potential benefits of GPI-ecto-TβRII expressing cytotoxic T cells (CTLs) in future cell therapies.
Collapse
Affiliation(s)
| | | | | | - Dang L. Vu
- Tessa Therapeutics, Singapore, Singapore
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | | | - Sonia M.P. Maia
- Tessa Therapeutics, Singapore, Singapore
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | - John E. Connolly
- Tessa Therapeutics, Singapore, Singapore
- Program in Translational Immunology, Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
- Department of Microbiology and Immunity, National University of Singapore, Singapore, Singapore
- Institute of Biomedical Studies, Baylor University Medical Center, Waco, TX, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
5
|
Guo Y, Xu T, Chai Y, Chen F. TGF-β Signaling in Progression of Oral Cancer. Int J Mol Sci 2023; 24:10263. [PMID: 37373414 DOI: 10.3390/ijms241210263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a common malignancy worldwide, accounting for 1.9% to 3.5% of all malignant tumors. Transforming growth factor β (TGF-β), as one of the most important cytokines, is found to play complex and crucial roles in oral cancers. It may act in a pro-tumorigenic and tumor-suppressive manner; activities of the former include cell cycle progression inhibition, tumor microenvironment preparation, apoptosis promotion, stimulation of cancer cell invasion and metastasis, and suppression of immune surveillance. However, the triggering mechanisms of these distinct actions remain unclear. This review summarizes the molecular mechanisms of TGF-β signal transduction, focusing on oral squamous cell and salivary adenoid systemic carcinomas as well as keratocystic odontogenic tumors. Both the supporting and contrary evidence of the roles of TGF-β is discussed. Importantly, the TGF-β pathway has been the target of new drugs developed in the past decade, some having demonstrated promising therapeutic effects in clinical trials. Therefore, the achievements of TGF-β pathway-based therapeutics and their challenges are also assessed. The summarization and discussion of the updated knowledge of TGF-β signaling pathways will provide insight into the design of new strategies for oral cancer treatment, leading to an improvement in oral cancer outcomes.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tiansong Xu
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| |
Collapse
|
6
|
Hanelova K, Raudenska M, Kratochvilova M, Navratil J, Vicar T, Bugajova M, Gumulec J, Masarik M, Balvan J. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles. Cell Commun Signal 2023; 21:120. [PMID: 37226246 DOI: 10.1186/s12964-023-01126-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. Many studies suggest that cancer cells release higher amounts of EVs exposing phosphatidylserine (PS) at the surface. There are lots of interconnections between EVs biogenesis and autophagy machinery. Modulation of autophagy can probably affect not only the quantity of EVs but also their content, which can deeply influence the resulting pro-tumourigenic or anticancer effect of autophagy modulators. In this study, we found that autophagy modulators autophinib, CPD18, EACC, bafilomycin A1 (BAFA1), 3-hydroxychloroquine (HCQ), rapamycin, NVP-BEZ235, Torin1, and starvation significantly alter the composition of the protein content of phosphatidylserine-positive EVs (PS-EVs) produced by cancer cells. The greatest impact had HCQ, BAFA1, CPD18, and starvation. The most abundant proteins in PS-EVs were proteins typical for extracellular exosomes, cytosol, cytoplasm, and cell surface involved in cell adhesion and angiogenesis. PS-EVs protein content involved mitochondrial proteins and signalling molecules such as SQSTM1 and TGFβ1 pro-protein. Interestingly, PS-EVs contained no commonly determined cytokines, such as IL-6, IL-8, GRO-α, MCP-1, RANTES, and GM-CSF, which indicates that secretion of these cytokines is not predominantly mediated through PS-EVs. Nevertheless, the altered protein content of PS-EVs can still participate in the modulation of the fibroblast metabolism and phenotype as p21 was accumulated in fibroblasts influenced by EVs derived from CPD18-treated FaDu cells. The altered protein content of PS-EVs (data are available via ProteomeXchange with identifier PXD037164) also provides information about the cellular compartments and processes that are affected by the applied autophagy modulators. Video Abstract.
Collapse
Affiliation(s)
- Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Peltanová B, Holcová Polanská H, Raudenská M, Balvan J, Navrátil J, Vičar T, Gumulec J, Čechová B, Kräter M, Guck J, Kalfeřt D, Grega M, Plzák J, Betka J, Masařík M. mRNA Subtype of Cancer-Associated Fibroblasts Significantly Affects Key Characteristics of Head and Neck Cancer Cells. Cancers (Basel) 2022; 14:2286. [PMID: 35565415 PMCID: PMC9102192 DOI: 10.3390/cancers14092286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) belong among severe and highly complex malignant diseases showing a high level of heterogeneity and consequently also a variance in therapeutic response, regardless of clinical stage. Our study implies that the progression of HNSCC may be supported by cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) and the heterogeneity of this disease may lie in the level of cooperation between CAFs and epithelial cancer cells, as communication between CAFs and epithelial cancer cells seems to be a key factor for the sustained growth of the tumour mass. In this study, we investigated how CAFs derived from tumours of different mRNA subtypes influence the proliferation of cancer cells and their metabolic and biomechanical reprogramming. We also investigated the clinicopathological significance of the expression of these metabolism-related genes in tissue samples of HNSCC patients to identify a possible gene signature typical for HNSCC progression. We found that the right kind of cooperation between cancer cells and CAFs is needed for tumour growth and progression, and only specific mRNA subtypes can support the growth of primary cancer cells or metastases. Specifically, during coculture, cancer cell colony supporting effect and effect of CAFs on cell stiffness of cancer cells are driven by the mRNA subtype of the tumour from which the CAFs are derived. The degree of colony-forming support is reflected in cancer cell glycolysis levels and lactate shuttle-related transporters.
Collapse
Affiliation(s)
- Barbora Peltanová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Hana Holcová Polanská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Jiří Navrátil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
| | - Tomáš Vičar
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Jaromír Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
| | - Barbora Čechová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
| | - Martin Kräter
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (D.K.); (J.P.); (J.B.)
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic;
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (D.K.); (J.P.); (J.B.)
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, 15006 Prague, Czech Republic; (D.K.); (J.P.); (J.B.)
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (B.P.); (H.H.P.); (M.R.); (J.B.); (J.N.); (J.G.); (B.Č.)
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250 Vestec, Czech Republic
| |
Collapse
|
8
|
Thariny E, Smiline Girija AM, Paramasivam A, Vijayashree Priyadharsini J. Aberrations in SMAD family of genes among HNSCC patients. Bioinformation 2021; 17:113-119. [PMID: 35291342 PMCID: PMC8900164 DOI: 10.6026/973206300171113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Head and neck cancer is a debilitating disease with several etiological factors. One of the main etiologies to be noticed is the alteration, which is either caused by genetic or environmental factors. Therefore, it is of interest to assess the effect of genetic alterations, especially the non-synonymous mutations of the SMAD gene family and its possible association with HNSCC. Data shows a significant novel mutation in the SMAD gene family in association with head and neck squamous cell carcinoma (HNSCC), which would aid in better diagnosis and treatment planning for cancer.
Collapse
Affiliation(s)
- E Thariny
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - AM Smiline Girija
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - A Paramasivam
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - J Vijayashree Priyadharsini
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
9
|
Chen L, Zhou X, Zeng T, Pan X, Zhang YH, Huang T, Fang Z, Cai YD. Recognizing Pattern and Rule of Mutation Signatures Corresponding to Cancer Types. Front Cell Dev Biol 2021; 9:712931. [PMID: 34513841 PMCID: PMC8427289 DOI: 10.3389/fcell.2021.712931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer has been generally defined as a cluster of systematic malignant pathogenesis involving abnormal cell growth. Genetic mutations derived from environmental factors and inherited genetics trigger the initiation and progression of cancers. Although several well-known factors affect cancer, mutation features and rules that affect cancers are relatively unknown due to limited related studies. In this study, a computational investigation on mutation profiles of cancer samples in 27 types was given. These profiles were first analyzed by the Monte Carlo Feature Selection (MCFS) method. A feature list was thus obtained. Then, the incremental feature selection (IFS) method adopted such list to extract essential mutation features related to 27 cancer types, find out 207 mutation rules and construct efficient classifiers. The top 37 mutation features corresponding to different cancer types were discussed. All the qualitatively analyzed gene mutation features contribute to the distinction of different types of cancers, and most of such mutation rules are supported by recent literature. Therefore, our computational investigation could identify potential biomarkers and prediction rules for cancers in the mutation signature level.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xianchao Zhou
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Ministry of Education of China, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
11
|
Haque PS, Apu MNH, Nahid NA, Islam F, Islam MR, Hasnat A, Islam MS. SMAD2 rs4940086 heterozygosity increases the risk of cervical cancer development among the women in Bangladesh. Mol Biol Rep 2020; 47:5033-5040. [PMID: 32507921 DOI: 10.1007/s11033-020-05572-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
SMAD2 is a critical signal transducer molecule in the TGFβ- SMAD pathway which is also known for its tumor suppressor role. Genetic variations in SMAD2 render cells insensitive to its anti-proliferative signals leading to tumor formation. In this study, we demonstrate the impact of single nucleotide polymorphisms (SNPs) of SMAD2 (rs4940086 and rs8085335) on cervical cancer risk development in Bangladeshi population. 132 cervical cancer patients and 98 control volunteers were enrolled in the study and genotyped utilizing polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The association between cervical cancer susceptibility and the chosen SNPs were evaluated through multiple logistic regression. SMAD2 rs4940086 heterozygous genotype (T/C) was associated with a 3.89 times higher risk of cervical cancer development (P = 0.001, AOR 3.89, 95% CI 1.777-8.513). The T/C and C/C genotypes in combination also significantly elevated cervical cancer risk (P = 0.035, AOR 1.876, 95% CI 1.047-3.364). Urban cancer patients had a significantly higher chance of carrying the rs4940086 polymorphism as compared to rural cancer patients (P = 0.045, OR 2.59 95% CI 1.02-6.59). SMAD2 rs8085335 heterozygous variant (A/G) demonstrated modest effects in increasing cervical cancer susceptibility (P = 0.594, AOR 1.247, 95% CI 0.554-2.809). Our results suggest that polymorphic variations in SMAD2, particularly rs4940086, can potentially elevate cervical cancer susceptibility in Bangladeshi women.
Collapse
Affiliation(s)
- Parsa Sanjana Haque
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Noor Ahmed Nahid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Farhana Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Reazul Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abul Hasnat
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Saiful Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
12
|
Fang WY, Kuo YZ, Chang JY, Hsiao JR, Kao HY, Tsai ST, Wu LW. The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12061375. [PMID: 32471132 PMCID: PMC7352722 DOI: 10.3390/cancers12061375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
The TGF-β type III receptor (TGFBR3) is an essential constituent of the TGF-β signaling. In this study, we observed a down-regulation of TGFBR3 in oral cancer, a subtype of head and neck cancer (HNC), and patients with low TGFBR3 had poor clinical outcomes. Ectopic expression of TGFBR3 decreased migration and invasion of oral cancer cells and lymph node metastasis of tumors, whereas depletion of TGFBR3 had the opposite effect. In SMAD4-positive OC-2 oral cancer cells, TGFBR3-mediated suppression requires both of its cytoplasmic interacting partners ARRB2 and GIPC1. We demonstrated that TGFBR3 induces the abundance of secreted angiogenin (ANG), a known pro-angiogenic factor, and ANG is essential and sufficient to mediate TGFBR3-dependent inhibition of migration and invasion of oral cancer cells. Notably, in SMAD4-deficient CAL-27 oral cancer cells, only GIPC1 is essential for TGFBR3-induced suppressive activity. Accordingly, HNC patients with low expressions of both TGFBR3 and GIPC1 had the poorest overall survival. In summary, we conclude that TGFBR3 is as a tumor suppressor via SMAD4-dependent and -independent manner in both tumor and stromal cells during oral carcinogenesis. Our study should facilitate the possibility of using TGFBR3-mediated tumor suppression for HNC treatment.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Institutes of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan;
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 43210, USA;
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-Z.K.); (J.-R.H.)
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (S.-T.T.); (L.-W.W.); Tel.: +886-6-2353535 (ext. 5315) (S.-T.T.); +886-6-2353535 (ext. 3618) (L.-W.W.); Fax: +886-6-2095845 (L.-W.W.)
| |
Collapse
|
13
|
Lin LH, Chang KW, Cheng HW, Liu CJ. SMAD4 Somatic Mutations in Head and Neck Carcinoma Are Associated With Tumor Progression. Front Oncol 2019; 9:1379. [PMID: 31867281 PMCID: PMC6909744 DOI: 10.3389/fonc.2019.01379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
As the incidence and the mortality rate of head and neck squamous cell carcinoma (HNSCC) is increasing worldwide, gaining knowledge about the genomic changes which happen in the carcinogenesis of HNSCC is essential for the diagnosis and therapy of the disease. SMAD4 (DPC4) is a tumor suppressor gene. It is located at chromosome 18q21.1 and a member of the SMAD family. Which mediates the TGF-β signaling pathway, thereby controlling the growth of epithelial cells. In the study presented here, we analyzed tumor samples by multiplex PCR-based next-generation sequencing (NGS) and found deleterious mutations of SMAD4 in 4.1% of the tumors. Knock-down experiments of endogenous and exogenous SMAD4 expression demonstrated that SMAD4 is involved in the migration and invasion of HNSCC cells. Functional analysis of a missense mutation in the MH1 domain of SMAD4 may be responsible for the loss of function in suppressing tumor progression. Missense SMAD4 mutations, therefore, could be useful prognostic determinants for patients affected by HNSCCs. This report is the first study where NGS analysis based on multiplex-PCR is used to demonstrate the imminent occurrence of missense SMAD4 mutations in HNSCC cells. The gene analysis that we performed may support the identification of SMAD4 mutations as a diagnostic marker or even as a potential therapeutic target in head and neck cancer. Moreover, the analytic strategy proposed for the detection of mutations in the SMAD4 gene may be validated as a platform to assist mutation screening.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Bu W, Wang Z, Meng L, Li X, Liu X, Chen Y, Xin Y, Li B, Sun H. Disulfiram inhibits epithelial-mesenchymal transition through TGFβ-ERK-Snail pathway independently of Smad4 to decrease oral squamous cell carcinoma metastasis. Cancer Manag Res 2019; 11:3887-3898. [PMID: 31118804 PMCID: PMC6504671 DOI: 10.2147/cmar.s199912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/07/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Smad4 loss is highly related to poor prognosis and decreased patient survival in oral squamous cell carcinoma (OSCC), suggesting that agents that target both Smad4-mutated and Smad4 wild-type cells could treat OSCC more effectively. Disulfiram (Dsf) has anticancer activity through a variety of mechanisms, including inhibition of epithelial–mesenchymal transition (EMT). It remains unclear whether Dsf has the same effect on Smad4-mutated and Smad4 wild-type OSCC or not and what mechanism is involved. Methods: Effect of Dsf on TGFβ1-induced EMT in CAL27 (Smad4 mutation) and SCC25 (Smad4 wild-type) cells were evaluated through analyzing changes in morphology, expression of EMT markers, and migration and invasion of cells. The ERK-pathway inhibitor U0126 was used to confirm TGFβ–ERK–Snail pathway–mediated cell behavior. Dsf’s effects on tumor growth and metastasis in vivo were examined through a subcutaneous xenograft mouse model and an intravenous tumor mouse model. Results: Dsf inhibited TGFβ1-induced EMT through suppression of morphological change, EMT-marker expression, and cell migration and invasion in both CAL27 and SCC25. Phosphorylation of ERK and expression of Snail were blocked by Dsf treatment. Like Dsf, U0126 had a similar effect on EMT of CAL27 and SCC25. Dsf also reduced tumor growth and metastasis in vivo, accompanied by decreased expression of EMT markers in tumors. Conclusion: These results indicated that Dsf inhibited EMT of OSCC in vitro and in vivo independently of Smad4 through suppression of the TGFβ–ERK–Snail pathway, suggesting the broad-spectrum anticancer potential of Dsf for clinical use against OSCC.
Collapse
Affiliation(s)
- Wenhuan Bu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| | - Zilin Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| | - Lin Meng
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| | - Xing Li
- School and Hospital of Stomatology, China Medical University, 110000 Shenyang, People's Republic of China
| | - Xinchen Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| | - Yumeng Chen
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| | - Ying Xin
- Department of Oral Pathology, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, People's Republic of China
| | - Baoquan Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 130000 Changchun, People's Republic of China
| |
Collapse
|
15
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Nariman-Saleh-Fam Z, Saadatian Z, Daraei A, Mansoori Y, Bastami M, Tavakkoli-Bazzaz J. The intricate role of miR-155 in carcinogenesis: potential implications for esophageal cancer research. Biomark Med 2019; 13:147-159. [PMID: 30672305 DOI: 10.2217/bmm-2018-0127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MiRNAs have immerged as essential modulators of key cellular procuresses involved in post-transcriptional regulation of the human transcriptome. They are essential components of complex regulatory networks that modulate most important physiological functions of cells. MicroRNA-155 (miR-155) is a multifaceted regulator of cell proliferation, cell cycle, development, immunity and inflammation that plays pivotal, and sometimes contradictory, roles in numerous cancers including esophageal cancer. Here, we review the intricate role of miR-155 in cancer by exemplifying carcinogenesis of various tumors, focusing on recent findings that may provide a link between miR-155 and esophageal cancer-related pathways.
Collapse
Affiliation(s)
- Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Tavakkoli-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Hernandez AL, Wang Y, Somerset HL, Keysar SB, Aisner DL, Marshall C, Bowles DW, Karam SD, Raben D, Jimeno A, Varella-Garcia M, Wang XJ. Inter- and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinomas. Mol Carcinog 2019; 58:666-673. [PMID: 30575147 DOI: 10.1002/mc.22958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/15/2018] [Indexed: 12/16/2022]
Abstract
Reports regarding the frequency of SMAD4 loss in human head and neck squamous cell carcinoma (HNSCC) vary significantly. We have shown that SMAD4 deletion contributes to HNSCC initiation and progression. Therefore, accurately detecting genetic SMAD4 loss is critical to determine prognosis and therapeutic interventions in personalized medicine. We developed a SMAD4 fluorescence in situ hybridization (FISH) assay to identify chromosomal SMAD4 loss at the single cell level of primary HNSCC specimens and patient derived xenograft (PDX) tumors derived from HNSCCs. SMAD4 heterozygous loss was detected in 35% of primary HNSCCs and 41.3% of PDX tumors. Additionally, 4.3% of PDX tumors had SMAD4 homozygous loss. These frequencies of SMAD4 loss were similar to those in The Cancer Genome Atlas (TCGA). However, we identified significant heterogeneities of SMAD4 loss (partial or complete) among cells within each tumor. We also found that aneuploidy (monosomy and polysomy) contributed greatly to how to define chromosomal SMAD4 deletion. Furthermore, in cultured PDX tumors, SMAD4 mutant cells outcompeted SMAD4 wildtype cells, resulting in establishing homogenous SMAD4 mutant HNSCC cell lines with partial or complete genomic SMAD4 loss, suggesting a survival advantage of SMAD4 mutant cells. Taken together, our study reveals inter- and intra-tumor heterogeneities of SMAD4 chromosomal loss in HNSCCs. Further, SMAD4 FISH assay provides a platform for future clinical diagnosis of SMAD4 chromosomal loss that potentially serves as a molecular marker for prognosis and therapeutic intervention in cancer patients.
Collapse
Affiliation(s)
- Ariel L Hernandez
- Department of Pathology, School of Medicine, Molecular Biology Program, Medical Scientist Training Program, University of Colorado, Aurora, Colorado
| | - Ying Wang
- University of Colorado Cancer Center, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado, Aurora, Colorado
| | - Hilary L Somerset
- Department of Pathology, School of Medicine, Molecular Biology Program, Medical Scientist Training Program, University of Colorado, Aurora, Colorado
| | - Stephen B Keysar
- Department of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Dara L Aisner
- Department of Pathology, School of Medicine, Molecular Biology Program, Medical Scientist Training Program, University of Colorado, Aurora, Colorado
| | - Carrie Marshall
- Department of Pathology, School of Medicine, Molecular Biology Program, Medical Scientist Training Program, University of Colorado, Aurora, Colorado
| | - Daniel W Bowles
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Antonio Jimeno
- Department of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Marileila Varella-Garcia
- University of Colorado Cancer Center, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado, Aurora, Colorado
- Department of Medical Oncology, University of Colorado, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, Molecular Biology Program, Medical Scientist Training Program, University of Colorado, Aurora, Colorado
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
18
|
The EGFR Inhibitor Gefitinib Enhanced the Response of Human Oral Squamous Cell Carcinoma to Cisplatin In Vitro. Drugs R D 2018; 17:545-555. [PMID: 28828595 PMCID: PMC5694417 DOI: 10.1007/s40268-017-0204-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction The epidermal growth factor receptor (EGFR) is highly expressed in a variety of solid tumors including oral cavity squamous cell carcinoma (OSCC) and has been implicated in the resistance of these tumors to cisplatin. This study was performed to determine if the EGFR tyrosine kinase inhibitor gefitinib could enhance the cytotoxic effect of cisplatin on OSCC cells in vitro. Methods The expression of EGFR and the phosphorylation of its downstream signaling to ERK, and AKT pathway were detected by Western blotting. Cell proliferation and survival were determined by AlamarBlue and colony formation assay respectively. Cells apoptosis were determined by Western blotting for cleaved PARP protein and by flowcytometry of cells stained with Annexin V and PI. Results Cal27, OSC19, and SCC25 cells treated with gefitinib 1 μM demonstrated reduced phosphorylation of EGFR, AKT, and ERK proteins with very limited inhibition of proliferation. Cisplatin inhibited proliferation of the same cell lines in a dose-dependent manner. The concentration producing 50% inhibition (IC50) for cisplatin decreased in the presence of gefitinib 1 μM, and a combination of cisplatin 5 µM and gefitinib 1 µM caused synergistic growth inhibition and synergistic reduction in cell survival. The growth inhibitory effect of the combination was associated with reduced ERK and AKT activation, increased poly ADP ribose polymerase (PARP) cleavage, and increased apoptosis. Conclusion Thus, in OSCC cells in vitro, inhibition of EGFR activity with gefitinib enhances the apoptotic effect of cisplatin. This has potential implications for enhancement of cisplatin effectiveness in tumors that over-express the EGFR.
Collapse
|
19
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:98-105. [PMID: 29206939 PMCID: PMC5846704 DOI: 10.1093/abbs/gmx127] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey J Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Immunohistochemical Study of TGF-β1 in Oral Leukoplakia and Oral Squamous Cell Carcinoma: Correlations Between Clinicopathologic Factors and Overall Survival. Appl Immunohistochem Mol Morphol 2017; 25:651-659. [DOI: 10.1097/pai.0000000000000355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Zhang T, Zhang D. Integrating omics data and protein interaction networks to prioritize driver genes in cancer. Oncotarget 2017; 8:58050-58060. [PMID: 28938536 PMCID: PMC5601632 DOI: 10.18632/oncotarget.19481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Although numerous approaches have been proposed to discern driver from passenger, identification of driver genes remains a critical challenge in the cancer genomics field. Driver genes with low mutated frequency tend to be filtered in cancer research. In addition, the accumulation of different omics data necessitates the development of algorithmic frameworks for nominating putative driver genes. In this study, we presented a novel framework to identify driver genes through integrating multi-omics data such as somatic mutation, gene expression, and copy number alterations. We developed a computational approach to detect potential driver genes by virtue of their effect on their neighbors in network. Application to three datasets (head and neck squamous cell carcinoma (HNSC), thyroid carcinoma (THCA) and kidney renal clear cell carcinoma (KIRC)) from The Cancer Genome Atlas (TCGA), by comparing the Precision, Recall and F1 score, our method outperformed DriverNet and MUFFINN in all three datasets. In addition, our method was less affected by protein length compared with DriverNet. Lastly, our method not only identified the known cancer genes but also detected the potential rare drivers (PTPN6 in THCA, SRC, GRB2 and PTPN6 in KIRC, MAPK1 and SMAD2 in HNSC).
Collapse
Affiliation(s)
- Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Di Zhang
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
23
|
Hoesli RC, Ludwig ML, Michmerhuizen NL, Rosko AJ, Spector ME, Brenner JC, Birkeland AC. Genomic sequencing and precision medicine in head and neck cancers. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2017; 43:884-892. [PMID: 28034498 PMCID: PMC5393934 DOI: 10.1016/j.ejso.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a common and deadly disease. Historically, surgical and chemoradiation treatments have been met with modest success, and understanding of genetic drivers of HNSCC has been limited. With recent next generation sequencing studies focused on HNSCC, we are beginning to understand the genetic landscape of HNSCCs and are starting to identify and advance targeted options for patients. In this review, we describe current knowledge and recent advances in sequencing studies of HNSCC, discuss current limitations and future directions for further genomic analysis, and highlight the translational advances being undertaken to treat this important disease.
Collapse
Affiliation(s)
- R C Hoesli
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M L Ludwig
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - N L Michmerhuizen
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - A J Rosko
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M E Spector
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - J C Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - A C Birkeland
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Lee JH, Kim SS, Lee HS, Hong S, Rajasekaran N, Wang LH, Choi JS, Shin YK. Upregulation of SMAD4 by MZF1 inhibits migration of human gastric cancer cells. Int J Oncol 2016; 50:272-282. [PMID: 27922669 DOI: 10.3892/ijo.2016.3793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
SMAD4 is a tumor suppressor that is frequently inactivated in many types of cancer. The role of abnormal expression of SMAD4 has been reported in developmental processes and the progression of various human cancers. The expression level of SMAD4 has been related to the survival rate in gastric cancer patients. However, the molecular mechanism underlying transcriptional regulation of SMAD4 remains largely unknown. In the present study, we characterized the promoter region of SMAD4 and identified myeloid zinc finger 1 (MZF1), as a putative transcription factor. MZF1 directly bound to a core region of the SMAD4 promoter and stimulated transcriptional activity. We also found that the expression of MZF1 influences the migration ability of gastric adenocarcinoma cells. Collectively, our results showed that MZF1 has a role in cellular migration of gastric cancer cells via promoting an increase in intracellular SMAD4 levels. This study might provide new evidence for the molecular basis of the tumor suppressive effect of the MZF1-SMAD4 axis, a new therapeutic target in advanced human gastric cancer.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Su Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sungyoul Hong
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Nirmal Rajasekaran
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Li-Hui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Joon-Seok Choi
- Department of Pharmaceutical Microbiology, College of Pharmacy, Catholic University, Daegu, Republic of Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Candia J. TGF-ß alterations in oral squamous cell carcinoma. Narrative review. JOURNAL OF ORAL RESEARCH 2016. [DOI: 10.17126/joralres.2016.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Abstract
In spite of a rapidly expanding understanding of head and neck tumor biology and optimization of radiation, chemotherapy, and surgical treatment modalities, head and neck squamous cell carcinoma (HNSCC) remains a major cause of cancer-related morbidity and mortality. Although our biologic understanding of these tumors had largely been limited to pathways driving proliferation, survival, and differentiation, the identification of HPV as a major driver of HNSCC and genomic sequencing analyses has dramatically influenced our understanding of tumor biology and approach to therapy. Here, we summarize molecular aspects of HNSCC biology and identify promising areas for potential diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, Wexner Medical Center, James Cancer Hospital, Solove Research Institute, The Ohio State University, 320 West 10th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Chen C, Zhang Y, Loomis MM, Upton MP, Lohavanichbutr P, Houck JR, Doody DR, Mendez E, Futran N, Schwartz SM, Wang P. Genome-Wide Loss of Heterozygosity and DNA Copy Number Aberration in HPV-Negative Oral Squamous Cell Carcinoma and Their Associations with Disease-Specific Survival. PLoS One 2015; 10:e0135074. [PMID: 26247464 PMCID: PMC4527746 DOI: 10.1371/journal.pone.0135074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/17/2015] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell cancer of the oral cavity and oropharynx (OSCC) is associated with high case-fatality. For reasons that are largely unknown, patients with the same clinical and pathologic staging have heterogeneous response to treatment and different probability of recurrence and survival, with patients with Human Papillomavirus (HPV)-positive oropharyngeal tumors having the most favorable survival. To gain insight into the complexity of OSCC and to identify potential chromosomal changes that may be associated with OSCC mortality, we used Affymtrix 6.0 SNP arrays to examine paired DNA from peripheral blood and tumor cell populations isolated by laser capture microdissection to assess genome-wide loss of heterozygosity (LOH) and DNA copy number aberration (CNA) and their associations with risk factors, tumor characteristics, and oral cancer-specific mortality among 75 patients with HPV-negative OSCC. We found a highly heterogeneous and complex genomic landscape of HPV-negative tumors, and identified regions in 4q, 8p, 9p and 11q that seem to play an important role in oral cancer biology and survival from this disease. If confirmed, these findings could assist in designing personalized treatment or in the creation of models to predict survival in patients with HPV-negative OSCC.
Collapse
Affiliation(s)
- Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Yuzheng Zhang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melissa M. Loomis
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melissa P. Upton
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Pawadee Lohavanichbutr
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John R. Houck
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David R. Doody
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eduardo Mendez
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Neal Futran
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Stephen M. Schwartz
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Pei Wang
- Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genetics and Genomics Sciences, Mt. Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
28
|
Cytoplasmic DRAK1 overexpressed in head and neck cancers inhibits TGF-β1 tumor suppressor activity by binding to Smad3 to interrupt its complex formation with Smad4. Oncogene 2014; 34:5037-45. [PMID: 25531329 DOI: 10.1038/onc.2014.423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an extremely aggressive cancer with a poor prognosis and low patient survival. Because chemotherapy for advanced HNSCC is often ineffective, discovering new therapeutic targets that are important for HNSCC development and progression and elucidating their molecular mechanisms are required. In the present study, we describe the role of DRAK1 (death-associated protein kinase-related apoptosis-inducing kinase 1) as a novel negative regulator of the transforming growth factor-β (TGF-β) tumor suppressor signaling pathway for the first time in human HNSCC cells. DRAK1 was significantly overexpressed in primary human HNSCCs and in HNSCC cell lines. Through gain- and loss-of-function experiments, we demonstrated that the DRAK1 expression level regulated TGF-β1-induced transcriptional activity and expression of the tumor suppressor gene p21(Waf1/Cip1). DRAK1 depletion enhanced TGF-β1-induced growth inhibition in vitro and suppressed tumorigenicity in xenograft models in vivo. Mechanistically, DRAK1 was predominantly localized in the cytoplasm and bound to Smad3, thereby interrupting Smad3/Smad4 complex formation, which is the core process for the induction of tumor suppressor genes by TGF-β1. Thus, our findings suggest that cytoplasmic DRAK1 increases tumorigenic potential through inhibition of TGF-β1-mediated tumor suppressor activity in HNSCC cells and may be a potential therapeutic target for HNSCCs.
Collapse
|
29
|
Osafi J, Hejazi A, Stutz DD, Keiserman MA, Bergman CJ, Kingsley K. Differential Effects of 1,25-dihydroxyvitamin D3on Oral Squamous Cell Carcinomas In Vitro. J Diet Suppl 2014; 11:145-54. [DOI: 10.3109/19390211.2013.859209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 2013; 19:421-8. [PMID: 23475202 PMCID: PMC3780964 DOI: 10.1038/nm.3118] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
We report that K5.Smad7 mice, which express Smad7 transgene by a keratin-5 promoter, were resistant to radiation-induced oral mucositis, a painful oral ulceration. In addition to NF-κB activation known to contribute to oral mucositis, we found activated TGF-β signaling in oral mucositis. Smad7 dampened both pathways to attenuate inflammation, growth inhibition and apoptosis. Additionally, Smad7 promoted oral epithelial migration to close the wound. Further analyses revealed that TGF-β signaling Smads and their co-repressor CtBP1 transcriptionally repressed Rac1, and Smad7 abrogated this repression. Knocking down Rac1 in mouse keratinocytes abrogated Smad7-induced migration. Topically applying Smad7 protein with a cell permeable Tat-tag (Tat-Smad7) to oral mucosa showed preventive and therapeutic effects on radiation-induced oral mucositis in mice. Thus, we have identified novel molecular mechanisms involved in oral mucositis pathogenesis and our data suggest an alternative therapeutic strategy to block multiple pathological processes of oral mucositis.
Collapse
|
31
|
Carneiro NK, Oda JMM, Losi Guembarovski R, Ramos G, Oliveira BV, Cavalli IJ, de S. F. Ribeiro EM, Gonçalves MSB, Watanabe MAE. Possible association between TGF-β1 polymorphism and oral cancer. Int J Immunogenet 2013; 40:292-8. [DOI: 10.1111/iji.12037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 01/29/2023]
Affiliation(s)
- N. K. Carneiro
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| | - J. M. M. Oda
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| | - R. Losi Guembarovski
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| | - G. Ramos
- Service of Head and Neck; Erasto Gaertner Hospital; Curitiba; PR; Brazil
| | - B. V. Oliveira
- Service of Head and Neck; Erasto Gaertner Hospital; Curitiba; PR; Brazil
| | - I. J. Cavalli
- Department of Genetic; Human Cytogenetic and Oncogenetic Laboratory; Federal University of Parana; Curitiba; PR; Brazil
| | - E. M. de S. F. Ribeiro
- Department of Genetic; Human Cytogenetic and Oncogenetic Laboratory; Federal University of Parana; Curitiba; PR; Brazil
| | - M. S. B. Gonçalves
- Laboratory of Histocompatibility; State University of Londrina; Londrina; PR; Brazil
| | - M. A. E. Watanabe
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| |
Collapse
|
32
|
Wittekindt C, Wagner S, Mayer CS, Klussmann JP. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2012; 11:Doc09. [PMID: 23320061 PMCID: PMC3544207 DOI: 10.3205/cto000091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Head and Neck Squamous Cell Carcinomas (HNSCC) are the 6(th) most common cancers worldwide. While incidence rates for cancer of the hypopharynx and larynx are decreasing, a significant increase in cancer of the oropharynx (OSCC) is observed. Classical risk factors for HNSCC are smoking and alcohol. It has been shown for 25 to 60% of OSCC to be associated with an infection by oncogenic human papilloma viruses (HPV). The development of "common" cancer of the head and neck is substantially enhanced by an accumulation of genetic changes, which lead to an inactivation of tumor suppressor genes or activation of proto-oncogenes. A more or less uniform sequence of different DNA-damages leads to genetic instability. In this context, an early and frequent event is deletion on the short arm of chromosome 9, which results in inactivation of the p16-gene. In contrast, for HPV-induced carcinogenesis, expression of the viral proteins E6 and E7 is most important, since they lead to inactivation of the cellular tumor-suppressor-proteins p53 and Rb. The natural route of transoral infection is a matter of debate; peroral HPV-infections might be frequent and disappear uneventfully in most cases. Smoking seems to increase the probability for developing an HPV-associated OSCC. The association of HNSCC with HPV can be proven with established methods in clinical diagnostics. In addition to classical prognostic factors, diagnosis of HPV-association may become important for selection of future therapies. Prognostic relevance of HPV probably surmounts many known risk-factors, for example regional metastasis. Until now, no other molecular markers are established in clinical routine. Future therapy concepts may vary for the two subgroups of patients, particularly patients with HPV-associated OSCC may take advantage of less aggressive treatments. Finally, an outlook will be given on possible targeted therapies.
Collapse
Affiliation(s)
- Claus Wittekindt
- University Hospital Giessen and Marburg, Department of Otorhinolaryngology, Head and Neck Surgery, Giessen, Germany
| | | | | | | |
Collapse
|
33
|
Karathanasi V, Tosios KI, Nikitakis NG, Piperi E, Koutlas I, Trimis G, Sklavounou A. TGF-β1, Smad-2/-3, Smad-1/-5/-8, and Smad-4 signaling factors are expressed in ameloblastomas, adenomatoid odontogenic tumors, and calcifying cystic odontogenic tumors: an immunohistochemical study. J Oral Pathol Med 2012; 42:415-23. [PMID: 23157422 DOI: 10.1111/jop.12016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The TGF-β/Smad signaling pathway regulates diverse cellular functions, including tooth development, and is involved in numerous pathological processes such as tumorigenesis. The aim of this study was to investigate the immunoexpression of the TGF-β/Smad signaling pathway members in ameloblastoma (AM), calcifying cystic odontogenic tumor (CCOT), and adenomatoid odontogenic tumor (AOT). MATERIALS AND METHODS This retrospective cross-sectional study included 65 tissue specimens: 34 AMs, 13 CCOTs, and 18 AOTs. Serial sections were immunohistochemically stained with TGF-β1, Smad-4, Smad-1/-5/-8, and Smad-2/-3 antibodies, and a semiquantitative measurement of the positive cells was carried out by two oral pathologists using a 0-3 scale (0: no immunoreactivity, 1: <20% positive cells, 2: 20-50% positive cells, 3: >50% positive cells). RESULTS All biomarkers studied were found significantly decreased in AM compared to CCOT and AOT. AOT and CCOT expressed Smad-1/-5/-8 more strongly compared to AM (OR = 11.66, P < 0.001 and OR = 5.34, P = 0.013, respectively), and Smad-2/-3 immunostaining was found significantly increased in CCOT (OR = 10.42, P = 0.001) and AOT (OR = 5.16, P < 0.004) compared to AM. Similarly, Smad-4 was expressed more strongly in AOT and CCOT compared to AM (P = 0.001), while AOT demonstrated a fivefold higher chance to express TGF-β1 compared to AM (P = 0.011). CONCLUSION TGF-β/Smad signaling pathway is activated in AM, AOT, and CCOT. The statistically significant reduced TGF-β1/Smad immunoexpression in AM compared to AOT/CCOT could be associated with the more aggressive biological behavior of AM including increased cell proliferation and reduced apoptosis and differentiation. Thus, the biomarkers TGF-β, Smad-4, Smad-1/-5/-8, and Smad-2/-3 could serve as supplementary diagnostic indices between odontogenic tumors of high and low neoplastic dynamics.
Collapse
Affiliation(s)
- Vasiliki Karathanasi
- Department of Oral Pathology and Medicine, Dental School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rothenberg SM, Ellisen LW. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 2012; 122:1951-7. [PMID: 22833868 DOI: 10.1172/jci59889] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a relatively common human cancer characterized by high morbidity, high mortality, and few therapeutic options outside of surgery, standard cytotoxic chemotherapy, and radiation. Although the most important risk factors are tobacco use and alcohol consumption, the disease is also linked to infection with high-risk types of human papilloma viruses (HPVs). Recent genetic analyses have yielded new insights into the molecular pathogenesis of this disease. Overall, while somatic activating mutations within classical oncogenes including PIK3CA and RAS occur in HNSCC, they are relatively uncommon. Instead genetic data point to a contribution of multiple tumor suppressor pathways, including p53, Rb/INK4/ARF, and Notch, in tumor initiation, progression, and maintenance. The increasingly refined knowledge of HNSCC genetics, combined with ever-more-sophisticated animal models and newer drug targeting strategies, should promote novel therapeutic approaches and improved disease outcomes.
Collapse
Affiliation(s)
- S Michael Rothenberg
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
35
|
Chen YK, Huang AHC, Cheng PH, Yang SH, Lin LM. Overexpression of Smad proteins, especially Smad7, in oral epithelial dysplasias. Clin Oral Investig 2012; 17:921-32. [PMID: 22669485 DOI: 10.1007/s00784-012-0756-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/14/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Transforming growth factor β, via membrane-bound receptors and downstream Smad2-4, 7, can modulate tumorigenesis. Smad2 and Smad3 heterodimerize with Smad4, and the complex migrates to the nucleus to regulate the expression of target genes. Smad7 is a key negative regulator of this signaling pathway. This study aimed to examine Smad2-4, 7 expression and phosphorylated Smad2-3 (p-Smad2-3) in oral epithelial dysplasia and compared it with normal oral mucosa, hyperkeratosis/epithelial hyperplasia and squamous cell carcinoma (SCC). MATERIALS AND METHODS Immunohistochemical staining of Smad2-4, 7 and p-Smad2-3, was performed for 75 samples of human oral mucosa, including hyperkeratosis/epithelial hyperplasia (n = 20), mild epithelial dysplasia (n = 11), moderate to severe epithelial dysplasia (n = 11), and SCC (n = 43). Normal buccal mucosa samples (n = 9) were also included. RESULTS A significant increase in Smad7 expression was observed in the ascending order of samples of normal oral mucosa, hyperkeratosis/epithelial hyperplasia/mild oral epithelial dysplasia, moderate to severe oral epithelial dysplasia, and well-differentiated oral SCC/moderately to poorly differentiated oral SCC. Additionally, significant increases in Smad7 expression were noted as compared with expression of Smad2-4 and p-Smad2-3 in lesions of hyperkeratosis/epithelial hyperplasia, mild oral epithelial dysplasia, moderate to severe oral epithelial dysplasia, well-differentiated oral SCC, and moderately to poorly differentiated oral SCC. CONCLUSIONS Our results indicate that Smad proteins, particularly Smad7, in oral epithelial dysplasia and SCC could contribute to the attenuation of Smads anti-proliferative signaling in cancer development. CLINICAL RELEVANCE Smad7 could be a marker for risk of malignant transformation of oral epithelial dysplasia.
Collapse
Affiliation(s)
- Yuk-Kwan Chen
- Division of Oral Pathology and Diagnosis, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Qiu W, Sahin F, Iacobuzio-Donahue CA, Garcia-Carracedo D, Wang WM, Kuo CY, Chen D, Arking DE, Lowy AM, Hruban RH, Remotti HE, Su GH. Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget 2012; 2:862-73. [PMID: 22113502 PMCID: PMC3259996 DOI: 10.18632/oncotarget.357] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inactivation of tumor suppressor gene p16/INK4A and oncogenic activation of KRAS occur in almost all pancreatic cancers. To better understand the roles of p16 in pancreatic tumorigenesis, we created a conditional p16 knockout mouse line (p16flox/flox), in which p16 is specifically disrupted in a tissue-specific manner without affecting p19/ARF expression. p16flox/flox; LSL-KrasG12D; Pdx1-Cre mice developed the full spectrum of pancreatic intraepithelial neoplasia (mPanIN) lesions, pancreatic ductal adenocarcinoma (PDA), and metastases were observed in all the mice. Here we report a mouse model that simulates human pancreatic tumorigenesis at both genetic and histologic levels and is ideal for studies of metastasis. During the progression from primary tumors to metastases, the wild-type allele of Kras was progressively lost (loss of heterozygosity at Kras or LOH at Kras) in p16flox/flox; LSL- KrasG12D; Pdx1-Cre mice. These observations suggest a role for Kras beyond tumor initiation. In vitro assays performed with cancer cell lines derived from primary pancreatic tumors of these mice showed that cancer cells with LOH at Kras exhibited more aggressive phenotypes than those retained the wild-type Kras allele, indicating that LOH at Kras can provide cancer cells functional growth advantages and promote metastasis. Increased LOH at KRAS was also observed in progression of human pancreatic primary tumors to metastases, again supporting a role for the KRAS gene in cancer metastasis. This finding has potential translational implications- future KRAS target therapies may need to consider targeting oncogenic KRAS specifically without inhibiting wild-type KRAS function.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Otolaryngology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moody M, Le O, Rickert M, Manuele J, Chang S, Robinson G, Hajibandeh J, Silvaroli J, Keiserman MA, Bergman CJ, Kingsley K. Folic acid supplementation increases survival and modulates high risk HPV-induced phenotypes in oral squamous cell carcinoma cells and correlates with p53 mRNA transcriptional down-regulation. Cancer Cell Int 2012; 12:10. [PMID: 22443202 PMCID: PMC3340312 DOI: 10.1186/1475-2867-12-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the primary risk factors for developing oral cancers are well understood, less is known about the relationship among the secondary factors that may modulate the progression of oral cancers, such as high-risk human papillomavirus (HPV) infection and folic acid (FA) supplementation. This study examined high-risk HPV and FA supplementation effects, both singly and in combination, to modulate the proliferative phenotypes of the oral cancer cell lines CAL27, SCC25 and SCC15. RESULTS Using a comprehensive series of integrated in vitro assays, distinct effects of HPV infection and FA supplementation were observed. Both high-risk HPV strains 16 and 18 induced robust growth-stimulating effects in CAL27 and normal HGF-1 cells, although strain-specific responses were observed in SCC25 and SCC15 cells. Differential effects were also observed with FA administration, which significantly altered the growth rate of the oral cancer cell lines CAL27, SCC15, and SCC25, but not HGF-1 cells. Unlike HPV, FA administration induced broad, general increases in cell viability among all cell lines that were associated with p53 mRNA transcriptional down-regulation. None of these cell lines were found to harbor the common C677T mutation in methylenetetrahydrofolate reductase (MTHFR), which can reduce FA availability and may increase oral cancer risk. CONCLUSION Increased FA utilization and DNA hypermethylation are common features of oral cancers, and in these cell lines, specifically. The results of this study provide further evidence that FA antimetabolites, such as Fluorouracil (f5U or 5-FU) and Raltitrexed, may be alternative therapies for tumors resistant to other therapies. Moreover, since the incidence of oral HPV infection has been increasing, and can influence oral cancer growth, the relationship between FA bioavailability and concomitant HPV infection must be elucidated. This study is among the first pre-clinical studies to evaluate FA- and HPV-induced effects in oral cancers, both separately and in combination, which provides additional rationale for clinical screening of HPV infection prior to treatment.
Collapse
Affiliation(s)
- Michael Moody
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett 2012; 586:1984-92. [PMID: 22321641 DOI: 10.1016/j.febslet.2012.01.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
TGFβ signaling Smads (Smad2, 3, and 4) were suspected tumor suppressors soon after their discovery. Nearly two decades of research confirmed this role and revealed other divergent and cancer-specific functions including paradoxical tumor promotion effects. Although Smad4 is the most potent tumor suppressor, its functions are highly context-specific as exemplified by pancreatic cancer and head-and-neck cancer: in pancreatic cancer, Smad4 loss cannot initiate tumor formation but promotes metastases while in head-and-neck cancer Smad4 loss promotes cancer progression but also initiates tumor formation, likely through effects on genomic instability. The differing consequences of impaired Smad signaling in human cancers and the molecular mechanisms that underpin these differences will have important implications for the design and application of novel targeted therapies.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
39
|
Xie W, Aisner S, Baredes S, Sreepada G, Shah R, Reiss M. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck 2012; 35:76-85. [PMID: 22275186 DOI: 10.1002/hed.22924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2011] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND We postulated that disruptions of the canonical transforming growth factor-beta (TGF-β)/Smad signaling pathway might contribute to the development of head and neck squamous cell carcinoma (HNSCC). METHODS A cohort of 798 HNSCC tumor samples from 346 patients were analyzed by immunohistochemistry (IHC) to define the pattern of expression of (phospho)Smad2, (phospho)Smad3, and Smad4. RESULTS We found that 19%, 40%, and 12% of HNSCC specimens failed to express pSmad2, pSmad3, or Smad4, respectively. Loss of Smad2/3 activation was observed in 8.5% of specimens. In addition, 4% of specimens failed to express only Smad4. Moreover, patients with pSmad2/3-negative tumors had a significantly better overall survival than that of those whose tumors expressed activated Smad2/3. In contrast, loss of Smad4 expression did not have prognostic significance. CONCLUSION Our results indicate that HNSCC in which Smad2/3 are inactivated or in which Smad4 expression is lost represent 2 distinct tumor subtypes with different clinical outcomes.
Collapse
Affiliation(s)
- Wen Xie
- Department of Internal Medicine, UMDNJ-Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
40
|
Han G, Wang XJ. Roles of TGFβ signaling Smads in squamous cell carcinoma. Cell Biosci 2011; 1:41. [PMID: 22204491 PMCID: PMC3285038 DOI: 10.1186/2045-3701-1-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
Smad proteins are classified in different groups based on their functions in mediating transforming growth factor β (TGFβ) superfamily components. Smad1/5/8 mainly mediate bone morphogenetic proteins (BMP) pathway and Smad2/3 mainly mediate TGFβ pathway. Smad4 functions as common Smad to mediate both pathways. Previous studies showed many members of TGFβ superfamily play a role in carcinogenesis. The current review focuses on the role of TGFβ signaling Smads in squamous cell carcinomas (SCCs). TGFβ signaling inhibits early tumor development, but promotes tumor progression in the late stage. Although Smad2, Smad3 and Smad4 are all TGFβ signaling Smads, they play different roles in SCCs. Genetically, Smad2 and Smad4 are frequently mutated or deleted in certain human cancers whereas Smad3 mutation or deletion is infrequent. Genetically engineered mouse models with these individual Smad deletions have provided important tools to identify their diversified roles in cancer. Using these models, we have shown that Smad4 functions as a potent tumor suppressor and its loss causes spontaneous SCCs development; Smad2 functions as a tumor suppressor and its loss promotes SCC formation initiated by other genetic insults but is insufficient to initiate tumor formation. In contrast, Smad3 primarily mediates TGFβ-induced inflammation. The functions of each Smad also depends on the presence/absence of its Smad partner, thus need to be interpreted in a context-specific manner.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
41
|
Schultz N, Marenstein DR, De Angelis DA, Wang WQ, Nelander S, Jacobsen A, Marks DS, Massagué J, Sander C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. SILENCE 2011; 2:3. [PMID: 21401928 PMCID: PMC3068080 DOI: 10.1186/1758-907x-2-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/14/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND RNA interference (RNAi) screens have been used to identify novel components of signal-transduction pathways in a variety of organisms. We performed a small interfering (si)RNA screen for novel members of the transforming growth factor (TGF)-β pathway in a human keratinocyte cell line. The TGF-β pathway is integral to mammalian cell proliferation and survival, and aberrant TGF-β responses have been strongly implicated in cancer. RESULTS We assayed how strongly single siRNAs targeting each of 6,000 genes affect the nuclear translocation of a green fluorescent protein (GFP)-SMAD2 reporter fusion protein. Surprisingly, we found no novel TGF-β pathway members, but we did find dominant off-target effects. All siRNA hits, whatever their intended direct target, reduced the mRNA levels of two known upstream pathway components, the TGF-β receptors 1 and 2 (TGFBR1 and TGFBR2), via micro (mi)RNA-like off-target effects. The scale of these off-target effects was remarkable, with at least 1% of the sequences in the unbiased siRNA library having measurable off-target effects on one of these two genes. It seems that relatively minor reductions of message levels via off-target effects can have dominant effects on an assay, if the pathway output is very dose-sensitive to levels of particular pathway components. In search of mechanistic details, we identified multiple miRNA-like sequence characteristics that correlated with the off-target effects. Based on these results, we identified miR-20a, miR-34a and miR-373 as miRNAs that inhibit TGFBR2 expression. CONCLUSIONS Our findings point to potential improvements for miRNA/siRNA target prediction methods, and suggest that the type II TGF-β receptor is regulated by multiple miRNAs. We also conclude that the risk of obtaining misleading results in siRNA screens using large libraries with single-assay readout is substantial. Control and rescue experiments are essential in the interpretation of such screens, and improvements to the methods to reduce or predict RNAi off-target effects would be beneficial.
Collapse
Affiliation(s)
- Nikolaus Schultz
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dina R Marenstein
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dino A De Angelis
- High-Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei-Qing Wang
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sven Nelander
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Cancer Center Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Anders Jacobsen
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chris Sander
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
42
|
Aberrant expression in multiple components of the transforming growth factor-β1-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene-induced hamster buccal-pouch squamous-cell carcinogenesis. Oral Oncol 2011; 47:262-7. [PMID: 21356605 DOI: 10.1016/j.oraloncology.2011.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/22/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED Transforming growth factor (TGF)-β1 signaling controls a plethora of cellular processes including tumorigenesis. The TGF-β1 ligand initiates signaling by binding to TGF-βreceptor II (TβRII) and allowing heterodimerization with TGF-βreceptor I (TβRI); thus, TβRI is phosphorylated by TβRII. After phosphorylation, Smad2 and Smad3 heterodimerize with Smad4, and this complex migrates to the nucleus to regulate the expression of specific target genes. However, Smad7 interrupts above signal transduction by preventing phosphorylation of Smad2 or Smad3. The objective of this study was to examine the TGF-β1-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal-pouch squamous-cell carcinogenesis. Fifty 6-week-old male Syrian golden hamsters were divided into three experimental and two control groups (10 animals in each). Both pouches of each animal in the experimental groups were painted with 0.5% DMBA solution, and both pouches of each animal of one of the control groups were similarly treated with mineral oil; the other control group remained untreated throughout the experiment. Animals from three experimental groups were sacrificed at the end of 3rd, 9th, and 14th-weeks after DMBA treatment, respectively, and animals from two control groups were all sacrificed at 14th-weeks after the treatment. Immunohistochemical staining for TGF-β1, TβRI, TβRII, Smad2-4 and Smad7 were performed. RESULTS A significant increase in the expression of Smad7 and significant decreases in the expression of TβRII, Smad 2, Smad3 and Smad4 were noted during hamster buccal-pouch carcinogenesis induced by DMBA. Our findings indicate that a disruption in TGF-β1-induced Smad signaling occurs as a result of aberrant expression of multiple components in the TGF-β1 signaling pathway during DMBA-induced hamster buccal-pouch carcinogenesis, leading to loss of TGF-β1 growth-suppressive effects on transformed pouch keratinocytes.
Collapse
|
43
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.
Collapse
Affiliation(s)
- C René Leemans
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
44
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.
Collapse
|
45
|
Wu DM, Zhu HX, Zhao QH, Zhang ZZ, Wang SZ, Wang ML, Gong WD, Tan M, Zhang ZD. Genetic variations in the SMAD4 gene and gastric cancer susceptibility. World J Gastroenterol 2010; 16:5635-41. [PMID: 21105199 PMCID: PMC2992684 DOI: 10.3748/wjg.v16.i44.5635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the association between mothers against decapentaplegic homolog 4 (SMAD4) gene polymorphisms and gastric cancer risk.
METHODS: Five tagging single nucleotide polymorphisms (tSNPs) in the SMAD4 gene were selected and genotyped in 322 gastric cancer cases and 351 cancer-free controls in a Chinese population by using the polymerase chain reactionrestriction fragment length polymorphism method. Immunohistochemistry was used to examine SMAD4 protein expression in 10 normal gastric tissues adjacent to tumors.
RESULTS: In the single-locus analysis, two significantly decreased risk polymorphisms for gastric cancer were observed: the SNP3 rs17663887 TC genotype (adjusted odds ratio = 0.38, 95% confidence interval: 0.21-0.71), compared with the wild-type TT genotype and the SNP5 rs12456284 GG genotype (0.31, 0.16-0.60), and with the wild-type AA genotype. In the combined analyses of these two tSNPs, the combined genotypes with 2-3 protective alleles (SNP3 C and SNP5 G allele) had a significantly decreased risk of gastric cancer (0.28, 0.16-0.49) than those with 0-1 protective allele. Furthermore, individuals with 0-1 protective allele had significantly decreased SMAD4 protein expression levels in the normal tissues adjacent to tumors than those with 2-3 protective alleles (P = 0.025).
CONCLUSION: These results suggest that genetic variants in the SMAD4 gene play a protective role in gastric cancer in a Chinese population.
Collapse
|
46
|
Mangone FRR, Walder F, Maistro S, Pasini FS, Lehn CN, Carvalho MB, Brentani MM, Snitcovsky I, Federico MHH. Smad2 and Smad6 as predictors of overall survival in oral squamous cell carcinoma patients. Mol Cancer 2010; 9:106. [PMID: 20462450 PMCID: PMC2885344 DOI: 10.1186/1476-4598-9-106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/12/2010] [Indexed: 12/19/2022] Open
Abstract
Background To test if the expression of Smad1-8 mRNAs were predictive of survival in patients with oral squamous cell carcinoma (SCC). Patients and Methods We analyzed, prospectively, the expression of Smad1-8, by means of Ribonuclease Protection Assay in 48 primary, operable, oral SCC. In addition, 21 larynx, 10 oropharynx and 4 hypopharynx SCC and 65 matched adjacent mucosa, available for study, were also included. For survival analysis, patients were categorized as positive or negative for each Smad, according to median mRNA expression. We also performed real-time quantitative PCR (QRTPCR) to asses the pattern of TGFβ1, TGFβ2, TGFβ3 in oral SCC. Results Our results showed that Smad2 and Smad6 mRNA expression were both associated with survival in Oral SCC patients. Cox Multivariate analysis revealed that Smad6 positivity and Smad2 negativity were both predictive of good prognosis for oral SCC patients, independent of lymph nodal status (P = 0.003 and P = 0.029, respectively). In addition, simultaneously Smad2- and Smad6+ oral SCC group of patients did not reach median overall survival (mOS) whereas the mOS of Smad2+/Smad6- subgroup was 11.6 months (P = 0.004, univariate analysis). Regarding to TGFβ isoforms, we found that Smad2 mRNA and TGFβ1 mRNA were inversely correlated (p = 0.05, R = -0.33), and that seven of the eight TGFβ1+ patients were Smad2-. In larynx SCC, Smad7- patients did not reach mOS whereas mOS of Smad7+ patients were only 7.0 months (P = 0.04). No other correlations were found among Smad expression, clinico-pathological characteristics and survival in oral, larynx, hypopharynx, oropharynx or the entire head and neck SCC population. Conclusion Smad6 together with Smad2 may be prognostic factors, independent of nodal status in oral SCC after curative resection. The underlying mechanism which involves aberrant TGFβ signaling should be better clarified in the future.
Collapse
Affiliation(s)
- Flavia R R Mangone
- Disciplina de Oncologia, Departamento de Radiologia, LIM 24, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Avenida Dr Arnaldo 455, São Paulo, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ahn JH, Chang HK. Expression of Minichromosome Maintenance Protein 7 and Smad 4 in Squamous Cell Carcinoma of the Esophagus. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.4.346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ji Hyun Ahn
- Department of Pathology, Kosin University College of Medicine, Busan, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
48
|
Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 2009; 119:3408-19. [PMID: 19841536 DOI: 10.1172/jci38854] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 08/05/2009] [Indexed: 12/25/2022] Open
Abstract
Smad4 is a central mediator of TGF-beta signaling, and its expression is downregulated or lost at the malignant stage in several cancer types. In this study, we found that Smad4 was frequently downregulated not only in human head and neck squamous cell carcinoma (HNSCC) malignant lesions, but also in grossly normal adjacent buccal mucosa. To gain insight into the importance of this observation, we generated mice in which Smad4 was deleted in head and neck epithelia (referred to herein as HN-Smad4-/- mice) and found that they developed spontaneous HNSCC. Interestingly, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited increased genomic instability, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/Brca (Fanc/Brca) DNA repair pathway linked to HNSCC susceptibility in humans. Consistent with this, further analysis revealed a correlation between downregulation of Smad4 protein and downregulation of the Brca1 and Rad51 proteins in human HNSCC. In addition to the above changes in tumor epithelia, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited severe inflammation, which was associated with increased expression of TGF-beta1 and activated Smad3. We present what we believe to be the first single gene-knockout model for HNSCC, in which both HNSCC formation and invasion occurred as a result of Smad4 deletion. Our results reveal an intriguing connection between Smad4 and the Fanc/Brca pathway and highlight the impact of epithelial Smad4 loss on inflammation.
Collapse
Affiliation(s)
- Sophia Bornstein
- Department of Otolaryngology, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molecular analysis of PIK3CA, BRAF, and RAS oncogenes in periampullary and ampullary adenomas and carcinomas. J Gastrointest Surg 2009; 13:1510-6. [PMID: 19440799 PMCID: PMC3915027 DOI: 10.1007/s11605-009-0917-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/15/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mutations of KRAS are known to occur in periampullary and ampullary adenomas and carcinomas. However, nothing is known about NRAS, HRAS, BRAF, and PIK3CA mutations in these tumors. While oncogenic BRAF contributes to the tumorigenesis of both pancreatic ductal adenocarcinoma and intraductal papillary mucinous neoplasms/carcinomas (IPMN/IPMC), PIK3CA mutations were only detected in IPMN/IPMC. This study aimed to elucidate possible roles of BRAF and PIK3CA in the development of ampullary and periampullary adenomas and carcinomas. METHODS Mutations of BRAF, NRAS, HRAS, KRAS, and PIK3CA were evaluated in seven adenomas, seven adenomas with carcinoma in situ, and 21 adenocarcinomas of the periampullary duodenal region and the ampulla of Vater. Exons 1 of KRAS; 2 and 3 of NRAS and HRAS; 5, 11, and 15 of BRAF; and 9 and 20 of PIK3CA were examined by direct genomic sequencing. RESULTS In total, we identified ten (28.6%) KRAS mutations in exon 1 (nine in codon 12 and one in codon 13), two missense mutations of BRAF (6%), one within exon 11 (G469A), and one V600E hot spot mutation in exon 15 of BRAF. BRAF mutations were present in two of five periampullary tumors. All mutations appear to be somatic since the same alterations were not detected in the corresponding normal tissues. CONCLUSION Our data provide evidence that oncogenic properties of KRAS and BRAF but not NRAS, HRAS, and PIK3CA contribute to the tumorigenesis of periampullary and ampullary tumors; BRAF mutations occur more frequently in periampullary than ampullary neoplasms.
Collapse
|
50
|
Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 2009; 69:5918-26. [PMID: 19584284 DOI: 10.1158/0008-5472.can-08-4623] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The precise role of transforming growth factor (TGF)-beta signaling in head and neck squamous cell carcinoma (SCC) is not yet fully understood. Here, we report generation of an inducible head- and neck-specific knockout mouse model by crossing TGF-beta receptor I (Tgfbr1) floxed mice with K14-CreER(tam) mice. By applying tamoxifen to oral cavity of the mouse to induce Cre expression, we were able to conditionally delete Tgfbr1 in the mouse head and neck epithelia. On tumor induction with 7,12-dimethylbenz(a)anthracene (DMBA), 45% of Tgfbr1 conditional knockout (cKO) mice (n = 42) developed SCCs in the head and neck area starting from 16 weeks after treatment. However, no tumors were observed in the control littermates. A molecular analysis revealed an enhanced proliferation and loss of apoptosis in the basal layer of the head and neck epithelia of Tgfbr1 cKO mice 4 weeks after tamoxifen and DMBA treatment. The most notable finding of our study is that the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated in SCCs that developed in the Tgfbr1 cKO mice on inactivation of TGF-beta signaling through Smad2/3 and DMBA treatment. These observations suggest that activation of Smad-independent pathways may contribute cooperatively with inactivation of Smad-dependent pathways to promote head and neck carcinogenesis in these mice. Our results revealed the critical role of the TGF-beta signaling pathway and its cross-talk with the PI3K/Akt pathway in suppressing head and neck carcinogenesis.
Collapse
Affiliation(s)
- Yansong Bian
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|