1
|
Boateng E, Bonilla-Martinez R, Ahlemeyer B, Garikapati V, Alam MR, Trompak O, Oruqaj G, El-Merhie N, Seimetz M, Ruppert C, Günther A, Spengler B, Karnati S, Baumgart-Vogt E. It takes two peroxisome proliferator-activated receptors (PPAR-β/δ and PPAR-γ) to tango idiopathic pulmonary fibrosis. Respir Res 2024; 25:345. [PMID: 39313791 PMCID: PMC11421181 DOI: 10.1186/s12931-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung epithelial phenotypes, fibroblast activation, and increased extracellular matrix deposition. Transforming growth factor-beta (TGF-β)1-induced Smad signaling and downregulation of peroxisomal genes are involved in the pathogenesis and can be inhibited by peroxisome proliferator-activated receptor (PPAR)-α activation. However, the three PPARs, that is PPAR-α, PPAR-β/δ, and PPAR-γ, are known to interact in a complex crosstalk. METHODS To mimic the pathogenesis of lung fibrosis, primary lung fibroblasts from control and IPF patients with comparable levels of all three PPARs were treated with TGF-β1 for 24 h, followed by the addition of PPAR ligands either alone or in combination for another 24 h. Fibrosis markers (intra- and extracellular collagen levels, expression and activity of matrix metalloproteinases) and peroxisomal biogenesis and metabolism (gene expression of peroxisomal biogenesis and matrix proteins, protein levels of PEX13 and catalase, targeted and untargeted lipidomic profiles) were analyzed after TGF-β1 treatment and the effects of the PPAR ligands were investigated. RESULTS TGF-β1 induced the expected phenotype; e.g. it increased the intra- and extracellular collagen levels and decreased peroxisomal biogenesis and metabolism. Agonists of different PPARs reversed TGF-β1-induced fibrosis even when given 24 h after TGF-β1. The effects included the reversals of (1) the increase in collagen production by repressing COL1A2 promoter activity (through PPAR-β/δ activation); (2) the reduced activity of matrix metalloproteinases (through PPAR-β/δ activation); (3) the decrease in peroxisomal biogenesis and lipid metabolism (through PPAR-γ activation); and (4) the decrease in catalase protein levels in control (through PPAR-γ activation) and IPF (through a combined activation of PPAR-β/δ and PPAR-γ) fibroblasts. Further experiments to explore the role of catalase showed that an overexpression of catalase protein reduced collagen production. Additionally, the beneficial effect of PPAR-γ but not of PPAR-β/δ activation on collagen synthesis depended on catalase activity and was thus redox-sensitive. CONCLUSION Our data provide evidence that IPF patients may benefit from a combined activation of PPAR-β/δ and PPAR-γ.
Collapse
Affiliation(s)
- Eistine Boateng
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Vannuruswamy Garikapati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Mohammad Rashedul Alam
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Omelyan Trompak
- Department of Internal Medicine VIII, Eberhard Karls University, 72076, Tübingen, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Internal Medicine II, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Natalia El-Merhie
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Clemens Ruppert
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- UGMLC Giessen Biobank, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- Center for Interstitial and Rare Lung Diseases, Department of Internal Medicine, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University, 97070, Würzburg, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023; 12:cells12040650. [PMID: 36831317 PMCID: PMC9954612 DOI: 10.3390/cells12040650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases, including metabolic and inflammatory conditions and tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR research works that are focused on how PPARs control various infections and immune responses. In addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing PPAR-modulating agents.
Collapse
|
3
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
4
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
5
|
Ham SA, Kim E, Yoo T, Lee WJ, Youn JH, Choi MJ, Han SG, Lee CH, Paek KS, Hwang JS, Seo HG. Ligand-activated interaction of PPARδ with c-Myc governs the tumorigenicity of breast cancer. Int J Cancer 2018; 143:2985-2996. [DOI: 10.1002/ijc.31864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sun Ah Ham
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Eunsu Kim
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Ju Ho Youn
- Joslin Diabetes Center and Department of Medicine; Harvard Medical School; Boston
| | - Mi-Jung Choi
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Kyung Shin Paek
- Department of Nursing; Semyung University; Jechon South Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| |
Collapse
|
6
|
Martín-Martín N, Zabala-Letona A, Fernández-Ruiz S, Arreal L, Camacho L, Castillo-Martin M, Cortazar AR, Torrano V, Astobiza I, Zúñiga-García P, Ugalde-Olano A, Loizaga-Iriarte A, Unda M, Valcárcel-Jiménez L, Arruabarrena-Aristorena A, Piva M, Sánchez-Mosquera P, Aransay AM, Gomez-Muñoz A, Barrio R, Sutherland JD, Carracedo A. PPARδ Elicits Ligand-Independent Repression of Trefoil Factor Family to Limit Prostate Cancer Growth. Cancer Res 2017; 78:399-409. [DOI: 10.1158/0008-5472.can-17-0908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
|
7
|
Hsieh HY, Jou YC, Tung CL, Tsai YS, Wang YH, Chi CL, Lin RI, Hung SK, Chuang YM, Wu SF, Li C, Shen CH, Chan MWY, Hsu CD. Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment. Oncogene 2017; 37:673-686. [PMID: 29035390 DOI: 10.1038/onc.2017.375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
Urothelial carcinoma (UC) carcinogenesis has been hypothesized to occur through epigenetic repression of tumor-suppressor genes (TSGs). By quantitative real-time polymerase chain reaction array, we found that one potential TSG, angiopoietin-like 4 (ANGPTL4), was expressed at very low levels in all bladder cancer cell lines we examined. Previous studies had demonstrated that ANGPTL4 is highly expressed in some cancers, but downregulated, by DNA methylation, in others. Consequently, owing to these seemingly conflicting functions in distinct cancers, the precise role of ANGPTL4 in the etiology of UC remains unclear. In this study, using methylation-specific PCR and bisulfite pyrosequencing, we show that ANGPTL4 is transcriptionally repressed by DNA methylation in UC cell lines and primary tumor samples, as compared with adjacent noncancerous bladder epithelium. Functional studies further demonstrated that ectopic expression of ANGPTL4 potently suppressed UC cell proliferation, monolayer colony formation in vitro, and invasion, migration, and xenograft formation in vivo. Surprisingly, circulating ANGPTL4 was significantly higher in plasma samples from UC patients than normal control, suggesting it might be secreted from other cell types. Interestingly, our data also indicated that exogenous cANGPTL4 could promote cell proliferation and cell migration via activation of signaling through the Erk/focal adhesion kinase axis. We further confirmed that mouse xenograft tumor growth could be promoted by administration of exogenous cANGPTL4. Finally, immunohistochemistry demonstrated that ANGPTL4 was downregulated in tumor cells but overexpressed in tumor adjacent stromal tissues of muscle-invasive UC tissue samples. In conclusion, our data support dual roles for ANGPTL4 in UC progression, either as a tumor suppressor or oncogene, in response to microenvironmental context.
Collapse
Affiliation(s)
- H-Y Hsieh
- Department of Medical Research, Ditmanson Medical Fountain Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Y-C Jou
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - C-L Tung
- Department of Pathology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Y-S Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y-H Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - C-L Chi
- Department of Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - R-I Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - S-K Hung
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Y-M Chuang
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - S-F Wu
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - C Li
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - C-H Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - M W Y Chan
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - C-D Hsu
- Department of Medical Research, Ditmanson Medical Fountain Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
8
|
Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells. Tumour Biol 2016; 37:14789-14802. [PMID: 27638828 DOI: 10.1007/s13277-016-5305-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
GW501516 is a selective and high-affinity synthetic agonist of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). This molecule promoted the inhibition of proliferation and apoptosis in few cancer cell lines, but its anticancer action has never been investigated in bladder tumor cells. Thus, this study was undertaken to determine whether GW501516 had antiproliferative and/or apoptotic effects on RT4 and T24 urothelial cancer cells and to explore the molecular mechanisms involved. Our results indicated that, in RT4 cells (derived from a low-grade papillary tumor), GW501516 did not induce cell death. On the other hand, in T24 cells (derived from an undifferentiated high-grade carcinoma), this PPARβ/δ agonist induced cytotoxic effects including cell morphological changes, a decrease of cell viability, a G2/M cell cycle arrest, and the cell death as evidenced by the increase of the sub-G1 cell population. Furthermore, GW501516 triggered T24 cell apoptosis in a caspase-dependent manner including both extrinsic and intrinsic apoptotic pathways through Bid cleavage. In addition, the drug led to an increase of the Bax/Bcl-2 ratio, a mitochondrial dysfunction associated with the dissipation of ΔΨm, and the release of cytochrome c from the mitochondria to the cytosol. GW501516 induced also ROS generation which was not responsible for T24 cell death since NAC did not rescue cells upon PPARβ/δ agonist exposure. For the first time, our data highlight the capacity of GW501516 to induce apoptosis in invasive bladder cancer cells. This molecule could be relevant as a therapeutic drug for high-grade urothelial cancers.
Collapse
|
9
|
Shang D, Zheng T, Zhang J, Tian Y, Liu Y. Profiling of mRNA and long non-coding RNA of urothelial cancer in recipients after renal transplantation. Tumour Biol 2016; 37:12673-12684. [PMID: 27448299 DOI: 10.1007/s13277-016-5148-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanism and signal transduction pathways involved in urothelial cancer (UC) after renal transplantation (RTx) remain unknown. In this study, we investigated the profiling of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in RTx recipients with UC. The mRNA and lncRNA of six pairs of UC and corresponding normal urothelial tissues in RTx recipients were profiled using Arraystar Human lncRNA Microarray V3.0, which is designed for the global profiling of 26,109 coding transcripts and 30,586 lncRNAs. Quantitative real-time PCR (qRT-PCR) was used to validate the differentially expressed mRNAs and lncRNAs. Molecular function classification and biological process classification for the differentially expressed mRNAs were analyzed with Gene Ontology. The key pathways that were associated with UC after RTx were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Compared to normal urothelial tissues, 1597 mRNAs were upregulated and 1032 mRNAs were downregulated in UC; 2107 lncRNAs were upregulated and 1794 lncRNAs were downregulated (greater than twofold). Further qRT-PCR analysis of mRNA and lncRNA expression showed well consistency with the data of microarray analysis. The expression of matrix metalloprotease (MMP)-3, MMP-10, MMP-12, and MMP-13 was significantly increased, while the expression of CD36 was decreased in UC after RTx. Co-expression analysis of lncRNAs and their nearby coding genes showed that lncRNAs may play critical roles in regulating nearby genes in the carcinogenesis of UC. Our results also suggest that peroxisome proliferator-activated receptor (PPAR) signaling may be involved in UC after RTx. Moreover, several cytokines and their receptors were also significantly upregulated in UC after RTx, suggesting that cytokines might be modulated and participated in the carcinogenesis of UC after RTx. We analyzed the potential molecular mechanism and pathways involved in the UC of RTx recipients. Our results revealed that several key regulatory pathways and lncRNAs play critical roles in the carcinogenesis of UC, and suggest that UC in RTx recipients may be more likely to invade and metastasis. However, the detailed functional analysis of these mechanisms should be further performed in the future.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Tie Zheng
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center for Vascular Prostheses, Beijing, 100029, China
| | - Jian Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuting Liu
- Department of Pathology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Yao PL, Chen LP, Dobrzański TP, Phillips DA, Zhu B, Kang BH, Gonzalez FJ, Peters JM. Inhibition of testicular embryonal carcinoma cell tumorigenicity by peroxisome proliferator-activated receptor-β/δ- and retinoic acid receptor-dependent mechanisms. Oncotarget 2015; 6:36319-37. [PMID: 26431381 PMCID: PMC4742180 DOI: 10.18632/oncotarget.5415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has important physiological functions in control of cell growth, lipid and glucose homeostasis, differentiation and inflammation. To investigate the role of PPARβ/δ in cancer, stable human testicular embryonal carcinoma cell lines were developed that constitutively express PPARβ/δ. Expression of PPARβ/δ caused enhanced activation of the receptor, and this significantly decreased proliferation, migration, invasion, anchorage-independent growth, and also reduced tumor mass and volume of ectopic xenografts derived from NT2/D1 cells compared to controls. The changes observed in xenografts were associated with decreased PPARβ/δ-dependent expression of proliferating cell nuclear antigen and octamer-binding transcription factor-3/4, suggesting suppressed tumor proliferation and induction of differentiation. Inhibition of migration and invasion was mediated by PPARβ/δ competing with formation of the retinoic acid receptor (RAR)/retinoid X receptor (RXR) complex, resulting in attenuation of RARα-dependent matrix metalloproteinase-2 expression and activity. These results demonstrate that PPARβ/δ mediates attenuation of human testicular embryonal carcinoma cell progression through a novel RAR-dependent mechanism and suggest that activation of PPARβ/δ inhibits RAR/RXR dimerization and represents a new therapeutic strategy.
Collapse
Affiliation(s)
- Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Li Ping Chen
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tomasz P. Dobrzański
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Dylan A. Phillips
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bokai Zhu
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Boo-Hyon Kang
- Chemon Nonclinical Research Institute, Nampyeong-ro, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey M. Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Yao PL, Morales JL, Zhu B, Kang BH, Gonzalez FJ, Peters JM. Activation of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) inhibits human breast cancer cell line tumorigenicity. Mol Cancer Ther 2014; 13:1008-17. [PMID: 24464939 DOI: 10.1158/1535-7163.mct-13-0836] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of activation and overexpression of the nuclear receptor PPAR-β/δ in human MDA-MB-231 (estrogen receptor-negative; ER(-)) and MCF7 (estrogen-receptor-positive; ER(+)) breast cancer cell lines was examined. Target gene induction by ligand activation of PPAR-β/δ was increased by overexpression of PPAR-β/δ compared with controls. Overexpression of PPAR-β/δ caused a decrease in cell proliferation in MCF7 and MDA-MB-231 cells compared with controls, whereas ligand activation of PPAR-β/δ further inhibited proliferation of MCF7 but not MDA-MB-231 cells. Overexpression and/or ligand activation of PPAR-β/δ in MDA-MB-231 or MCF7 cells had no effect on experimental apoptosis. Decreased clonogenicity was observed in both MDA-MB-231 and MCF7 overexpressing PPAR-β/δ in response to ligand activation of PPAR-β/δ as compared with controls. Ectopic xenografts developed from MDA-MB-231 and MCF7 cells overexpressing PPAR-β/δ were significantly smaller, and ligand activation of PPAR-β/δ caused an even greater reduction in tumor volume as compared with controls. Interestingly, the decrease in MDA-MB-231 tumor size after overexpressing PPAR-β/δ and ligand activation of PPAR-β/δ correlated with increased necrosis. These data show that ligand activation and/or overexpression of PPAR-β/δ in two human breast cancer cell lines inhibits relative breast cancer tumorigenicity and provide further support for the development of ligands for PPAR-β/δ to specifically inhibit breast carcinogenesis. These new cell-based models will be invaluable tools for delineating the role of PPAR-β/δ in breast cancer and evaluating the effects of PPAR-β/δ agonists.
Collapse
Affiliation(s)
- Pei-Li Yao
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and Non-clinical Research Institute, Chemon, Jeil-Ri, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, Korea; and Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
12
|
Mackenzie LS, Lione L. Harnessing the benefits of PPARβ/δ agonists. Life Sci 2013; 93:963-7. [DOI: 10.1016/j.lfs.2013.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
|
13
|
Wannous R, Bon E, Mahéo K, Goupille C, Chamouton J, Bougnoux P, Roger S, Besson P, Chevalier S. PPARβ mRNA expression, reduced by n-3 PUFA diet in mammary tumor, controls breast cancer cell growth. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1618-25. [PMID: 23906790 DOI: 10.1016/j.bbalip.2013.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
The effect of numerous anticancer drugs on breast cancer cell lines and rodent mammary tumors can be enhanced by a treatment with long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) such as docosahexaenoic acid (DHA, 22:6n-3) which is a natural ligand of peroxisome proliferator-activated receptors (PPAR). In order to identify the PPAR regulating breast cancer cell growth, we tested the impact of siRNA, selected to suppress PPARα, PPARβ or PPARγ mRNA in MDA-MB-231 and MCF-7 breast cancer cell lines. The siPPARβ was the most effective to inhibit breast cancer cell growth in both cell lines. Using PPARα, PPARβ and PPARγ pharmacological antagonists, we showed that PPARβ regulated DHA-induced inhibition of growth in MDA-MB-231 and MCF-7 cells. In addition, the expressions of all 3 PPAR mRNA were co-regulated in both cell lines, upon treatments with siRNA or PPAR antagonists. PPAR mRNA expression was also examined in the NitrosoMethylUrea (NMU)-induced rat mammary tumor model. The expressions of PPARα and PPARβ mRNAs were correlated in the control group but not in the n-3 PUFA group in which the expression of PPARβ mRNA was reduced. Although PPARα expression was also increased in the n-3 PUFA-enriched diet group under docetaxel treatment, it is only the expression of PPARβ mRNA that correlated with the regression of mammary tumors: those that most regressed displayed the lowest PPARβ mRNA expression. Altogether, these data identify PPARβ as an important player capable of modulating other PPAR mRNA expressions, under DHA diet, for inhibiting breast cancer cell growth and mammary tumor growth.
Collapse
Affiliation(s)
- Ramez Wannous
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Emeline Bon
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Karine Mahéo
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Caroline Goupille
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France; Hôpital Bretonneau, CHU de Tours, France
| | - Julie Chamouton
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Philippe Bougnoux
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France; Hôpital Bretonneau, CHU de Tours, France
| | - Sébastien Roger
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Pierre Besson
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Stephan Chevalier
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France; Département de Biochimie, Faculté de Sciences Pharmaceutiques, Université François Rabelais de Tours, France.
| |
Collapse
|
14
|
Tavakoli Yaraki M, Karami Tehrani F. Apoptosis Induced by 13-S-hydroxyoctadecadienoic acid in the Breast Cancer Cell Lines, MCF-7 and MDA-MB-231. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:661-9. [PMID: 24250949 PMCID: PMC3830757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 11/24/2022]
Abstract
UNLABELLED Objective(s) : The 15-Lipoxygenase-1(15-LOX-1) pathway has become of considerable interest as a promising molecular approach for the modulation of cancer cell growth. 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) is a main metabolite of 15-LOX-1 which is proposed to influence the cancer cell's growth. This study aims to investigate the role of 13(S)-HODE in the regulation of cell growth and apoptosis in the breast cancer cell lines. Materials and Methods : MTT assay was used to examine the cytotoxic effect of 13(S)-HODE in the breast cancer cells, MCF-7 and MDA-MB-231.Annexin-V-FITC staining and cell cycle analysis were performed using flow cytometry. The effect of 13(S)-HODE on the expression level of Peroxisome proliferator-activated receptors-δ (PPAR-δ) was also evaluated. Results : The results demonstrated that 13(S)-HODE inhibited cell growth in a dose and time dependant manner in MCF-7 and MDA-MB-231 cell lines. The reduction of cell growth was associated with the induction of cell cycle arrest and apoptosis in the breast cancer cell lines. Moreover, PPAR-δ was down-regulated in response to 13(S)-HODE administration. CONCLUSION This study conducted evidences in to the stimulatory effect of 13(S)-HODE on the inhibition of cell growth and induction of apoptosis in the breast cancer cell lines.
Collapse
Affiliation(s)
- Masoumeh Tavakoli Yaraki
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Karami Tehrani
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding author: Fatemeh Karami-Tehrani, Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel: +98- 21- 82883567; Fax: +98-21- 82884555; E-mail:
| |
Collapse
|
15
|
Tavakoli Yaraki M, Karami Tehrani F. Apoptosis Induced by 13-S-hydroxyoctadecadienoic acid in the Breast Cancer Cell Lines, MCF-7 and MDA-MB-231. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:653-9. [PMID: 24250946 PMCID: PMC3821886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 11/03/2022]
Abstract
UNLABELLED Objective(s) : The 15-Lipoxygenase-1(15-LOX-1) pathway has become of considerable interest as a promising molecular approach for the modulation of cancer cell growth. 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) is a main metabolite of 15-LOX-1 which is proposed to influence the cancer cell's growth. This study aims to investigate the role of 13(S)-HODE in the regulation of cell growth and apoptosis in the breast cancer cell lines. Materials and Methods : MTT assay was used to examine the cytotoxic effect of 13(S)-HODE in the breast cancer cells, MCF-7 and MDA-MB-231.Annexin-V-FITC staining and cell cycle analysis were performed using flow cytometry. The effect of 13(S)-HODE on the expression level of Peroxisome proliferator-activated receptors-δ (PPAR-δ) was also evaluated. Results : The results demonstrated that 13(S)-HODE inhibited cell growth in a dose and time dependant manner in MCF-7 and MDA-MB-231 cell lines. The reduction of cell growth was associated with the induction of cell cycle arrest and apoptosis in the breast cancer cell lines. Moreover, PPAR-δ was down-regulated in response to 13(S)-HODE administration. CONCLUSION This study conducted evidences in to the stimulatory effect of 13(S)-HODE on the inhibition of cell growth and induction of apoptosis in the breast cancer cell lines.
Collapse
Affiliation(s)
- Masoumeh Tavakoli Yaraki
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Karami Tehrani
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding author: Fatemeh Karami-Tehrani, Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel: +98- 21- 82883567; Fax: +98-21- 82884555; E-mail:
| |
Collapse
|
16
|
Peters JM, Foreman JE, Gonzalez FJ. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis. Cancer Metastasis Rev 2012; 30:619-40. [PMID: 22037942 DOI: 10.1007/s10555-011-9320-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a promising drug target since its agonists increase serum high-density lipoprotein; decrease low-density lipoprotein, triglycerides, and insulin associated with metabolic syndrome; improve insulin sensitivity; and decrease high fat diet-induced obesity. PPARβ/δ agonists also promote terminal differentiation and elicit anti-inflammatory activities in many cell types. However, it remains to be determined whether PPARβ/δ agonists can be developed as therapeutics because there are reports showing either pro- or anti-carcinogenic effects of PPARβ/δ in cancer models. This review examines studies reporting the role of PPARβ/δ in colon, breast, and lung cancers. The prevailing evidence would suggest that targeting PPARβ/δ is not only safe but could have anti-carcinogenic protective effects.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
17
|
Angione AR, Jiang C, Pan D, Wang YX, Kuang S. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration. Skelet Muscle 2011; 1:33. [PMID: 22040534 PMCID: PMC3223495 DOI: 10.1186/2044-5040-1-33] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 11/01/2011] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration.
Collapse
Affiliation(s)
- Alison R Angione
- Department of Animal Sciences, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
18
|
Hattori N, Okochi-Takada E, Kikuyama M, Wakabayashi M, Yamashita S, Ushijima T. Methylation silencing of angiopoietin-like 4 in rat and human mammary carcinomas. Cancer Sci 2011; 102:1337-43. [PMID: 21489049 DOI: 10.1111/j.1349-7006.2011.01955.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant DNA methylation is deeply involved in the development and progression of human breast cancers, but its inducers and molecular mechanisms are still unclear. To reveal such inducers and clarify the molecular mechanisms, animal models are indispensable. Here, to identify genes silenced by promoter DNA methylation in rat mammary carcinomas, we took a combined approach of methylated DNA immunoprecipitation (MeDIP)-CpG island (CGI) microarray analysis and expression microarray analysis after treatment with epigenetic drugs. MeDIP-CGI microarray revealed that among 5031 genes with promoter CGI, 465 were methylated in a carcinoma cell line induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), but not in normal mammary epithelial cells. By treatment of the cell line with 5-aza-2'-deoxycytidine and trichostatin A, 29 of the 465 genes were shown to be re-expressed. In primary mammary carcinomas, five (Angptl4, Coro1a, RGD1304982, Tmem37 and Ndn) of the 29 genes were methylated in one or more of 25 samples. Quantitative expression analysis revealed that Angptl4 had high expression in normal mammary glands, but low expression in primary carcinomas. Also in humans, ANGPTL4 was unmethylated and expressed in normal mammary epithelial cells, but was methylated in 11 of 91 (12%) primary breast cancers. This is the first study to identify genes aberrantly methylated in rat mammary carcinomas, and Angptl4 is a novel methylation-silenced gene both in rat and human mammary carcinomas. The combination of the MeDIP-CGI microarray analysis and expression microarray analysis after treatment with epigenetic drugs was effective in reducing the number of methylated genes that are not methylation silenced.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Foreman JE, Chang WCL, Palkar PS, Zhu B, Borland MG, Williams JL, Kramer LR, Clapper ML, Gonzalez FJ, Peters JM. Functional characterization of peroxisome proliferator-activated receptor-β/δ expression in colon cancer. Mol Carcinog 2011; 50:884-900. [PMID: 21400612 DOI: 10.1002/mc.20757] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 01/02/2023]
Abstract
This study critically examined the role of PPARβ/δ in colon cancer models. Expression of PPARβ/δ mRNA and protein was lower and expression of CYCLIN D1 protein higher in human colon adenocarcinomas compared to matched non-transformed tissue. Similar results were observed in colon tumors from Apc(+/Min-FCCC) mice compared to control tissue. Dietary administration of sulindac to Apc(+/Min-FCCC) mice had no influence on expression of PPARβ/δ in normal colon tissue or colon tumors. Cleaved poly (ADP-ribose) polymerase (PARP) was either increased or unchanged, while expression of 14-3-3ε was not influenced in human colon cancer cell lines cultured with the PPARβ/δ ligand GW0742 under conditions known to increase apoptosis. While DLD1 cells exhibited fewer early apoptotic cells after ligand activation of PPARβ/δ following treatment with hydrogen peroxide, this change was associated with an increase in late apoptotic/necrotic cells, but not an increase in viable cells. Stable over-expression of PPARβ/δ in human colon cancer cell lines enhanced ligand activation of PPARβ/δ and inhibition of clonogenicity in HT29 cells. These studies are the most quantitative to date to demonstrate that expression of PPARβ/δ is lower in human and Apc(+/Min-FCCC) mouse colon tumors than in corresponding normal tissue, consistent with the finding that increasing expression and activation of PPARβ/δ in human colon cancer cell lines inhibits clonogenicity. Because ligand-induced attenuation of early apoptosis can be associated with more late, apoptotic/necrotic cells, but not more viable cells, these studies illustrate why more comprehensive analysis of PPARβ/δ-dependent modulation of apoptosis is required in the future.
Collapse
Affiliation(s)
- Jennifer E Foreman
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
PPARδ agonists suppress angiogenesis in a VEGFR2-dependent manner. Arch Dermatol Res 2010; 303:41-7. [PMID: 21046127 DOI: 10.1007/s00403-010-1091-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that have a pleiotropic impact on the regulation of differentiation, cell growth, and the metabolism of lipids and glucose. PPARδ agonists display a variety of effects on pro- and anti-tumor processes, and seem to have pro-angiogenic activity at very low concentrations. We analyzed the influence of higher concentrations of PPARδ agonists on angiogenesis and its underlying mechanisms. We found that treatment with PPARδ agonists inhibited the formation of capillary-like structures and endothelial cell migration. Since signaling via the vascular endothelial growth factor receptor-2 (VEGFR2) pathway is critical for angiogenic responses during chronic inflammation and tumor development, we explored whether PPARδ agonist inhibition acted by diminishing VEGFR2 expression. PPARδ agonists inhibited endothelial VEGFR2 protein expression in a time- and concentration-dependent manner. In contrast, neither tie-2, neuropilin-1 nor VEGFR1 expression was significantly affected by PPARδ agonist treatment. We also demonstrated that PPARδ agonists significantly suppressed accumulation of VEGFR2 mRNA. Consistent with these results, promoter luciferase assays showed that the inhibitory effects of PPAR agonists occur through suppression of VEGFR2 promoter activity. Hence, VEGFR-2 expression may be a critical molecular target of PPAR δ agonists, which may be responsible for their anti-angiogenic effects. These results may help to define the optimal therapeutic doses of PPARδ agonists in prospective therapeutic applications.
Collapse
|
21
|
Palkar PS, Borland MG, Naruhn S, Ferry CH, Lee C, Sk UH, Sharma AK, Amin S, Murray IA, Anderson CR, Perdew GH, Gonzalez FJ, Müller R, Peters JM. Cellular and pharmacological selectivity of the peroxisome proliferator-activated receptor-beta/delta antagonist GSK3787. Mol Pharmacol 2010; 78:419-30. [PMID: 20516370 DOI: 10.1124/mol.110.065508] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The availability of high-affinity agonists for peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) has led to significant advances in our understanding of the functional role of PPARbeta/delta. In this study, a new PPARbeta/delta antagonist, 4-chloro-N-(2-{[5-trifluoromethyl)-2-pyridyl]sulfonyl}ethyl)benzamide (GSK3787), was characterized using in vivo and in vitro models. Orally administered GSK3787 caused antagonism of 4-[2-(3-fluoro-4-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethylsulfanyl]-2-methyl-phenoxy}-acetic acid (GW0742)-induced up-regulation of Angptl4 and Adrp mRNA expression in wild-type mouse colon but not in Pparbeta/delta-null mouse colon. Chromatin immunoprecipitation (ChIP) analysis indicates that this correlated with reduced promoter occupancy of PPARbeta/delta on the Angptl4 and Adrp genes. Reporter assays demonstrated antagonism of PPARbeta/delta activity and weak antagonism and agonism of PPARgamma activity but no effect on PPARalpha activity. Time-resolved fluorescence resonance energy transfer assays confirmed the ability of GSK3787 to modulate the association of both PPARbeta/delta and PPARgamma coregulator peptides in response to ligand activation, consistent with reporter assays. In vivo and in vitro analysis indicates that the efficacy of GSK3787 to modulate PPARgamma activity is markedly lower than the efficacy of GSK3787 to act as a PPARbeta/delta antagonist. GSK3787 antagonized GW0742-induced expression of Angptl4 in mouse fibroblasts, mouse keratinocytes, and human cancer cell lines. Cell proliferation was unchanged in response to either GW0742 or GSK3787 in human cancer cell lines. Results from these studies demonstrate that GSK3787 can antagonize PPARbeta/delta in vivo, thus providing a new strategy to delineate the functional role of a receptor with great potential as a therapeutic target for the treatment and prevention of disease.
Collapse
Affiliation(s)
- Prajakta S Palkar
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|