1
|
Zeng X, Sun A, Cheng W, Hou X, Zhu M, Liao Y. Inhibition of STIM1 alleviates high glucose-induced proliferation and fibrosis by inducing autophagy in mesangial cells. Mol Cell Biochem 2024; 479:2365-2379. [PMID: 37736800 DOI: 10.1007/s11010-023-04844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Diabetic nephropathy (DN) is a renal microvascular complication caused by diabetes mellitus. One of the most typical characteristics of DN is glomerular mesangial cells (GMCs) proliferation. Stromal interaction molecule 1 (STIM1), a Ca2+ channel, is involved in many diseases. In this study, we investigated the role of STIM1 in the proliferation and fibrosis in high glucose (HG)-induced HBZY-1 cells. We found that the expression of STIM1 was increased in renal tissues of diabetic rat and HBZY-1 cells stimulated by HG. Downregulation of STIM1-mediated SOCE suppressed hyperglycemic cell proliferation and fibrosis by activating autophagy. In addition, the inhibitory effect of downregulating STIM1 on cells was blocked by autophagy inhibitor Bafilomycin A1 (BafA1). Moreover, this experiment also showed that STIM1 regulated autophagy, cell proliferation and fibrosis via PI3K/AKT/mTOR signal pathway. These results clarify the role of STIM1 in HBZY-1 cells and its mechanism, and provide a new target for the treatment of DN.
Collapse
Affiliation(s)
- Xixi Zeng
- Department of Anatomy, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Anbang Sun
- Department of Anatomy, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Weiyi Cheng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xin Hou
- Medical College, Affiliated Hospital, Hebei University of Engineering, Handan, People's Republic of China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Han H, Liu Y, Xu J, Zhang D, Wang W, Gao Y, Li Z, Qin Y. SKF96365 Inhibits Tumor Proliferation by Inducing Apoptosis and Autophagy in Human Esophageal Squamous Cell Carcinoma. Int J Genomics 2024; 2024:4501154. [PMID: 39165489 PMCID: PMC11335422 DOI: 10.1155/2024/4501154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Calcium channel blockers are emerging as a new generation of attractive anticancer drugs. SKF96365, originally thought to be a store-operated calcium entry (SOCE) inhibitor, is now often used as a TRPC channel blocker and is widely used in medical diagnostics. SKF96365 has shown antitumor effects on a variety of cancer cell lines. The objective of this study was to investigate the anticancer effect of SKF96365 on esophageal cancer in vivo and in vitro. Cell Counting Kit-8 (CCK-8) and colony formation were used to test the proliferation inhibition of SKF96365 on cell lines. Western blot and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect cell apoptosis rates. In addition, we demonstrated the antitumor effect of SKF96365 in vivo in xenografted mice. As a result, SKF96365 significantly inhibited the proliferation of K510, K30, and EC9706 in vitro. SKF96365 induces apoptosis in three cell lines through the poly(adenosine diphosphate-ribose) polymerase (PARP), caspase-9, and BCL-2 pathways in a dose-dependent and time-dependent manner. Moreover, SKF96365 treatment also induced apoptosis and inhibited tumor growth in nude mice. The calcium channel TRPC1 was significantly downregulated by SKF96365. Autophagy was also induced during the treatment of SKF96365. In summary, SKF96365 induces apoptosis (PARP, caspase-9, and BCL-2) and autophagy (LC3-A/B) by inhibiting TRPC1 in esophageal cancer cells, thereby inhibiting tumor growth.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huiqiong Han
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yihan Liu
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiayao Xu
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Daidi Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenjia Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Dubourg A, Harnois T, Cousin L, Constantin B, Bourmeyster N. SKF-96365 Expels Tyrosine Kinase Inhibitor-Treated CML Stem and Progenitor Cells from the HS27A Stromal Cell Niche in a RhoA-Dependent Mechanism. Cancers (Basel) 2024; 16:2791. [PMID: 39199564 PMCID: PMC11352811 DOI: 10.3390/cancers16162791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND A major issue in Chronic Myeloid Leukemia (CML) is the persistence of quiescent leukemia stem cells (LSCs) in the hematopoietic niche under tyrosine kinase inhibitor (TKI) treatment. RESULTS Here, using CFSE sorting, we show that low-proliferating CD34+ cells from CML patients in 3D co-culture hide under HS27A stromal cells during TKI treatment-a behavior less observed in untreated cells. Under the same conditions, Ba/F3p210 cells lose their spontaneous motility. In CML CD34+ and Ba/F3p210 cells, while Rac1 is completely inhibited by TKI, RhoA remains activated but is unable to signal to ROCK. Co-incubation of Ba/F3p210 cells with TKI, SKF-96365 (a calcium channel inhibitor), and EGF restores myosin II activation and amoeboid motility to levels comparable to untreated cells, sustaining the activation of ROCK. In CFSE+ CD34+ cells containing quiescent leukemic stem cells, co-incubation of TKI with SKF-96365 induced the expulsion of these cells from the HS27A niche. CONCLUSIONS This study underscores the role of RhoA in LSC behavior under TKI treatment and suggests that SKF-96365 could remobilize quiescent CML LSCs through reactivation of the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Audrey Dubourg
- UMR 6041 CNRS/Université de Poitiers, “Channels and Connexins in Cancer and Cell Stemness”, Pôle Biologie Santé, 1, rue Georges Bonnet, 86021 Poitiers CEDEX, France; (A.D.); (T.H.); (L.C.); (B.C.)
| | - Thomas Harnois
- UMR 6041 CNRS/Université de Poitiers, “Channels and Connexins in Cancer and Cell Stemness”, Pôle Biologie Santé, 1, rue Georges Bonnet, 86021 Poitiers CEDEX, France; (A.D.); (T.H.); (L.C.); (B.C.)
| | - Laetitia Cousin
- UMR 6041 CNRS/Université de Poitiers, “Channels and Connexins in Cancer and Cell Stemness”, Pôle Biologie Santé, 1, rue Georges Bonnet, 86021 Poitiers CEDEX, France; (A.D.); (T.H.); (L.C.); (B.C.)
| | - Bruno Constantin
- UMR 6041 CNRS/Université de Poitiers, “Channels and Connexins in Cancer and Cell Stemness”, Pôle Biologie Santé, 1, rue Georges Bonnet, 86021 Poitiers CEDEX, France; (A.D.); (T.H.); (L.C.); (B.C.)
| | - Nicolas Bourmeyster
- UMR 6041 CNRS/Université de Poitiers, “Channels and Connexins in Cancer and Cell Stemness”, Pôle Biologie Santé, 1, rue Georges Bonnet, 86021 Poitiers CEDEX, France; (A.D.); (T.H.); (L.C.); (B.C.)
- CHU de Poitiers, Pôle BIOSPHARM, Secteur Biochimie, 86022 Poitiers CEDEX, France
| |
Collapse
|
4
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas ML, Bithell A. Mathematical Modeling of PI3K/Akt Pathway in Microglia. Neural Comput 2024; 36:645-676. [PMID: 38457763 DOI: 10.1162/neco_a_01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 03/10/2024]
Abstract
The motility of microglia involves intracellular signaling pathways that are predominantly controlled by changes in cytosolic Ca2+ and activation of PI3K/Akt (phosphoinositide-3-kinase/protein kinase B). In this letter, we develop a novel biophysical model for cytosolic Ca2+ activation of the PI3K/Akt pathway in microglia where Ca2+ influx is mediated by both P2Y purinergic receptors (P2YR) and P2X purinergic receptors (P2XR). The model parameters are estimated by employing optimization techniques to fit the model to phosphorylated Akt (pAkt) experimental modeling/in vitro data. The integrated model supports the hypothesis that Ca2+ influx via P2YR and P2XR can explain the experimentally reported biphasic transient responses in measuring pAkt levels. Our predictions reveal new quantitative insights into P2Rs on how they regulate Ca2+ and Akt in terms of physiological interactions and transient responses. It is shown that the upregulation of P2X receptors through a repetitive application of agonist results in a continual increase in the baseline [Ca2+], which causes the biphasic response to become a monophasic response which prolongs elevated levels of pAkt.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, U.K.
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, University of Ulster, Londonderry, U.K.
| | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, U.K.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, U.K.
| |
Collapse
|
5
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
6
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
7
|
Xu S, Wu S, Zhang M, Xie J, Lin M, Jin L, Zhang J, Wang Y, Fan M, Fang Z, Li W, Ouyang C, Kwon D, Que N, Li Z, Mao J, Chen H, Harris J, Wu X, Wu J, Yin H, Chan WC, Horne D, Huang W. Pharmacological profiling of a berbamine derivative for lymphoma treatment. Blood Adv 2024; 8:309-323. [PMID: 37967356 PMCID: PMC10824694 DOI: 10.1182/bloodadvances.2023010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.
Collapse
Affiliation(s)
- Senlin Xu
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Shunquan Wu
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fujian, China
| | - Mingfeng Zhang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jun Xie
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Min Lin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Lihua Jin
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangmeng Wang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mingjie Fan
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Zhipeng Fang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Weini Li
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ching Ouyang
- Integrative Genomic Core, City of Hope National Medical Center, Duarte, CA
| | - David Kwon
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Natalie Que
- Eugene and Ruth Roberts Summer Student Academy, City of Hope, Duarte, CA
| | - Zhirou Li
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Jinge Mao
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Haonan Chen
- Eugene and Ruth Roberts Summer Student Academy, City of Hope, Duarte, CA
| | - Josephine Harris
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Xiwei Wu
- Integrative Genomic Core, City of Hope National Medical Center, Duarte, CA
| | - Jun Wu
- Animal Tumor Model Core, City of Hope National Medical Center, Duarte, CA
| | - Hongwei Yin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Wing C. Chan
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - David Horne
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program and Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
8
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Chen Y, Li W, Yang Y, Zhong R, Hu H, Huang C, Chen J, Liang L, Liu Y. Significant increase of anticancer efficacy in vitro and in vivo of liposome entrapped ruthenium(II) polypyridyl complexes. Eur J Med Chem 2023; 257:115541. [PMID: 37295162 DOI: 10.1016/j.ejmech.2023.115541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 μM), Ru2lipo (IC50 3.5 ± 0.1 μM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Pasupuleti SK, Ramdas B, Burns SS, Palam LR, Kanumuri R, Kumar R, Pandhiri TR, Dave UP, Yellapu NK, Zhou X, Zhang C, Sandusky GE, Yu Z, Honigberg MC, Bick AG, Griffin GK, Niroula A, Ebert BL, Paczesny S, Natarajan P, Kapur R. Obesity-induced inflammation exacerbates clonal hematopoiesis. J Clin Invest 2023; 133:e163968. [PMID: 37071471 PMCID: PMC10231999 DOI: 10.1172/jci163968] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.
Collapse
Affiliation(s)
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Sarah S. Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Ramesh Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Utpal P. Dave
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xinyu Zhou
- Department of Medical and Molecular Genetics and
| | - Chi Zhang
- Department of Medical and Molecular Genetics and
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriel K. Griffin
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Epigenomics Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Benjamin L. Ebert
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charlestown, South Carolina, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Rubaiy HN. ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals (Basel) 2023; 16:162. [PMID: 37259313 PMCID: PMC9967976 DOI: 10.3390/ph16020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 11/25/2023] Open
Abstract
The changes in intracellular free calcium (Ca2+) levels are one of the most widely regulators of cell function; therefore, calcium as a universal intracellular mediator is involved in very important human diseases and disorders. In many cells, Ca2+ inflow is mediated by store-operated calcium channels, and it is recognized that the store-operated calcium entry (SOCE) is mediated by the two partners: the pore-forming proteins Orai (Orai1-3) and the calcium store sensor, stromal interaction molecule (STIM1-2). Importantly, the Orai/STIM channels are involved in crucial cell signalling processes such as growth factors, neurotransmitters, and cytokines via interaction with protein tyrosine kinase coupled receptors and G protein-coupled receptors. Therefore, in recent years, the issue of Orai/STIM channels as a drug target in human diseases has received considerable attention. This review summarizes and highlights our current knowledge of the Orai/STIM channels in human diseases and disorders, including immunodeficiency, myopathy, tubular aggregate, Stormorken syndrome, York platelet syndrome, cardiovascular and metabolic disorders, and cancers, as well as suggesting these channels as drug targets for pharmacological therapeutic intervention. Moreover, this work will also focus on the pharmacological modulators of Orai/STIM channel complexes. Together, our thoughtful of the biology and physiology of the Orai/STIM channels have grown remarkably during the past three decades, and the next important milestone in the field of store-operated calcium entry will be to identify potent and selective small molecules as a therapeutic agent with the purpose to target human diseases and disorders for patient benefit.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institute and Karolinska University Hospital, C1:68, 141 86 Stockholm, Sweden
| |
Collapse
|
13
|
Ding S, Yang L, Huang L, Kong L, Chen M, Su Y, Li X, Dong X, Han Y, Li W, Li W. Chronic glucocorticoid exposure accelerates Aβ generation and neurotoxicity by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons in APP/PS1 mice. Food Chem Toxicol 2022; 168:113407. [PMID: 36075474 DOI: 10.1016/j.fct.2022.113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-β (Aβ) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aβ production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 μM) significantly accelerated neuronal damage and Aβ accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 μM) and SKF-96365 (10 μM) significantly alleviated neuronal damage and Aβ accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aβ accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.
Collapse
Affiliation(s)
- Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Huang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ming Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Xu K, Zhu W, Xu A, Xiong Z, Zou D, Zhao H, Jiao D, Qing Y, Jamal MA, Wei HJ, Zhao HY. Inhibition of FOXO1‑mediated autophagy promotes paclitaxel‑induced apoptosis of MDA‑MB‑231 cells. Mol Med Rep 2022; 25:72. [PMID: 35014689 PMCID: PMC8767459 DOI: 10.3892/mmr.2022.12588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and it often becomes resistant to paclitaxel (PTX) therapy. Autophagy plays an important cytoprotective role in PTX-induced tumor cell death, and targeting autophagy has been promising for improving the efficacy of tumor chemotherapy in recent years. The aim of the present study was to clarify the mechanism of PTX inducing autophagy in TNBC cells to provide a potential clinical chemotherapy strategy of PTX for TNBC. The present study reported that PTX induced both apoptosis and autophagy in MDA-MB-231 cells and that inhibition of autophagy promoted apoptotic cell death. Furthermore, it was found that forkhead box transcription factor O1 (FOXO1) enhanced PTX-induced autophagy through a transcriptional activation pattern in MDA-MB-231 cells, which was associated with the downstream target genes autophagy related 5, class III phosphoinositide 3-kinase vacuolar protein sorting 34, autophagy related 4B cysteine peptidase, beclin 1 and microtubule associated protein 1 light chain 3β. Knocking down FOXO1 attenuated the survival of MDA-MB-231 cells in response to PTX treatment. These findings may be beneficial for improving the treatment efficacy of PTX and to develop autophagic targeted therapy for TNBC.
Collapse
Affiliation(s)
- Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Wanyun Zhu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Anyong Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Zhe Xiong
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Di Zou
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| |
Collapse
|
15
|
Alyazici LY, Kocabas F. Identification of Small Molecules That Enhance the Expansion of Mesenchymal Stem Cells Originating from Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:43-55. [PMID: 34845672 DOI: 10.1007/5584_2021_677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to be promising for regenerative medicines with their immunomodulatory characteristics. They may be obtained from a variety of tissue types, including umbilical cord, adipose tissue, dental tissue, and bone marrow (BM). BM-MSCs are challenging in terms of their ex vivo expansion capability. Thus, we aimed to improve the expansion of BM-MSCs with small molecule treatments. We tested about forty small molecules that are potent quiescence modulators, and determined their efficacy by analysis of cell viability, cell cycle, and apoptosis in BM-MSCs. We also examined gene expression for selected small molecules to explore essential molecular pathways. We observed that treatment with SB203580 increased BM-MSCs expansion up to two fold when used for 5 days. SB203580 decreased the proportion of cells in the G1 phase of the cell cycle and substantially increased the ratio of cells in the S-G2-M phase. Enhanced MSC expansion with SB203580 therapy was associated with the lower expression of CDKIs like p15, p18, p19, p21, p27, and p57. In conclusion, we have developed a new approach to facilitate the expansion of BM-MSCs. These results could enhance autologous and immunomodulation therapy involving BM-MSCs.
Collapse
Affiliation(s)
- Lamia Yazgi Alyazici
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
16
|
Zhang Y, Fei W, Zhang H, Zhou Y, Tian L, Hao J, Yuan Y, Li W, Liu Y. Increasing anticancer effect in vitro and vivo of liposome-encapsulated iridium(III) complexes on BEL-7402 cells. J Inorg Biochem 2021; 225:111622. [PMID: 34624670 DOI: 10.1016/j.jinorgbio.2021.111622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
The studies of iridium (III) complexes as potent anticancer reagents have attracted great attention. Here, a new iridium (III) complex [Ir(bzq)2(PYIP)](PF6) (Ir1, bzq = benzo[h]quinoline, PYIP = 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) was synthesized and its liposomes (Ir1Lipo) was prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1 and Ir1Lipo on HepG2, SGC-7901, BEL-7402, HeLa, B16, A549 and normal NIH3T3 cells. The complex Ir1 displays no obvious inhibitory effect on the growth of BEL-7402 cells, while the Ir1Lipo shows significant cytotoxic activity on BEL-7402 cells (IC50 = 2.6 ± 0.03 μM). In further studies, Ir1Lipo induced apoptosis by the mitochondrial pathways, such as increasing intracellular reactive oxygen species (ROS) content and intracellular Ca2+ level, decreasing the mitochondrial membrane potential (MMP). In addition, after incubation with Ir1Lipo, the colony formation of BEL-7402 cells was significantly inhibited. Moreover, flow cytometry was used to detect the impact of Ir1Lipo on cell cycle distribution, and western blot was used to detect the expression of caspases and Bcl-2 (B-cell lymphoma-2) family proteins. Furthermore, Ir1Lipo exhibited significant antitumor activity in vivo with an inhibitory rate of 65.8%. These results indicated that Ir1Lipo induces apoptosis in BEL-7402 cells through intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zejiang University School of Medicine, Hangzhou 310006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Güzel M, Akpınar O. Hydroxychloroquine Attenuates Acute Inflammation (LPS)-Induced Apoptosis via Inhibiting TRPV1 Channel/ROS Signaling Pathways in Human Monocytes. BIOLOGY 2021; 10:biology10100967. [PMID: 34681066 PMCID: PMC8533250 DOI: 10.3390/biology10100967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary LPS is a well-known agent in cell line models, including U937 monocytes, for inducing acute inflammation (INF). It is not known whether antioxidant HCQ, through the inhibition of TRPV1 in U937, can decrease oxidative monocyte toxicity and cell death. We investigated the modulator action of HCQ treatment through the modulation of TRPV1 on the levels of mROS, INF, and apoptosis in an LPS-stimulated U937 monocyte model. Acute INF activates apoptotic, inflammatory, and oxidant action through acute INF-dependent excessive cROS, MDA, cytokine generation, and Ca2+ influx in U937 human monocyte cells. Furthermore, treatment with acute INF increases TRPV1 and apoptotic marker (CAS3, CAS9, Bax, and Bcl-2) concentrations via downregulation of glutathione level and glutathione peroxidase activity in U937 monocytes. The acute INF-caused U937 oxidative stress and cytotoxicity is diminished by the treatment of HCQ and TRPV1 inhibitor (CPZ). In summary, treatment with HCQ and CPZ induced anti-inflammatory, anti-apoptotic, and antioxidant action via the inhibition of cROS, cytokine generation, and caspase activation. Abstract Acute inflammation (INF) and apoptosis are induced in monocytes by the generation of several factors, including the products of cytosolic oxygen free radicals (cROS) and the excessive influx of Ca2+ via the stimulation of TRPV1. These are main factors in the etiology of monocyte activation-induced inflammatory and neurodegenerative diseases. Importantly, the protective action of hydroxychloroquine (HCQ) treatment via the inhibition of TRPV1 on the levels of inflammatory factors, cROS, and apoptosis in acute INF (lipopolysaccharide, LPS)-exposed neuronal cells was recently reported. However, the relationships between acute INF via TRPV1 activation and HCQ in monocytes have not been fully clarified yet. The cell membrane of U937 human monocytes contains natural TRPV1. In the study plan, we used U937 cells in four main groups, namely control, HCQ (60 μM for 48 h), INF (1 μg/mL LPS for 16 h), and HCQ + INF. The current data indicate that LPS-induced acute INF caused the upregulation of excessive cytosolic Ca2+ accumulation via the stimulation of TRPV1 in the cells. The treatment of INF additionally upregulated the levels of apoptosis and cytokines (IL6, IL1β, and TNFα), due to upregulated cROS and lipid peroxidation levels as well as upregulated generation of caspase -3 (CAS3) and -9 (CAS9) but a decrease in glutathione and glutathione peroxidase. The expression levels of TRPV1, Bax, CAS3, and CAS9 were also upregulated by the treatment of LPS. However, treatment with HCQ and TRPV1 blocker (capsazepine) modulated the levels of cytokines, caspases, cROS, Ca2+ influx, and apoptosis through the modulation of TRPV1 in the U937 that were stimulated with LPS. In summary, the present data suggest TRPV1 activation through the acute INF (LPS)-induced inflammatory, oxidant, and apoptotic adverse actions in monocyte cells, whereas HCQ prevented adverse actions via the modulation of TRPV1. The results may be significant in the modulation of monocyte activation-caused inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mustafa Güzel
- Labaratory of Medical Microbiology, Private Medical Center of Maltepe, Maltepe Tıp Merkezi, TR-34854 Istanbul, Turkey
- Correspondence:
| | - Orhan Akpınar
- Medical Microbiology Unit, Oral and Maxillofacial Surgery Department, Dentistry School, Suleyman Demirel University, TR-32260 Isparta, Turkey;
- Department of Medical Microbiology, Health Sciences Institute, Suleyman Demirel University, TR-32260 Isparta, Turkey
| |
Collapse
|
18
|
Lou J, Yang X, Shan W, Jin Z, Ding J, Hu Y, Liao Q, Du Q, Xie R, Xu J. Effects of calcium‑permeable ion channels on various digestive diseases in the regulation of autophagy (Review). Mol Med Rep 2021; 24:680. [PMID: 34318907 DOI: 10.3892/mmr.2021.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/07/2021] [Indexed: 12/09/2022] Open
Abstract
Autophagy is a process of degradation and catabolism in cells. By removing damaged or dysfunctional organelles, autophagy interacts with the ubiquitin‑proteasome degradation system to jointly regulate cell function and energy homeostasis. Since autophagy plays a key role in physiology, disorders of the autophagy mechanism are associated with various diseases. Therefore, thorough understanding of the autophagy regulatory mechanism are crucially important in the diagnosis and treatment of diseases. To date, ion channels may affect the development and treatment of diseases by regulating autophagy, especially calcium‑permeable ion channels, in the process of digestive system diseases. However, the mechanism by which calcium ions and their channels regulate autophagy is still poorly understood, thus emphasizing the need for further research in this field. The present review intends to discuss the association, mechanism and application of calcium ions, their channels and autophagy in the occurrence and development of digestive system diseases.
Collapse
Affiliation(s)
- Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
19
|
Bernhem K, Fontana JM, Svensson D, Zhang L, Nilsson LM, Scott L, Blom H, Brismar H, Aperia A. Super-resolution microscopy reveals that Na +/K +-ATPase signaling protects against glucose-induced apoptosis by deactivating Bad. Cell Death Dis 2021; 12:739. [PMID: 34315852 PMCID: PMC8316575 DOI: 10.1038/s41419-021-04025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Activation of the apoptotic pathway is a major cause of progressive loss of function in chronic diseases such as neurodegenerative and diabetic kidney diseases. There is an unmet need for an anti-apoptotic drug that acts in the early stage of the apoptotic process. The multifunctional protein Na+,K+-ATPase has, in addition to its role as a transporter, a signaling function that is activated by its ligand, the cardiotonic steroid ouabain. Several lines of evidence suggest that sub-saturating concentrations of ouabain protect against apoptosis of renal epithelial cells, a common complication and major cause of death in diabetic patients. Here, we induced apoptosis in primary rat renal epithelial cells by exposing them to an elevated glucose concentration (20 mM) and visualized the early steps in the apoptotic process using super-resolution microscopy. Treatment with 10 nM ouabain interfered with the onset of the apoptotic process by inhibiting the activation of the BH3-only protein Bad and its translocation to mitochondria. This occurred before the pro-apoptotic protein Bax had been recruited to mitochondria. Two ouabain regulated and Akt activating Ca2+/calmodulin-dependent kinases were found to play an essential role in the ouabain anti-apoptotic effect. Our results set the stage for further exploration of ouabain as an anti-apoptotic drug in diabetic kidney disease as well as in other chronic diseases associated with excessive apoptosis.
Collapse
Affiliation(s)
- Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Jacopo M Fontana
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Daniel Svensson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Liang Zhang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden.
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
20
|
Wu L, Lian W, Zhao L. Calcium signaling in cancer progression and therapy. FEBS J 2021; 288:6187-6205. [PMID: 34288422 DOI: 10.1111/febs.16133] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
The old Greek aphorism 'Panta Rhei' ('everything flows') is true for all living things in general. As a dynamic process, calcium signaling plays fundamental roles in cellular activities under both normal and pathological conditions, with recent researches uncovering its involvement in cell proliferation, migration, survival, gene expression, and more. The major question we address here is how calcium signaling affects cancer progression and whether it could be targeted to combine with classic chemotherapeutics or emerging immunotherapies to improve their efficacy.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Weidong Lian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
He Q, Li Z. The dysregulated expression and functional effect of CaMK2 in cancer. Cancer Cell Int 2021; 21:326. [PMID: 34193145 PMCID: PMC8243487 DOI: 10.1186/s12935-021-02030-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/19/2021] [Indexed: 11/10/2022] Open
Abstract
CaMK2 (calcium/calmodulin-dependent protein kinase 2), a multifunctional serine/threonine-protein kinase involved in diverse cellular processes, is vital for the transduction of the Ca2+ signaling cascade. Recently, research has highlighted the involvement of CaMK2 in cancer development. However, the specific effects of CaMK2 on cancer have not been fully elucidated. In this review, we summarize not only the altered expression of CaMK2 in a range of cancers, as evidenced by bioinformatics analysis, but also the significant role of CaMK2 in regulating cancer progression, such as proliferation and metastasis. In addition, we described the functional influence of CaMK2 on cancer stemness and resistance. Understanding the critical effects and mechanisms of CaMK2 in cancer would facilitate the development of a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Qi He
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
22
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Liang X, Zhang N, Pan H, Xie J, Han W. Development of Store-Operated Calcium Entry-Targeted Compounds in Cancer. Front Pharmacol 2021; 12:688244. [PMID: 34122115 PMCID: PMC8194303 DOI: 10.3389/fphar.2021.688244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the major pathway of Ca2+ entry in mammalian cells, and regulates a variety of cellular functions including proliferation, motility, apoptosis, and death. Accumulating evidence has indicated that augmented SOCE is related to the generation and development of cancer, including tumor formation, proliferation, angiogenesis, metastasis, and antitumor immunity. Therefore, the development of compounds targeting SOCE has been proposed as a potential and effective strategy for use in cancer therapy. In this review, we summarize the current research on SOCE inhibitors and blockers, discuss their effects and possible mechanisms of action in cancer therapy, and induce a new perspective on the treatment of cancer.
Collapse
Affiliation(s)
- Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Fan X, Zhou J, Yan X, Bi X, Liang J, Lu S, Luo L, Zhou D, Yin Z. Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway. Life Sci 2021; 275:119355. [PMID: 33744326 DOI: 10.1016/j.lfs.2021.119355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
AIM The aim of this study was to explore the antitumor effect of citrate on prostate cancer and its underlying mechanism. MAIN METHODS CCK-8 and Colony formation assay were performed to detect the anti-proliferative effect of citrate on prostate cancer. Flow cytometry analysis was conducted to investigate the pro-apoptosis effect of citrate on prostate cancer. Immunofluorescence assay was taken to detect whether citrate induced autophagy in prostate cancer. Western blot and Immunohistochemical assay were performed to explore the underlying mechanism by which citrate activates autophagic death in prostate cancer cells. Xenograft tumorigenicity assay was conducted to explore whether citrate suppressed the growth of xenograft prostate tumors in vivo. KEY FINDINGS We found citrate could significantly induce apoptosis and autophagy of prostate cancer cells in vitro and in vivo. Furthermore, treatment with autophagy inhibitor (chloroquine) drastically suppresses the apoptosis rate of prostate cancer induced by citrate. Based on the Ca2+-chelating property of citrate, the further study suggested that citrate activates autophagic cell death in prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway. Finally, citrate suppresses the growth of xenograft prostate tumors without remarkable toxicity in mice. SIGNIFICANCE Our study elucidated a novel molecular mechanism about the anti-cancer activities of citrate. That citrate activates autophagic cell death of prostate cancer via downregulation CaMKII/AKT/mTOR pathway and without remarkable toxicity in mice. This study suggests that citrate might be a promising therapeutic agent for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 200032 Shanghai, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Liu L, Chen M, Lin K, Xiang X, Yang J, Zheng Y, Xiong X, Zhu S. TRPC6 Attenuates Cortical Astrocytic Apoptosis and Inflammation in Cerebral Ischemic/Reperfusion Injury. Front Cell Dev Biol 2021; 8:594283. [PMID: 33604333 PMCID: PMC7884618 DOI: 10.3389/fcell.2020.594283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channel is an important non-selective cation channel with a variety of physiological roles in the central nervous system. Evidence has shown that TRPC6 is involved in the process of experimental stroke; however, the underlying mechanisms remain unclear. In the present study, the role of astrocytic TRPC6 was investigated in an oxygen-glucose deprivation cell model and middle cerebral artery occlusion (MCAO) mouse model of stroke. HYP9 (a selective TRPC6 agonist) and SKF96365 (SKF; a TRPC antagonist) were used to clarify the exact functions of TRPC6 in astrocytes after ischemic stroke. TRPC6 was significantly downregulated during ischemia/reperfusion (IR) injury in cultured astrocytes and in cortices of MCAO mice. Application of HYP9 in vivo alleviated the brain infarct lesion, astrocytes population, apoptosis, and interleukin-6 (IL-6) and IL-1β release in mouse cortices after ischemia. HYP9 dose-dependently inhibited the downregulation of TRPC6 and reduced astrocytic apoptosis, cytotoxicity and inflammatory responses in IR insult, whereas SKF aggravated the damage in vitro. In addition, modulation of TRPC6 channel diminished IR-induced Ca2+ entry in astrocytes. Furthermore, decreased Ca2+ entry due to TRPC6 contributed to reducing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) nuclear translocation and phosphorylation. Overexpression of astrocytic TRPC6 also attenuated apoptosis, cytotoxicity, inflammatory responses, and NF-κB phosphorylation in modeled ischemia in astrocytes. The results of the present study indicate that the TRPC6 channel can act as a potential target to reduce both inflammatory responses and apoptosis in astrocytes during IR injury, subsequently attenuating ischemic brain damage. In addition, we provide a novel view of stroke therapy by targeting the astrocytic TRPC6 channel.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Studies of anticancer activity in vivo and in vitro behaviors of liposomes encapsulated iridium(III) complex. J Biol Inorg Chem 2021; 26:109-122. [PMID: 33475857 DOI: 10.1007/s00775-020-01841-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Iridium(III) complexes have gained great attention in cancer treatment in recent years. In this paper, we designed and synthesized a new iridium(III) complex [Ir(piq)2(DQTT)](PF6) Ir1 (piq = 1-phenylisoquinoline, DQTT = 12-(1,4-dihydroquinoxalin-6-yl)-4,5,9,14-tetraazabenzo[b]triphenylene). The Ir1-loaded PEGylated liposomes (Lipo-Ir1) were prepared using the ethanol injection method. The anticancer activity of the complex and Lipo-Ir1 against SGC-7901 (human gastric adenocarcinoma), A549 (human lung carcinoma), HeLa (human cervical carcinoma), HepG2 (human hepatocellular carcinoma), BEL-7402 (human hepatocellular carcinoma), and normal NIH3T3 (mouse embryonic fibroblasts) was tested by the MTT method. The complex Ir1 shows moderate or low cytotoxicity against the selected cancer cells, whereas the Lipo-Ir1 exhibits high anticancer activity toward the same cancer cells. The apoptosis induced by Lipo-Ir1 was assayed by flow cytometry and Lipo-Ir1 induced apoptosis through increasing intracellular reactive-oxygen species levels, decreasing mitochondrial membrane potential, further promoting cytochrome c release and causing the increase of level of intracellular Ca2+. Western blot was used to detect the changes in Bcl-2 family protein and PI3K/AKT pathway proteins. The cloning experiments demonstrated that the Lipo-Ir1 can effectively inhibit cell proliferation. In vivo experiments, Lipo-Ir1 inhibited tumor growth in xenograft nude mice, and the percentage of tumor growth inhibition in vivo was 75.70%. Overall, the liposomes Lipo-Ir1 exhibits higher anticancer activity than Ir1 under the same conditions. These results indicated that Lipo-Ir1 may be a valuable resource for cancer therapy.
Collapse
|
27
|
Ba G, Tang R, Sun X, Li Z, Lin H, Zhang W. Therapeutic effects of SKF-96365 on murine allergic rhinitis induced by OVA. Int J Immunopathol Pharmacol 2021; 35:20587384211015054. [PMID: 33983057 PMCID: PMC8127738 DOI: 10.1177/20587384211015054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION SKF-96365 is regarded as an inhibitor of receptor-mediated calcium ion (Ca2+) entry. The current study aimed to explore the effects of SKF-96365 on murine allergic rhinitis (AR). METHODS Intranasal SKF-96365 administration was performed on OVA induced murine AR. Serum and nasal lavage fluid (NLF) from mice were harvested to assay IgE and inflammatory cytokines using ELISA method. Inflammatory cells were counted and analyzed in NLF. Nasal mucosa tissues were collected from mice and used for HE staining, immunohistochemistry (IHC) staining, and real-time PCR detection. RESULTS SKF-96365 had therapeutic effects on murine AR manifesting attenuation of sneezing, nasal rubbing, IgE, inflammatory cytokines, inflammatory cells, TRPC6 immunolabeling, and TRPC6, STIM1 and Orai1 mRNA levels in AR mice. CONCLUSION SKF-96365 could effectively alleviate the symptoms of murine AR. SKF-96365 could suppress TRPC6, STIM1, and Orai1 activities, leading to the downregulation of inflammatory cytokines and inflammatory cells in murine AR.
Collapse
Affiliation(s)
- Guangyi Ba
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
28
|
The neuroprotective effects of activated α7 nicotinic acetylcholine receptor against mutant copper-zinc superoxide dismutase 1-mediated toxicity. Sci Rep 2020; 10:22157. [PMID: 33335227 PMCID: PMC7746719 DOI: 10.1038/s41598-020-79189-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Although many drugs have entered clinical trials, few have shown effectiveness in the treatment of ALS. Other studies have shown that the stimulation of α7 nicotinic acetylcholine receptor (nAChR) can have neuroprotective effects in some models of neurodegenerative disease, as well as prevent glutamate-induced motor neuronal death. However, the effect of α7 nAChR agonists on ALS-associated mutant copper-zinc superoxide dismutase 1 (SOD1) aggregates in motor neurons remains unclear. In the present study, we examined whether α7 nAChR activation had a neuroprotective effect against SOD1G85R-induced toxicity in a cellular model for ALS. We found that α7 nAChR activation by PNU282987, a selective agonist of α7 nAChR, exhibited significant neuroprotective effects against SOD1G85R-induced toxicity via the reduction of intracellular protein aggregates. This reduction also correlated with the activation of autophagy through the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the activation of α7 nAChRs was found to increase the biogenesis of lysosomes by inducing translocation of the transcription factor EB (TFEB) into the nucleus. These results support the therapeutic potential of α7 nAChR activation in diseases that are characterized by SOD1G85R aggregates, such as ALS.
Collapse
|
29
|
Singh AK, Roy NK, Bordoloi D, Padmavathi G, Banik K, Khwairakpam AD, Kunnumakkara AB, Sukumar P. Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sci 2020; 261:118372. [PMID: 32882268 DOI: 10.1016/j.lfs.2020.118372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Despite remarkable progress in understanding and treating oral cancer (OC), it still remains one of the life-threatening diseases and predominant cancers in the world. Therefore, deciphering the molecular mechanisms of this disease would help us to develop highly efficacious therapies. Multiple lines of evidence suggest that calcium and its dysregulation play significant role in the development of various cancers. As an adaptation of survival mechanism, upon depletion of ER calcium stores, store-operated calcium entry (SOCE) has been induced via SOCE channels (SOCC) in various mammalian cells. SOCC are regulated by Orai-1, Orai-2 and Orai-3 located on plasma membrane and two calcium-sensing ER membrane proteins known as stromal interaction molecules (STIM-1 and STIM-2). Hence, the present study was aimed at analysing the role of Orai-1 and Orai-2 in oral cancer and the underlying mechanism. Our results suggest that both Orai-1 and Orai-2 proteins were overexpressed in oral cancer tissues and cell lines (SAS) compared to normal epithelial tissues and cell lines respectively. In addition, silencing of Orai-1 and Orai-2 via chemical SOCE inhibitors and siRNAs inhibited calcium uptake and suppressed oral cancer cell proliferation, colony formation and migration. Furthermore, silencing of Orai-1 and Orai-2 inhibited Akt/mTOR/NF-κB pathway in oral cancer cells. Interestingly, tobacco carcinogen NNN and synthetic carcinogen 4-NQO, enhanced the expression of Orai-1 and Orai-2 in SAS cells. Therefore, we conclude that Orai-1 and Orai-2 have significant role in oral cancer and can be further explored to develop novel therapies for the treatment of this disease.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Devi Khwairakpam
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
30
|
Morin Hydrate Sensitizes Hepatoma Cells and Xenograft Tumor towards Cisplatin by Downregulating PARP-1-HMGB1 Mediated Autophagy. Int J Mol Sci 2020; 21:ijms21218253. [PMID: 33158052 PMCID: PMC7885522 DOI: 10.3390/ijms21218253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
The cross-talk between apoptosis and autophagy influences anticancer drug sensitivity and cellular death in various cancer cell lines. However, the fundamental mechanisms behind this phenomenon are still unidentified. We demonstrated anti-cancerous role of cisplatin (CP) and morin hydrate (Mh) as an individual and/or in combination (CP-Mh) in hepatoma cells and tumor model. Exposure of CP resulted in the production of intracellular reactive oxygen species (ROS)-mediated cellular vacuolization, expansion of mitochondria membrane and activation of endoplasmic reticulum (ER)-stress. Consequently, Cyt c translocation led to the increase of Bax/Bcl-2 ratio, which simultaneously triggered caspase-mediated cellular apoptosis. In addition, CP-induced PARP-1 activation led to ADP-ribosylation of HMGB1, which consequently developed autophagy as evident by the LC3I/II ratio. Chemically-induced inhibition of autophagy marked by increased cell death signified a protective role of autophagy against CP treatment. CP-Mh abrogates the PARP-1 expression and significantly reduced HMGB1-cytoplasmic translocation with subsequent inhibition of the HMGB1-Beclin1 complex formation. In the absence of PARP-1, a reduced HMGB1 mediated autophagy was observed followed by induced caspase-dependent apoptosis. To confirm the role of PARP-1-HMGB1 signaling in autophagy, we used the PARP-1 inhibitor, 4-amino-1,8-naphthalimide (ANI), HMGB1 inhibitor, ethyl pyruvate (EP), autophagy inhibitors, 3-methyl adenine (3-MA) and bafilomycin (baf) and small interfering RNAs (siRNA) to target Atg5 in combination of CP and Mh. Exposure to these inhibitors enhanced the sensitivity of HepG2 cells to CP. Collectively, our findings indicate that CP-Mh in combination served as a prominent regulator of autophagy and significant inducer of apoptosis that maintains a homeostatic balance towards HepG2 cells and the subcutaneous tumor model.
Collapse
|
31
|
Yu Z, Xu J, Shao M, Zou J. Germacrone Induces Apoptosis as Well as Protective Autophagy in Human Prostate Cancer Cells. Cancer Manag Res 2020; 12:4009-4016. [PMID: 32547235 PMCID: PMC7264030 DOI: 10.2147/cmar.s250522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023] Open
Abstract
Background Germacrone, a natural product isolated from the traditional Chinese medicine Rhizoma Curcuma, has been reported to exhibit antitumor activities in vitro. To further understand the antitumor mechanism of germacrone, we investigated the growth inhibitory effect of germacrone on the human prostate cancer cell lines PC-3 (androgen independent) and 22RV1 (androgen dependent). Materials and Methods Prostate cancer cells were cultured with different concentrations of germacrone, and cell viability was measured by MTT assay. The levels of proteins were measured by Western blotting. Cell apoptosis was assessed by flow cytometry. Images of autophagy-related protein staining were captured by fluorescence microscopy. Autophagic flux was assessed by detecting the LC3B-II level. Results Our results indicated that germacrone treatment significantly inhibited cell proliferation by inducing apoptosis in a dose-dependent manner, with IC50 values of 259 μM for PC-3 cells and 396.9 μM for 22RV1 cells. Germacrone-treated cells also exhibited induction of autophagy, as evidenced by elevated LC3B-II protein expression levels and punctuate patterns. Additionally, an autophagy inhibitor enhanced the growth inhibitory effect of germacrone. Moreover, the phosphorylation of Akt and mTOR was inhibited in germacrone-treated prostate cancer cells. Conclusion Germacrone induced apoptosis and autophagy in prostate cancer cells by inhibiting the Akt/mTOR signaling pathway. Germacrone treatment also led to the activation of protective autophagy. These findings suggest that germacrone may potentially contribute to the development of a new therapeutic agent for prostate cancer treatment.
Collapse
Affiliation(s)
- Ziqiang Yu
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei City, Anhui Province 230031, People's Republic of China
| | - Jiuping Xu
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei City, Anhui Province 230031, People's Republic of China
| | - Mingfeng Shao
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei City, Anhui Province 230031, People's Republic of China
| | - Jianan Zou
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei City, Anhui Province 230031, People's Republic of China
| |
Collapse
|
32
|
[Pt(O,O'-acac)(γ-acac)(DMS)]: Alternative Strategies to Overcome Cisplatin-Induced Side Effects and Resistance in T98G Glioma Cells. Cell Mol Neurobiol 2020; 41:563-587. [PMID: 32430779 DOI: 10.1007/s10571-020-00873-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O'-acac)(γ-acac)(DMS)], namely PtAcacDMS, a new platinum(II) complex containing two acetylacetonate (acac) and a dimethylsulphide (DMS) in the coordination sphere of metal, has been recently synthesized and showed 100 times higher cytotoxicity than CDDP. Additionally, PtAcacDMS was associated to a decreased neurotoxicity in developing rat central nervous system, also displaying great antitumor and antiangiogenic activity both in vivo and in vitro. Thus, based on the knowledge that several chemotherapeutics induce cancer cell death through an aberrant increase in [Ca2+]i, in the present in vitro study we compared CDDP and PtAcacDMS effects on apoptosis and intracellular Ca2+ dynamics in human glioblastoma T98G cells, applying a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, electron microscopy, Western blotting, qRT-PCR, and epifluorescent Ca2+ imaging. The results confirmed that (i) platinum compounds may induce cell death through an aberrant increase in [Ca2+]i and (ii) PtAcacDMS exerted stronger cytotoxic effect than CDDP, associated to a larger increase in resting [Ca2+]i. These findings corroborate the use of PtAcacDMS as a promising approach to improve Pt-based chemotherapy against gliomas, either by inducing a chemosensitization or reducing chemoresistance in cell lineages resilient to CDDP treatment.
Collapse
|
33
|
Zhao H, Yan G, Zheng L, Zhou Y, Sheng H, Wu L, Zhang Q, Lei J, Zhang J, Xin R, Jiang L, Zhang X, Chen Y, Wang J, Xu Y, Li D, Li Y. STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics 2020; 10:6483-6499. [PMID: 32483465 PMCID: PMC7255033 DOI: 10.7150/thno.44025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Cancer cells undergoing invasion and metastasis possess a phenotype with attenuated glycolysis, but enhanced fatty acid oxidation (FAO). Calcium (Ca2+)-mediated signaling pathways are implicated in tumor metastasis and metabolism regulation. Stromal-interaction molecule 1 (STIM1) triggered store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx for non-excitable cells including hepatocellular carcinoma (HCC) cells. However, whether and how STIM1 regulates the invasion and metastasis of HCC via metabolic reprogramming is unclear. Methods: The expressions of STIM1 and Snail1 in the HCC tissues and cells were measured by immunohistochemistry, Western-blotting and quantitative PCR. STIM1 knockout-HCC cells were generated by CRISPR-Cas9, and gene-overexpression was mediated via lentivirus transfection. Besides, the invasive and metastatic activities of HCC cells were assessed by transwell assay, anoikis rate in vitro and lung metastasis in vivo. Seahorse energy analysis and micro-array were used to evaluate the glucose and lipid metabolism. Results: STIM1 was down-regulated in metastatic HCC cells rather than in proliferating HCC cells, and low STIM1 levels were associated with poor outcome of HCC patients. During tumor growth, STIM1 stabilized Snail1 protein by activating the CaMKII/AKT/GSK-3β pathway. Subsequently, the upregulated Snail1 suppressed STIM1/SOCE during metastasis. STIM1 restoration significantly diminished anoikis-resistance and metastasis induced by Snail1. Mechanistically, the downregulated STIM1 shifted the anabolic/catabolic balance, i.e., from aerobic glycolysis towards AMPK-activated fatty acid oxidation (FAO), which contributed to Snail1-driven metastasis and anoikis-resistance. Conclusions: Our data provide the molecular basis that STIM1 orchestrates invasion and metastasis via reprogramming HCC metabolism.
Collapse
|
34
|
Liu T, Zhang J, Li K, Deng L, Wang H. Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Front Pharmacol 2020; 11:408. [PMID: 32322202 PMCID: PMC7156970 DOI: 10.3389/fphar.2020.00408] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is considered a cytoprotective function in cancer therapy under certain conditions and is a drug resistance mechanism that represents a clinical obstacle to successful cancer treatment and leads to poor prognosis in cancer patients. Because certain clinical drugs and agents in development have cytoprotective autophagy effects, targeting autophagic pathways has emerged as a potential smarter strategy for cancer therapy. Multiple preclinical and clinical studies have demonstrated that autophagy inhibition augments the efficacy of anticancer agents in various cancers. Autophagy inhibitors, such as chloroquine and hydroxychloroquine, have already been clinically approved, promoting drug combination treatment by targeting autophagic pathways as a means of discovering and developing more novel and more effective cancer therapeutic approaches. We summarize current studies that focus on the antitumor efficiency of agents that induce cytoprotective autophagy combined with autophagy inhibitors. Furthermore, we discuss the challenge and development of targeting cytoprotective autophagy as a cancer therapeutic approach in clinical application. Thus, we need to facilitate the exploitation of appropriate autophagy inhibitors and coadministration delivery system to cooperate with anticancer drugs. This review aims to note optimal combination strategies by modulating autophagy for therapeutic advantage to overcome drug resistance and enhance the effect of antitumor therapies on cancer patients.
Collapse
Affiliation(s)
- Ting Liu
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangdi Li
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingnan Deng
- Department of Digestion, The Second Affiliated Hospital of Jiangxi University TCM, Nanchang, China
| | - Hongxiang Wang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Xiao Z, Wei Z, Deng D, Zheng Z, Zhao Y, Jiang S, Zhang D, Zhang LJ, Fan M, Chen S, Wang S, Ding Y, Ye Y, Jiao H. Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell Int 2020; 20:50. [PMID: 32082080 PMCID: PMC7020597 DOI: 10.1186/s12935-020-1124-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Siah E3 ubiquitin protein ligase 1 (Siah1) has been identified as a tumor suppressor gene and plays an important role in the development of malignant tumors. However, the potential role and molecular mechanism of Siah1 in the development and progression of CRC is still unclear. Methods To explore the role and molecular mechanism of Siah1 in the development and progression of CRC, we examined the expression of Siah1 in CRC tissue samples and analyzed its association with progression and prognosis in CRC. In addition, overexpression and knockdown of Siah1 was used to investigate its activity in CRC cells. We also use bioinformatics to analyze and verify the significant roles of Siah1 in critical signaling pathways of CRC. Results We found that the expression of Siah1 was significantly downregulated in CRC tissues, and low expression of Siah1 was associated with aggressive TNM staging and poor survival of CRC patients. Moreover, we revealed that overexpression of Siah1 in CRC cells markedly inhibited CRC cell proliferation and invasion in vitro and in vivo, while knockdown of Siah1 enhanced CRC cell proliferation and invasion. Furthermore, we found that Siah1 prohibited cell proliferation and invasion in CRC partially through promoting AKT (the serine-threonine protein kinase) and YAP (yes associated protein) ubiquitylation and proteasome degradation to regulate the activity of MAPK(mitogen-activated protein kinase 1), PI3K-AKT (phosphatidylinositol 3-kinase-the serine-threonine protein kinase) and Hippo signaling pathways. Conclusions These findings suggested that Siah1 is a novel potential prognostic biomarker and plays a tumor suppressor role in the development and progression of CRC.
Collapse
Affiliation(s)
- Zhiyuan Xiao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.,3Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong China
| | - Zhigang Wei
- 4Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danling Deng
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.,Department of Pathology, Shaoyang Central Hospital, Affiliated Shaoyang Hospital of University of South China, Shaoyang, Hunan China
| | - Zhe Zheng
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shenglu Jiang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Mingmei Fan
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Siqi Chen
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - ShuYang Wang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yanqing Ding
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yaping Ye
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
36
|
Oxidative stress facilitates cell death by inhibiting Orai1-mediated Ca 2+ entry in brain capillary endothelial cells. Biochem Biophys Res Commun 2019; 523:153-158. [PMID: 31839216 DOI: 10.1016/j.bbrc.2019.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Brain capillary endothelial cells (BCECs) form the blood-brain barrier (BBB) and play an essential role in the regulation of its functions. Oxidative stress accumulates excessive reactive oxygen species (ROS) and facilitates the death of BCECs, leading to a dysfunctional BBB. However, the mechanisms underlying the death of BCECs under oxidative stress remain unclear. In the present study, the effects of oxidative stress on cell viability, ROS production, intracellular Ca2+ concentration, and protein expression were examined using a cell line derived from bovine BCECs, t-BBEC117. When t-BBEC117 cells were exposed to oxidative stress induced by hydrogen peroxide (H2O2, 10-100 μM), cell growth was inhibited in a dose-dependent manner. Oxidative stress by 30 μM H2O2 increased the production of ROS and its effects were blocked by the ROS scavenger, 10 mM N-acetyl-l-cysteine (NAC). In addition, oxidative stress reduced store-operated Ca2+ entry (SOCE) and this decrease was recovered by NAC or the Orai channel activator, 5 μM 2-aminoethyl diphenylborinate (2-APB). The siRNA knockdown of Orai1 revealed that Orai1 was mainly responsible for SOCE channels and its activity was decreased by oxidative stress. However, the protein expression of Orai1 and STIM1 was not affected by oxidative stress. Oxidative stress-induced cell death was rescued by 2-APB, NAC, or the STIM-Orai activating region. In conclusion, oxidative stress reduces Orai1-mediated SOCE and, thus, facilitates the death of BCECs.
Collapse
|
37
|
Wang C, Yu F, Liu X, Chen S, Wu R, Zhao R, Hu F, Yuan H. Cancer-Specific Therapy by Artificial Modulation of Intracellular Calcium Concentration. Adv Healthc Mater 2019; 8:e1900501. [PMID: 31368208 DOI: 10.1002/adhm.201900501] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Indexed: 01/16/2023]
Abstract
Calcium (Ca2+ ) hemeostasis is crucial for the normal function of cellular biochemistry. The abnormal frequency of Ca2+ signaling in cancer cells makes them more vulnerable to Ca2+ modulation than normal cells. Here in this study, a novel cancer-specific therapy by artificially triggering Ca2+ overload in cancer cells is proposed. The feasibility of this therapy is illustrated by successful coupling of selective extrusion (Ca2+ ) inhibition effect of Curcumin (Cur) and the effective Ca2+ generating capability of amorphous calcium carbonate (ACC) into a facilely prepared water responsive phospholipid (PL)-ACC hybrid platform (PL/ACC-Cur). The obtained results demonstrate that PL/ACC-Cur can specifically boost the intracellular Ca2+ concentration to cause Ca2+ overload and to trigger mitochondria-related apoptosis in MCF-7 cells while sparing normal hepatocyte (L02), which might be a promising approach for effective cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University No. 1 Wenyuan Road Nanjing 210046 China
| | - Fangying Yu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Xuerong Liu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Shaoqing Chen
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Wu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Zhao
- Sir Run Run Shaw HospitalSchool of MedicineZhejiang University No. 3 Qingchun East Road Hangzhou 310016 China
| | - Fuqiang Hu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hong Yuan
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
38
|
Li S, Yao M, Niu C, Liu D, Tang Z, Gu C, Zhao H, Ke J, Wu S, Wang X, Wu F. Inhibition of MCF-7 breast cancer cell proliferation by a synthetic peptide derived from the C-terminal sequence of Orai channel. Biochem Biophys Res Commun 2019; 516:1066-1072. [DOI: 10.1016/j.bbrc.2019.06.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
|
39
|
Wang W, Yu S, Huang S, Deng R, Ding Y, Wu Y, Li X, Wang A, Wang S, Chen W, Lu Y. A Complex Role for Calcium Signaling in Colorectal Cancer Development and Progression. Mol Cancer Res 2019; 17:2145-2153. [PMID: 31366605 DOI: 10.1158/1541-7786.mcr-19-0429] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
Clinical data suggest that many malignant cancers are associated with hypercalcemia. Hypercalcemia can facilitate the proliferation and metastasis of gastric and colon tumors, and has been considered a hallmark of end-stage disease. However, it has also been reported that dietary calcium or vitamin D supplementation could reduce the risk of many types of cancers. In particular, the intestines can absorb considerable amounts of calcium via Ca2+-permeable ion channels, and hypercalcemia is common in patients with colorectal cancer. Thus, this review considers the role of calcium signaling in the context of colorectal cancer and summarizes the functions of specific regulators of cellular calcium levels in the proliferation, invasion, metastasis, cell death, and drug resistance of colorectal cancer cells. The data reveal that even a slight upregulation of intracellular Ca2+ signaling can facilitate the onset and progression of colorectal cancer, while continuous Ca2+ influx and Ca2+ overload may cause tumor cell death. This dual function of Ca2+ signaling adds nuance to the debate over the hallmarks of colorectal cancer, and may even provide new directions and strategies for clinical interventions.
Collapse
Affiliation(s)
- Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Shijun Wang
- Shandong Co-Innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, P.R. China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China. .,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China. .,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
40
|
Store-Operated Ca 2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019; 11:cancers11070899. [PMID: 31252656 PMCID: PMC6678533 DOI: 10.3390/cancers11070899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.
Collapse
|
41
|
Qu J, Mei Q, Niu R. Oxidative CaMKII as a potential target for inflammatory disease (Review). Mol Med Rep 2019; 20:863-870. [PMID: 31173191 DOI: 10.3892/mmr.2019.10309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/22/2019] [Indexed: 11/06/2022] Open
Abstract
CaMKII is a calcium‑activated kinase, proved to be modulated by oxidation. Currently, the oxidative activation of CaMKII exists in several models of asthma, chronic rhinosinusitis with nasal polyps, cardiovascular disease, diabetes mellitus, acute ischemic stroke and cancer. Oxidized CaMKII (ox‑CaMKII) may be important in several of these diseases. The present review examines the mechanism underlying the oxidative activation of CaMKII and summarizes the current findings associated with the function of ox‑CaMKII in inflammatory diseases. Taken together, the findings of this review aim to improve current understanding of the function of ox‑CaMKII and provide novel insights for future research.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410008, P.R. China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan 410005, P.R. China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
42
|
Xu J, Wang H, Hu Y, Zhang YS, Wen L, Yin F, Wang Z, Zhang Y, Li S, Miao Y, Lin B, Zuo D, Wang G, Mao M, Zhang T, Ding J, Hua Y, Cai Z. Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801233. [PMID: 31016106 PMCID: PMC6468974 DOI: 10.1002/advs.201801233] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/04/2018] [Indexed: 05/28/2023]
Abstract
Fullerene C60 nanocrystals (nano-C60) possess various attractive bioactivities, including autophagy induction and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) activation. CaMKIIα is a multifunctional protein kinase involved in many cellular processes including tumor progression; however, the biological effects of CaMKIIα activity modulated by nano-C60 in tumors have not been reported, and the relationship between CaMKIIα activity and autophagic degradation remains unclear. Herein, nano-C60 is demonstrated to elicit reactive oxygen species (ROS)-dependent cytotoxicity and persistent activation of CaMKIIα in osteosarcoma (OS) cells. CaMKIIα activation, in turn, produces a protective effect against cytotoxicity from nano-C60 itself. Inhibition of CaMKIIα activity by either the chemical inhibitor KN-93 or CaMKIIα knockdown dramatically promotes the anti-OS effect of nano-C60. Moreover, inhibition of CaMKIIα activity causes lysosomal alkalinization and enlargement, and impairs the degradation function of lysosomes, leading to autophagosome accumulation. Importantly, excessive autophagosome accumulation and autophagic degradation blocking are shown to play an important role in KN-93-enhanced-OS cell death. The synergistic anti-OS efficacy of KN-93 and nano-C60 is further revealed in an OS-xenografted murine model. The results demonstrate that CaMKIIα inhibition, along with the suppression of autophagic degradation, presents a promising strategy for improving the antitumor efficacy of nano-C60.
Collapse
Affiliation(s)
- Jing Xu
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yi Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life SciencesUniversity of Science and Technology of China96 Jinzhai StreetHefei230026P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Longping Wen
- School of MedicineSouth China University of TechnologyNanobio LaboratoryInstitutes for Life SciencesSouth China University of Technology381 Wushan StreetGuangzhou510006P. R. China
| | - Fei Yin
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhuoying Wang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yingchao Zhang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yanyan Miao
- Key Laboratory of Gene Engineering of the Ministry of EducationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen University135 West Xingang StreetGuangzhou510275P. R. China
| | - Binhui Lin
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Gangyang Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Min Mao
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yingqi Hua
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhengdong Cai
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| |
Collapse
|
43
|
Liu Z, Jiang L, Li Y, Xie B, Xie J, Wang Z, Zhou X, Jiang H, Fang Y, Pan H, Han W. Cyclosporine A sensitizes lung cancer cells to crizotinib through inhibition of the Ca2 +/calcineurin/Erk pathway. EBioMedicine 2019; 42:326-339. [PMID: 30879923 PMCID: PMC6491942 DOI: 10.1016/j.ebiom.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Crizotinib has potent anti-tumor activity in patients with advanced MET-amplified non-small cell lung cancer (NSCLC). However, the therapeutic effect is still not satisfying. Thus, developing approaches that improve the efficacy of crizotinib remains a significant challenge. Methods MET-amplified NSCLC cell lines were treated with crizotinib and cyclosporine A (CsA). Cell viability was determined by MTS assay. The changes of apoptosis, cell cycle and calcineurin-Erk pathways were assessed by western blot. Xenograft mouse model, primary human NSCLC cells and hollow fiber assays were utilized to confirm the effects of CsA. Findings We demonstrated that CsA significantly increased the anti-tumor effect of crizotinib on multiple MET-amplified NSCLC cells in vitro and in vivo. Mechanistically, crizotinib treatment led to the activation of Ca2+-calcineurin (CaN)-Kinase suppressor of Ras 2 (KSR2) signaling, resulting in Erk1/2 activation and enhanced survival of cancer cells. CsA effectively blocked CaN-KSR2-Erk1/2 signaling, promoting crizotinib-induced apoptosis and G2/M arrest. Similarly, pharmacologic or genetic inhibition of Erk1/2 also enhanced crizotinib-induced growth inhibition in vitro. Xenograft studies further confirmed that CsA or Erk1/2 inhibitor PD98059 enhanced the anti-cancer activity of crizotinib through inhibition of CaN-Erk1/2 axis. The results were also validated by primary human NSCLC cells in vitro and hollow fiber assays in vivo. Interpretation This study provides preclinical evidences that combination therapy of CsA and crizotinib is a promising approach for targeted treatment of MET-amplified lung cancer patients. Fund This work was supported by the National Natural Science Foundation of China, the Key Projects of Natural Foundation of Zhejiang Province, the Ten thousand plan youth talent support program of Zhejiang Province, the Zhejiang Natural Sciences Foundation Grant, and the Zhejiang medical innovative discipline construction project-2016.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Liming Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yiran Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Zhanggui Wang
- Department of Radiotherapy, The Second People's Hospital of Anhui Province, Hefei, Anhui, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, Xiasha Branch of Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hanliang Jiang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
44
|
Zhou XT, Pu ZJ, Liu LX, Li GP, Feng JL, Zhu HC, Wu LF. Inhibition of autophagy enhances adenosine‑induced apoptosis in human hepatoblastoma HepG2 cells. Oncol Rep 2019; 41:829-838. [PMID: 30535464 PMCID: PMC6313051 DOI: 10.3892/or.2018.6899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023] Open
Abstract
In cancer research, autophagy acts as a double‑edged sword: it increases cell viability or induces cell apoptosis depending upon the cell context and functional status. Recent studies have shown that adenosine (Ado) has cytotoxic effects in many tumors. However, the role of autophagy in Ado‑induced apoptosis is still poorly understood. In the present study, Ado‑induced apoptotic death and autophagy in hepatoblastoma HepG2 cells was investigated and the relationship between autophagy and apoptosis was identified. In the present study, it was demonstrated that Ado inhibited HepG2 cell growth in a time‑ and concentration‑dependent manner and activated endoplasmic reticulum (ER) stress, as indicated by G0/G1 cell cycle arrest, the increased mRNA and protein levels of GRP78/BiP, PERK, ATF4, CHOP, cleaved caspase‑3, cytochrome c and the loss of mitochon-drial membrane potential (ΔΨm). Ado also induced autophagic flux, revealed by the increased expression of the autophagy marker microtubule‑associated protein 1 light chain 3‑II (LC3‑II), Beclin‑1, autophagosomes, and the degradation of p62, as revealed by western blot analysis and macrophage‑derived chemokine (MDC) staining. Blocking autophagy using LY294002 notably entrenched Ado‑induced growth inhibition and cell apoptosis, as demonstrated with the increased expression of cytochrome c and p62, and the decreased expression of LC3‑II. Conversely, the autophagy inducer rapamycin alleviated Ado‑induced apoptosis and markedly increased the ΔΨm. Moreover, knockdown of AMPK with si‑AMPK partially abolished Ado‑induced ULK1 activation and mTOR inhibition, and thus reinforced CHOP expression and Ado‑induced apoptosis. These results indicated that Ado‑induced ER stress resulted in apoptosis and autophagy concurrently. The AMPK/mTOR/ULK1 signaling pathway played a protective role in the apoptotic procession. Inhibition of autophagy may effectively enhance the anticancer effect of Ado in human hepatoblastoma HepG2 cells.
Collapse
Affiliation(s)
- Xiao-Tao Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ze-Jin Pu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Li-Xuan Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Guo-Ping Li
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jia-Lin Feng
- Department of Information, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Hua-Chen Zhu
- State Key Laboratory of Emerging Infectious Diseases, Shantou University-The University of Hong Kong Joint Institute of Virology, Shantou, Guangdong 515041, P.R. China
| | - Ling-Fei Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Ling-Fei Wu, Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, 69 Dongxia Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
45
|
Yu W, Wang Y, Zhu J, Jin L, Liu B, Xia K, Wang J, Gao J, Liang C, Tao H. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 2018; 192:128-139. [PMID: 30448697 DOI: 10.1016/j.biomaterials.2018.11.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/30/2022]
Abstract
Elevated expression of programmed death ligand-1 (PD-L1) on the surface of tumor cells can exhaust cytotoxic T lymphocyte cells and lead to the failure of anti-tumor immunity during the course of tumor treatment. Here, we implemented a combined regimen of tumor resection and bovine serum albumin-Zinc phthalocyanine-induced photodynamic therapy (PDT). To overcome the long-distance metastasis of osteosarcoma, we also explored the effects of PD-L1 down-regulation with PDT and the autophagy inhibitor 3-MA on osteosarcoma treatment. A dramatic anti-tumor effect induced by PDT was observed in a partial resection model, which revealed the potential clinical application of PDT during tumor resection. Meanwhile, we also confirmed the down-regulation of PD-L1 in osteosarcoma in response to PDT and 3-MA treatment, which significantly inhibited tumor growth in a model of tumor metastasis. The immunological response induced by the combination of the autophagy inhibitor and PDT suppressed osteosarcoma in vitro and in vivo, which indicated the potential application of this regimen for preventing tumor metastasis. The combination of PDT with multiple therapies has a potentially bright future as an osteosarcoma treatment strategy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Libin Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China.
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, PR China.
| |
Collapse
|
46
|
Li LL, Jin MF, Ni H. Zinc/CaMK II Associated-Mitophagy Signaling Contributed to Hippocampal Mossy Fiber Sprouting and Cognitive Deficits Following Neonatal Seizures and Its Regulation by Chronic Leptin Treatment. Front Neurol 2018; 9:802. [PMID: 30319532 PMCID: PMC6168633 DOI: 10.3389/fneur.2018.00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
The role of leptin in the pathogenesis of epilepsy is getting more and more attention in clinical and basic research. Although there are data indicating neuroprotective effects of elevated serum/brain leptin levels following acute seizures, no study to date has dealt with the impact of chronic leptin treatment on long-term brain injury following developmental seizures. The aim of this study was to evaluate whether chronic leptin treatment may have neuroprotective effects on cognitive and hippocampal mossy fiber sprouting following flurothyl-induced recurrent neonatal seizures and whether these effects are mediated by the zinc/CaMKII-associated mitophagy signaling pathway. Forty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned into two groups: neonatal seizure group and control group. At P13, they were further divided into control group, seizure group (RS), control + leptin (leptin, i.p., 2 mg/kg/day for 10 days), seizure+leptin group (RS+Leptin, 2mg/kg/day, i.p., for 10 consecutive days). Morris water maze test was performed during P27-P32. Subsequently, Timm staining and Western blotting were used to detect the mossy fiber sprouting and protein levels in hippocampus. Flurothyl-induced seizures (RS group) significantly down-regulated mitophagy markers PINK, Drp1, PHB, and memory marker CaMK II alpha while up-regulating zinc transporters ZnT3, ZnT4, ZIP7, and autophagy execution molecular cathepsin-E, which were paralleled with hippocampal aberrant mossy fiber sprouting and cognitive dysfunction. However, these changes were restored by chronic leptin treatment (RS+Leptin group). The results showed that leptin had neuroprotective effect on hippocampal pathological damage and cognitive deficits induced by neonatal seizures and suggested that Zinc/CaMK II associated-mitophagy signaling pathway in hippocampus may be a new target of leptin's neuroprotection, with potential value of translational medicine.
Collapse
Affiliation(s)
- Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Bonnefond ML, Florent R, Lenoir S, Lambert B, Abeilard E, Giffard F, Louis MH, Elie N, Briand M, Vivien D, Poulain L, Gauduchon P, N'Diaye M. Inhibition of store-operated channels by carboxyamidotriazole sensitizes ovarian carcinoma cells to anti-Bclx L strategies through Mcl-1 down-regulation. Oncotarget 2018; 9:33896-33911. [PMID: 30338034 PMCID: PMC6188062 DOI: 10.18632/oncotarget.26084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/04/2018] [Indexed: 12/22/2022] Open
Abstract
The anti-apoptotic proteins Bcl-xL and Mcl-1 have been identified to play a pivotal role in apoptosis resistance in ovarian cancer and constitute key targets for innovative therapeutic strategies. Although BH3-mimetics (i.e. ABT-737) potently inhibit Bcl-xL activity, targeting Mcl-1 remains a hurdle to the success of these strategies. Calcium signaling is profoundly remodeled during carcinogenesis and was reported to activate the signaling pathway controlling Mcl-1 expression. In this context, we investigated the effect of carboxyamidotriazole (CAI), a calcium channel inhibitor used in clinical trials, on Mcl-1 expression. CAI had an anti-proliferative effect on ovarian carcinoma cell lines and strongly down-regulated Mcl-1 expression. It inhibited store-operated calcium entry (SOCE) and Mcl-1 translation through mTORC1 deactivation. Moreover, it sensitized ovarian carcinoma cells to anti-Bcl-xL strategies as their combination elicited massive apoptosis. Its effect on mTORC1 and Mcl-1 was mimicked by the potent SOCE inhibitor, YM58483, which also triggered apoptosis when combined with ABT-737. As a whole, this study suggests that CAI sensitizes to anti-Bcl-xL strategies via its action on Mcl-1 translation and that modulation of SOCE could extend the therapeutic arsenal for treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Marie-Laure Bonnefond
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Romane Florent
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Sophie Lenoir
- Normandie University, UNICAEN, INSERM UMR-S 1237, Physiopathologie et Imagerie des Troubles Neurologiques (PhIND), tPA and Neurovascular Disorders Team, Caen, France
| | - Bernard Lambert
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
- Délégation Régionale de Normandie, CNRS, Caen, France
| | - Edwige Abeilard
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Florence Giffard
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Marie-Hélène Louis
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Nicolas Elie
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- Normandie University, UNICAEN, Centre de Microscopie Appliqué à la Biologie, CMabio3, Structure Fédérative 4206 ICORE, Caen, France
| | - Mélanie Briand
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
- Centre de Ressources Biologiques, OvaRessources, François Baclesse Cancer Center, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S 1237, Physiopathologie et Imagerie des Troubles Neurologiques (PhIND), tPA and Neurovascular Disorders Team, Caen, France
| | - Laurent Poulain
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Pascal Gauduchon
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| | - Monique N'Diaye
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancer Prevention and Treatment, BioTICLA Axis, Biology and Innovative Therapeutics for Ovarian Cancers, Caen, France
- UNICANCER, François Baclesse Cancer Center, BioTICLA Laboratory, Caen, France
| |
Collapse
|
48
|
Sun C, Li C, Li X, Zhu Y, Su Z, Wang X, He Q, Zheng G, Feng B. Scutellarin induces apoptosis and autophagy in NSCLC cells through ERK1/2 and AKT Signaling Pathways in vitro and in vivo. J Cancer 2018; 9:3247-3256. [PMID: 30271483 PMCID: PMC6160677 DOI: 10.7150/jca.25921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Curative molecular therapy for non-small cell lung cancer (NSCLC) is still lacking. Scutellarin, an active flavone extracted from Erigeron breviscapus Hand-Mazz, displays anti-tumor property in diverse cancer types, yet its tumor-suppressive effect on NSCLC is not reported. In this study, we found that scutellarin significantly inhibited the proliferation of NSCLC cells, induced cell apoptosis, and triggered autophagy. Notably, inhibition of autophagy with inhibitor HCQ attenuated the anti-proliferative activity of scutellarin, indicating that scutellarin-induced autophagy is antineoplastic. In addition, HCQ treatment reduced scutellarin-induced apoptosis. Further study demonstrated that scutellarin stimulated phosphorylation of ERK1/2, and inhibition of ERK1/2 with inhibitor U0126 markedly attenuated scutellarin-induced autophagy. Similarly, scutellarin downregulated the expression of p-AKT, and AKT inhibitor MK-2206 induced autophagy. Moreover, there also existed crosstalk between ERK and AKT pathways. Finally, in vivo xenograft nude mice experiment proved that scutellarin treatment significantly reduced tumor growth and increased the levels of LC3-II and p-ERK1/2, suppressed p-AKT in mice tumors. Thus, our study for the first time uncovered the anti-cancer function of scutellarin on NSCLC cells, and might provide a potential novel therapy for treatment of patients with NSCLC.
Collapse
Affiliation(s)
- ChaoYue Sun
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - CaiYun Li
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - XiaoFeng Li
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, no 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - ZuQing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - XieQi Wang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - QingLian He
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - GuangJuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
49
|
Leptin-regulated autophagy plays a role in long-term neurobehavioral injury after neonatal seizures and the regulation of zinc/cPLA2 and CaMK II signaling in cerebral cortex. Epilepsy Res 2018; 146:103-111. [PMID: 30092488 DOI: 10.1016/j.eplepsyres.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Metabolic disorders play an important role in the pathogenesis of many neurological diseases. Recent evidence suggests that leptin levels in peripheral blood and brain are lower in patients with epilepsy. Leptin is an energy-regulating hormone that plays a neuroprotective role in neurodegenerative diseases and brain trauma. However, little is known about the effects and molecular mechanisms of leptin treatment on long-term neurobehavioral impairment caused by developmental seizures. The present study evaluated whether chronic leptin treatment protected against neurobehavioral impairments induced by recurrent seizures in newborns treated with flurothyl. We also examined the effect of leptin on the expression of zinc/cPLA2-related autophagy signaling molecules and CaMKII in the cerebral cortex. Twenty Sprague-Dawley rats (6 days after birth, P6) were randomly divided into two groups, a neonatal seizure group and control group. Rats were subdivided on P13 into control, control + leptin (leptin, 2 mg/kg/day, continuous 10 days), seizure (RS), and seizure + leptin group (RS + leptin, 2 mg/kg/day for 10 consecutive days). Neurological behavioral parameters (negative geotaxis reaction reflex, righting reflex, cliff avoidance reflex, forelimb suspension reflex and open field test) were observed from P23 to P30. mRNA and protein levels in the cerebral cortex were detected using real-time RT-PCR and Western blotting, respectively. Flurothyl-induced seizures (RS group) produced long-term abnormal neurobehavior, which was improved with leptin treatment. Chronic leptin treatment restored several expression parameters affected by neonatal seizures, including seizure-induced up-regulated zinc transporter ZnT1/ZIP7, lipid membrane injury-related cPLA2, autophagy marker beclin-1/bcl2, LC3II/LC3I, and its execution molecule cathepsin-E, and down-regulated memory marker CaMK II alpha. Our results suggest that the early use of leptin after neonatal recurrent seizures may exert neuroprotective effects and antagonize the long-term neurobehavioral impairment caused by seizures. Autophagy-mediated Zn/cPLA2 and CaMK II signaling in the cerebral cortex may be involved in the neuroprotective effect of leptin. Our results provide new clues for anti-epileptogenetic treatment.
Collapse
|
50
|
Babaer D, Amara S, Ivy M, Zhao Y, Lammers PE, Titze JM, Tiriveedhi V. High salt induces P-glycoprotein mediated treatment resistance in breast cancer cells through store operated calcium influx. Oncotarget 2018; 9:25193-25205. [PMID: 29861863 PMCID: PMC5982760 DOI: 10.18632/oncotarget.25391] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/28/2018] [Indexed: 12/31/2022] Open
Abstract
Recent evidence from our laboratory has demonstrated that high salt (Δ0.05 M NaCl) induced inflammatory response and cancer cell proliferation through salt inducible kinase-3 (SIK3) upregulation. As calcium influx is known to effect inflammatory response and drug resistance, we examined the impact of high salt on calcium influx in breast cancer cells. Treatment of MCF-7 and MDA-MB-231 cells with high salt induced an enhanced intracellular calcium intensity, which was significantly decreased by store operated calcium entry (SOCE) inhibitor co-treatment. Further, high salt induced P-glycoprotein (P-gp) mediated paclitaxel drug resistance in breast cancer cells. Murine tumor studies demonstrated that injection of MCF-7 cells cultured in high salt, exerted higher tumorigenicity compared to the basal cultured counterpart. Knock down of SIK3 by specific shRNA inhibited tumorigenicty, expression of SOCE regulators and P-gp activity, suggesting SIK3 is an upstream mediator of SOCE induced calcium influx. Furthermore, small molecule inhibitor, prostratin, exerted anti-tumor effect in murine models through SIK3 inhibition. Taken together, we conclude that SIK3 is an upstream regulator of store operated calcium entry proteins, Orai1 and STIM1, and mediates high salt induced inflammatory cytokine responses and P-gp mediated drug resistance. Therefore, small molecule inhibitors, such as prostratin, could offer novel anti-cancer approaches.
Collapse
Affiliation(s)
- Duaa Babaer
- 1 Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Suneetha Amara
- 2 Department of Medicine, St Thomas-Midtown Hospital, Nashville, TN, USA
| | - Michael Ivy
- 1 Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Yan Zhao
- 3 Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip E. Lammers
- 4 Department of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Jens M. Titze
- 3 Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA,5 Cardiovascular and Metabolic Disorders program, Duke-NUS Medical School, Singapore
| | - Venkataswarup Tiriveedhi
- 1 Department of Biological Sciences, Tennessee State University, Nashville, TN, USA,6 Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|