1
|
Hsu LA, Teng MS, Wu S, Liao MS, Chou HH, Ko YL. Circulating resistin levels and mutation burden of the RETN gene variants predict long-term mortality in a Taiwanese population. Sci Rep 2025; 15:564. [PMID: 39747951 PMCID: PMC11695976 DOI: 10.1038/s41598-024-84142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Human resistin is a proinflammatory cytokine involving the development and progression of cancer and cardiovascular diseases. However, prediction of long-term outcome using circulating resistin level and its genetic determinants in a population-based study remain to be explored. After genome-wide association study (GWAS), DNA methylation (DNAm) analysis and functional assays of a RETN rs370006313 variant, we tested whether resistin level and its genetic determinants can be used to determine the long-term outcomes of 5678 Taiwan Biobank (TWB) participants. GWAS and DNAm analysis revealed RETN variants, rs3219175, rs370006313, and rs3745368, and DNAm sites, cg21271423 and cg09909011, independently associated with circulating resistin levels. Functional assays showed rs370006313 variant played a key role in affecting RETN promoter activity, whereas genotypes of rs3219175 and rs3745368, but not rs370006313, exhibited genome-wide significant associations with RETN promoter DNAm levels. Using Kaplan-Meier survival and Cox regression analyses, participants with progressively increasing resistin levels had a higher hazard ratio for all-cause mortality and cancer mortality compared to those with lower resistin levels. Participants with all three RETN variants (high mutation burden) also exhibited significantly higher hazard ratios for all-cause mortality and cancer mortality, at 3.99 and 5.55, respectively, compared to those without a high mutation burden. In conclusion, RETN rs370006313 is a functional variant affecting RETN promoter activity. Elevated circulating resistin levels and a high RETN mutation burden predict all-cause and cancer mortality in TWB participants. Both resistin levels and RETN variants may serve as biomarkers of long-term outcomes in the general Taiwanese populations.
Collapse
Affiliation(s)
- Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Mei-Siou Liao
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.289, Jianguo Road, Xindian Dist., New Taipei City, 23142, Taiwan
| | - Hsin-Hua Chou
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.289, Jianguo Road, Xindian Dist., New Taipei City, 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
- The Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.289, Jianguo Road, Xindian Dist., New Taipei City, 23142, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
3
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
4
|
Ormiston K, Kulkarni A, Sarathy G, Alsammerai S, Shankar E, Majumder S, Stanford KI, Ganju RK, Ramaswamy B. Obesity and lack of breastfeeding: a perfect storm to augment risk of breast cancer? Front Oncol 2024; 14:1432208. [PMID: 39525621 PMCID: PMC11543574 DOI: 10.3389/fonc.2024.1432208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer with higher rates of recurrence and distant metastasis, as well as decreased 5-year survival rates. Racial disparities are evident in the incidence and mortality rates of triple negative breast cancer particularly increased in young African American women. Concurrently, young African American women have multiple risk factors for TNBC including higher rates of premenopausal abdominal obesity (higher waist-hip ratio) and lower rates of breastfeeding with higher parity, implicating these factors as potentially contributors to poor outcomes. By understanding the mechanisms of how premenopausal obesity and lack of breastfeeding may be associated with increased risk of triple negative breast cancer, we can determine the best strategies for intervention and awareness to improve outcomes in TNBC.
Collapse
Affiliation(s)
- Kate Ormiston
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Anagh Kulkarni
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Gautam Sarathy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Sara Alsammerai
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Eswar Shankar
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Sarmila Majumder
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K. Ganju
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
5
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
6
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
7
|
Tie W, Ma T, Yi Z, Liu J, Li Y, Bai J, Li L, Zhang L. Obesity as a risk factor for multiple myeloma: insight on the role of adipokines. Pathol Oncol Res 2023; 29:1611338. [PMID: 37637774 PMCID: PMC10447903 DOI: 10.3389/pore.2023.1611338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is a hematologic disorder characterized by the accumulation of malignant plasma cells in the bone marrow. Genetic and environmental factors are contributed to the etiology of MM. Notably, studies have shown that obesity increases the risk of MM and worsens outcomes for MM patients. Adipokines play an important role in mediating the close association between MM and metabolic derangements. In this review, we summarize the epidemiologic studies to show that the risk of MM is increased in obese. Accumulating clinical evidence suggests that adipokines could display a correlation with MM. In vitro and in vivo studies have shown that adipokines are linked to MM, including roles in the biological behavior of MM cells, cancer-associated bone loss, the progression of MM, and drug resistance. Current and potential therapeutic strategies targeted to adipokines are discussed, proposing that adipokines can guide early patient diagnosis and treatment.
Collapse
Affiliation(s)
- Wenting Tie
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
8
|
Villarreal-García V, Estupiñan-Jiménez JR, Vivas-Mejía PE, Gonzalez-Villasana V, Vázquez-Guillén JM, Reséndez-Pérez D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front Oncol 2022; 12:980694. [PMID: 36226048 PMCID: PMC9548555 DOI: 10.3389/fonc.2022.980694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. This highly heterogeneous disease is molecularly stratified into luminal A, luminal B, HER2, triple-negative/basal-like, and normal-like subtypes. An important aspect in BC progression is the activation of inflammatory processes. The activation of CD8+/Th1, NK, and M1 tumor associated macrophages (TAMs), leads to tumor destruction. In contrast, an anti-inflammatory response mediated by CD4+/Th2 and M2 TAMs will favor tumor progression. Inflammation also stimulates the production of inflammatory mediators like reactive oxygen species (ROS). In chronic inflammation, ROS activates oxidative stress and endothelial dysfunction. In cancer, ROS plays a dual role with anti-tumorigenic and pro-tumorigenic effects in cell signaling pathways that control proliferation, survival, apoptosis, and inflammation. MicroRNAs (miRNAs), which are known to be involved in BC progression and inflammation, can be regulated by ROS. At the same time, miRNAs regulate the expression of genes modulating oxidative stress. In this review, we will discuss the interplay between inflammation, ROS, and miRNAs as anticancer and tumor promoter molecules in BC. A clear understanding of the role of miRNAs in the regulation of ROS production and inflammation, may lead to new opportunities for therapy in BC.
Collapse
Affiliation(s)
- Valeria Villarreal-García
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Roberto Estupiñan-Jiménez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Pablo E. Vivas-Mejía
- Department of Biochemestry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Vianey Gonzalez-Villasana
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Manuel Vázquez-Guillén
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
9
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
10
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021; 535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cancer cells within breast tumors exist within a hierarchy in which only a small and rare subset of cells is able to regenerate growths with the heterogeneity of the original tumor. These highly malignant cancer cells, which behave like stem cells for new cancers and are called "cancer stem cells" or CSCs, have also been shown to possess increased resistance to therapeutics, and represent the root cause underlying therapy failures, persistence of residual disease, and relapse. As >90% of cancer deaths are due to refractory tumors, identification of critical molecular drivers of the CSC-state would reveal vulnerabilities that can be leveraged in designing therapeutics that eradicate advanced disease and improve patient survival outcomes. An expanding and complex body of work has now described the exquisite susceptibility of CSC pools to the regulatory influences of local and systemic hormones. Indeed, breast CSCs express a plethora of hormonal receptors, which funnel hormonal influences over every aspect of breast neoplasia - be it tumor onset, growth, survival, invasion, metastasis, or therapy resistance - via directly impacting CSC behavior. This article is intended to shed light on this active area of investigation by attempting to provide a systematic and comprehensive overview of the available evidence directly linking hormones to breast CSC biology.
Collapse
Affiliation(s)
- Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
12
|
Pu X, Chen D. Targeting Adipokines in Obesity-Related Tumors. Front Oncol 2021; 11:685923. [PMID: 34485124 PMCID: PMC8415167 DOI: 10.3389/fonc.2021.685923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, a global epidemic, is an independent risk factor for the occurrence and development of a variety of tumors, such as breast cancer, pancreatic cancer, ovarian cancer and colorectal cancer. Adipocytes are important endocrine cells in the tumor microenvironment of obesity-related tumors, which can secrete a variety of adipokines (such as leptin, adiponectin, estrogen, resistin, MIF and MCP-1, etc.), among which leptin, adiponectin and estrogen are the most in-depth and valuable ones. These adipokines are closely related to tumorigenesis and the progression of tumors. In recent years, more and more studies have shown that under chronic inflammatory conditions such as obesity, adipocytes secrete more adipokines to promote the tumorigenesis and development of tumors. However, it is worth noting that although adiponectin is also secreted by adipocytes, it has an anti-tumor effect, and can cross-talk with other adipokines (such as leptin and estrogen) and insulin to play an anti-tumor effect together. In addition, obesity is the main cause of insulin resistance, which can lead to the increase of the expression levels of insulin and insulin-like growth factor (IGF). As important regulators of blood glucose and lipid metabolism, insulin and IGF also play an important role in the progress of obesity related tumors. In view of the important role of adipokines secreted by adipocytes and insulin/IGF in tumors, this article not only elaborates leptin, adiponectin and estrogen secreted by adipocytes and their mechanism of action in the development of obesity- related tumors, but also introduces the relationship between insulin/IGF, a regulator of lipid metabolism, and obesity related tumors. At the same time, it briefly describes the cancer-promoting mechanism of resistin, MIF and MCP-1 in obesity-related tumors, and finally summarizes the specific treatment opinions and measures for various adipokines and insulin/insulin-like growth factors in recent years.
Collapse
Affiliation(s)
- Xi Pu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Resistin Induces LIN28A-Mediated Let-7a Repression in Breast Cancer Cells Leading to IL-6 and STAT3 Upregulation. Cancers (Basel) 2021; 13:cancers13184498. [PMID: 34572725 PMCID: PMC8470467 DOI: 10.3390/cancers13184498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States and exhibits significant racial disparities in clinical outcomes. Earlier, we reported that the levels of resistin and IL-6 were significantly more elevated in the serum of African American women with breast cancer than in their Caucasian American counterparts. Here, we uncover its mechanistic significance by characterizing a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of breast cancer cells. Abstract Downregulation of the Let-7 family of microRNAs (miRNAs) has been reported in several cancers, including breast malignancy; however, underlying mechanisms are not completely understood. Resistin is an important component of the tumor microenvironment, having a functional impact on the tumor cell phenotypes. Here, we examined the role of resistin in the regulation of Let-7 miRNAs and studied its downstream consequences. We found that resistin treatment led to the reduced expression of Let-7 family miRNAs in breast cancer (BC) cells, with the highest downregulation reported for Let-7a. Furthermore, resistin induced the expression of LIN28A, and its silencing abrogated resistin-mediated Let-7a suppression. Let-7a restoration or LIN28A silencing abolished the resistin-induced growth, clonogenicity, and sphere-forming ability of BC cells. Restoration of Let-7a also suppressed the resistin-induced expression of genes associated with growth, survival, and stemness. Pathway analysis suggested STAT3 as a putative central node associated with Let-7a-mediated gene regulation. In silico analysis identified STAT3 and its upstream modifier, IL-6, as putative Let-7a gene targets, which were later confirmed by 3′UTR-reporter assays. Together, our findings demonstrate a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of BC cells.
Collapse
|
14
|
Deb A, Deshmukh B, Ramteke P, Bhati FK, Bhat MK. Resistin: A journey from metabolism to cancer. Transl Oncol 2021; 14:101178. [PMID: 34293684 PMCID: PMC8319804 DOI: 10.1016/j.tranon.2021.101178] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Resistin levels have been associated with several pathological disorders such as metabolic disorders, cancers etc. Resistin exists in three isoforms namely RELM-α, β and γ. High resistin level activates inflammatory pathways, promotes metabolic disorders and is associated with carcinogenesis. Increase in the resistin level impairs the therapeutic response by inducing stemness or resistance, in cancer cells. Conventional drugs which alter resistin level could have therapeutic implications in several pathological disorders.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.
Collapse
Affiliation(s)
- Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
15
|
Li Y, Yu C, Deng W. Roles and mechanisms of adipokines in drug resistance of tumor cells. Eur J Pharmacol 2021; 899:174019. [PMID: 33722588 DOI: 10.1016/j.ejphar.2021.174019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/06/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells has become one of the biggest obstacles of effective anticancer treatments. Adipocytes produce plenty of cytokines (also known as adipokines), which remarkably affect the drug resistance exhibited by cancer cells. Different adipokines (leptin, visfatin, resistin, adiponectin, Interleukin 6, and tumor necrosis factor α) can induce drug resistance in different cancer cells by various functional mechanisms. This phenomenon is of great interest in pharmacological anti-cancer studies since it indicates that in the cancers with adipocyte-rich microenvironment, all adipokines join together to assist cancer cells to survive by facilitating drug resistance. Studies on adipokines contribute to the development of novel pharmacological strategies for cancer therapy if their roles and molecular targets are better understood. The review will elucidate the roles and the underlying mechanisms of adipokines in drug resistance, which may be of great significance for revealing new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Chunyan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Weimin Deng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
16
|
Adipocytes promote breast tumorigenesis through TAZ-dependent secretion of Resistin. Proc Natl Acad Sci U S A 2020; 117:33295-33304. [PMID: 33318171 PMCID: PMC7776784 DOI: 10.1073/pnas.2005950117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipocytes are the most abundant and perhaps most active components of the tumor microenvironment in obese individuals that potentiate breast tumorigenesis through secretory mechanisms. The modulation of adipocytes can be novel therapy targets for breast cancer. Here, we revealed a specific upregulation of adipocytic TAZ through the FFA/PPARγ axis in diet-induced adiposity. Adipocytic TAZ knockdown or deficiency in mice inhibits adipocyte-induced breast cancer proliferation and stemness through impaired expression and secretion of Resistin. Immunostaining in triple-negative breast cancer samples showed that higher adipocytic TAZ/Resistin expression associates with higher clinical stages and poorer survival, demonstrating promising therapeutic targets. Adipocytes have been implicated in breast tumor growth and stemness maintenance through secreted factors. However, the mechanisms by which these cytokines are regulated during diet-induced obesity and contribute to breast tumorigenesis remain largely unknown. Here we show that transcription cofactor TAZ in adipocytes is directly up-regulated by the free fatty acid/PPARγ axis upon dietary fat stimulation. TAZ knockdown alters the expression profile of a series of secreted proteins and attenuates the tumor-supporting function of adipocytes. Moreover, we identify Resistin, an adipose-derived hormone, as a functional downstream target of TAZ, which facilitates tumorigenesis, and its expression correlated with adipocyitc TAZ in triple-negative breast cancer samples. Further, Adiponectin-cre–mediated TAZ knockout in adipocytes mitigates breast tumor growth. Taken together, our findings highlight how diet-induced TAZ expression in adipocytes promotes tumorigenesis, suggesting promising cancer therapeutic targets.
Collapse
|
17
|
Liu S, Fang J, Jiao D, Liu Z. The predictive value of inflammatory markers for pathological response of ipsilateral supraclavicular lymph nodes and for prognosis in breast cancer after neoadjuvant chemotherapy. Gland Surg 2020; 9:1354-1362. [PMID: 33224810 DOI: 10.21037/gs-20-341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Inflammatory tumor microenvironment is closely related to cancer. In this study, we mainly explore the predictive value of inflammatory markers for pathological response of ipsilateral supraclavicular lymph nodes (ISLN) and for prognosis in breast cancer with ISLN metastasis after neoadjuvant chemotherapy (NAC). Methods In this study, 117 breast cancer patients with ISLN metastasis were collected from the Affiliated Hospital of Zhengzhou University. The best cut-off value was determined by using the receiver operating characteristics (ROC) curve. Chi-square test and binary Logistic regression were used to analyze the correlation between clinical pathological data and pathological response of ISLN and to determine independent predictors. Correlation analysis between inflammatory markers and prognosis used time-dependent COX regression. Results The pathological complete response (pCR) rate of ISLN after NAC was 64.4%. Multivariate analysis showed that breast pCR (OR 9.67, 95% CI: 2.64-35.31, P<0.01) was an independent predictor of ISLN pathological response after NAC. After a median follow-up of 25 months, multivariate time-dependent COX results showed that higher platelet levels were correlated with poor disease-free survival (DFS) (HR 1.008, 95% CI: 1.001-1.015, P=0.028). Meanwhile, menopausal status (HR 0.35, 95% CI: 0.15-0.79, P=0.01) and supraclavicular pCR (HR 0.33, 95% CI: 0.15-0.77, P=0.01) were also independent predictors of DFS. Conclusions Peripheral blood inflammatory markers have limited predictive value for pathological response of ISLN after NAC for breast cancer. High platelet count is associated with poor prognosis of breast cancer patients with ISLN metastasis.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Fang
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechuang Jiao
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Cancer Lett 2020; 498:229-239. [PMID: 33152400 DOI: 10.1016/j.canlet.2020.10.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Obesity is one of the major modifiable risk factors in breast cancer, with obese adipose tissue showing a pathological role in breast cancer development and malignancy via the release of secretory factors, such as proinflammatory cytokines and adipocytokines. The current article focuses on visfatin and resistin, two such adipocytokines that have emerged over the last two decades as leading breast cancer promoting factors in obesity. The clinical association of circulating visfatin and resistin with breast cancer and their biological mechanisms are reviewed, in addition to their role in the context of tumor-stromal interactions in the breast cancer microenvironment. Recent findings have unraveled several mediators of visfatin and resistin that are involved in the crosstalk between breast cancer cells and adipose tissue in the breast tumor microenvironment, including growth differentiation factor 15 (GDF15), interleukin 6 (IL-6), and toll-like receptor 4 (TLR4). Finally, current therapeutics targeting visfatin and resistin and their respective pathways are discussed, including future therapeutic strategies such as new drug design or neutralizing peptides that target extracellular visfatin or resistin. These hold promise in the development of novel breast cancer therapies and are of increasing relevance as the prevalence of obesity-related breast cancer increases worldwide.
Collapse
|
19
|
Liu C, Zhao Q, Yu X. Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Front Oncol 2020; 10:561595. [PMID: 33123472 PMCID: PMC7566900 DOI: 10.3389/fonc.2020.561595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating discoveries highlight the importance of interaction between marrow stromal cells and cancer cells for bone metastasis. Bone is the most common metastatic site of breast cancer and bone marrow adipocytes (BMAs) are the most abundant component of the bone marrow microenvironment. BMAs are unique in their origin and location, and recently they are found to serve as an endocrine organ that secretes adipokines, cytokines, chemokines, and growth factors. It is reasonable to speculate that BMAs contribute to the modification of bone metastatic microenvironment and affecting metastatic breast cancer cells in the bone marrow. Indeed, BMAs may participate in bone metastasis of breast cancer through regulation of recruitment, invasion, survival, colonization, proliferation, angiogenesis, and immune modulation by their production of various adipocytokines. In this review, we provide an overview of research progress, focusing on adipocytokines secreted by BMAs and their potential roles for bone metastasis of breast cancer, and investigating the mechanisms mediating the interaction between BMAs and metastatic breast cancer cells. Based on current findings, BMAs may function as a pivotal modulator of bone metastasis of breast cancer, therefore targeting BMAs combined with conventional treatment programs might present a promising therapeutic option.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Kanchanapally R, Khan MA, Deshmukh SK, Srivastava SK, Khushman M, Singh S, Singh AP. Exosomal Formulation Escalates Cellular Uptake of Honokiol Leading to the Enhancement of Its Antitumor Efficacy. ACS OMEGA 2020; 5:23299-23307. [PMID: 32954181 PMCID: PMC7495913 DOI: 10.1021/acsomega.0c03136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 05/23/2023]
Abstract
Honokiol is a phytochemical isolated from the Magnolia plant. It exhibits significant antitumor activity against a variety of cancer cell types via targeting of critical mediators of tumor progression, stromal remodeling, and chemoresistance. However, poor bioavailability and inefficient tumor uptake remain some of the hurdles in its translation as a therapeutically useful drug. Here, we developed a nanoformulation of honokiol using mesenchymal stem cell-derived exosomes, which are nonimmunogenic and express surface markers to support their tumor-targeted delivery. Maximum entrapment of honokiol occurred when it was mixed in a 1:4 weight ratio with exosomes and subjected to six cycles of sonication. Dynamic light scattering analysis demonstrated that the average size (∼175.3 nm), polydispersity (∼0.11), and integrity (∼12.9 mV) of exosomes remained in the desirable range post honokiol encapsulation. Exosome-encapsulated honokiol exhibited significantly higher therapeutic efficacy over the free honokiol in WST-1 growth and long-term clonogenicity assays. Flow cytometry-based cell cycle and live/dead cell assay, respectively, confirmed the enhanced effect of exosomal honokiol formulation on cell cycle arrest and apoptosis induction. More significant alterations in the expression of cell cycle- and survival-associated proteins were also observed in cancer cells treated with exosomal honokiol over free honokiol. Higher intracellular accumulation of honokiol was recorded in cancer cells treated with equivalent doses of honokiol as compared to the free honokiol. Together, our work is the first demonstration of exosomal encapsulation of honokiol and its improved antitumor efficacy resulting from improved cellular uptake.
Collapse
Affiliation(s)
- Rajashekhar Kanchanapally
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Mohammad Aslam Khan
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Sachin Kumar Deshmukh
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Sanjeev Kumar Srivastava
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Moh’d Khushman
- Department
of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Seema Singh
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, United States
| | - Ajay Pratap Singh
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, United States
| |
Collapse
|
21
|
Sudan SK, Deshmukh SK, Poosarla T, Holliday NP, Dyess DL, Singh AP, Singh S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188419. [PMID: 32822824 DOI: 10.1016/j.bbcan.2020.188419] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Systemic and organ-confined inflammation has been associated with cancer development and progression. Resistin, initially described as an adipocyte-derived cytokine in mice, is mostly expressed by the macrophages in humans. It has potent pro-inflammatory properties, and its elevated serum levels are detected in cancer patients. Aberrant expression of resistin receptors is also reported in several malignancies and associated with aggressive clinicopathological features. Several lines of evidence demonstrate that resistin, acting through its different receptors, promotes tumor growth, metastasis, and chemoresistance by influencing a variety of cellular phenotypes as well as by modulating the tumor microenvironment. Racially disparate expression of resistin has also attracted much interest, considering prevalent cancer health disparities. This review discusses the aberrant expression of resistin and its receptors, its diverse downstream signaling and impact on tumor growth, metastasis, angiogenesis, and therapy resistance to support its clinical exploitation in biomarker and therapeutic development.
Collapse
Affiliation(s)
- Sarabjeet Kour Sudan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Teja Poosarla
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | - Donna Lynn Dyess
- Department of Surgery, University of South Alabama, Mobile, AL 36617, USA
| | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
22
|
Charan M, Verma AK, Hussain S, Misri S, Mishra S, Majumder S, Ramaswamy B, Ahirwar D, Ganju RK. Molecular and Cellular Factors Associated with Racial Disparity in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165936. [PMID: 32824813 PMCID: PMC7460595 DOI: 10.3390/ijms21165936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated that racial differences can influence breast cancer incidence and survival rate. African American (AA) women are at two to three fold higher risk for breast cancer than other ethnic groups. AA women with aggressive breast cancers show worse prognoses and higher mortality rates relative to Caucasian (CA) women. Over the last few years, effective treatment strategies have reduced mortality from breast cancer. Unfortunately, the breast cancer mortality rate among AA women remains higher compared to their CA counterparts. The focus of this review is to underscore the racial differences and differential regulation/expression of genetic signatures in CA and AA women with breast cancer. Moreover, immune cell infiltration significantly affects the clinical outcome of breast cancer. Here, we have reviewed recent findings on immune cell recruitment in the tumor microenvironment (TME) and documented its association with breast cancer racial disparity. In addition, we have extensively discussed the role of cytokines, chemokines, and other cell signaling molecules among AA and CA breast cancer patients. Furthermore, we have also reviewed the distinct genetic and epigenetic changes in AA and CA patients. Overall, this review article encompasses various molecular and cellular factors associated with breast cancer disparity that affects mortality and clinical outcome.
Collapse
Affiliation(s)
- Manish Charan
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Ajeet K. Verma
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Shahid Hussain
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Swati Misri
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Sanjay Mishra
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
| | - Sarmila Majumder
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
| | - Dinesh Ahirwar
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
- Correspondence: (D.A.); (R.K.G.)
| | - Ramesh K. Ganju
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA; (M.C.); (A.K.V.); (S.H.); (S.M.); (S.M.)
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.M.); (B.R.)
- Correspondence: (D.A.); (R.K.G.)
| |
Collapse
|
23
|
Khan MA, Srivastava SK, Zubair H, Patel GK, Arora S, Khushman M, Carter JE, Gorman GS, Singh S, Singh AP. Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. J Biol Chem 2020; 295:8413-8424. [PMID: 32358063 DOI: 10.1074/jbc.ra119.011748] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) remains a therapeutic challenge because of its intrinsic and extrinsic chemoresistance mechanisms. Here, we report that C-X-C motif chemokine receptor 4 (CXCR4) and hedgehog pathways cooperate in PC chemoresistance via bidirectional tumor-stromal crosstalk. We show that when PC cells are co-cultured with pancreatic stellate cells (PSCs) they are significantly more resistant to gemcitabine toxicity than those grown in monoculture. We also demonstrate that this co-culture-induced chemoresistance is abrogated by inhibition of the CXCR4 and hedgehog pathways. Similarly, the co-culture-induced altered expression of genes in PC cells associated with gemcitabine metabolism, antioxidant defense, and cancer stemness is also reversed upon CXCR4 and hedgehog inhibition. We have confirmed the functional impact of these genetic alterations by measuring gemcitabine metabolites, reactive oxygen species production, and sphere formation in vehicle- or gemcitabine-treated monocultures and co-cultured PC cells. Treatment of orthotopic pancreatic tumor-bearing mice with gemcitabine alone or in combination with a CXCR4 antagonist (AMD3100) or hedgehog inhibitor (GDC-0449) displays reduced tumor growth. Notably, we show that the triple combination treatment is the most effective, resulting in nearly complete suppression of tumor growth. Immunohistochemical analysis of Ki67 and cleaved caspase-3 confirm these findings from in vivo imaging and tumor measurements. Our findings provide preclinical and mechanistic evidence that a combination of gemcitabine treatment with targeted inhibition of both the CXCR4 and hedgehog pathways improves outcomes in a PC mouse model.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Moh'd Khushman
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - James Elliot Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | | | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
24
|
Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:413-433. [PMID: 31637624 DOI: 10.1007/s13679-019-00364-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development. RECENT FINDINGS Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis. Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Nikolaos Spyrou
- 251 Airforce General Hospital, 3 Kanellopoulou, 11525, Athens, Greece
| | - Jona Kadillari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Sotiria Psallida
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
25
|
Resistin enhances angiogenesis in osteosarcoma via the MAPK signaling pathway. Aging (Albany NY) 2019; 11:9767-9777. [PMID: 31719210 PMCID: PMC6874472 DOI: 10.18632/aging.102423] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Over the last two decades, there have been no significant changes in patient outcomes in relation to the treatment of osteosarcoma, an aggressive malignant neoplasm. It is known that vascular endothelial growth factor-A (VEGF-A) plays a crucial role in angiogenesis and in osteosarcoma. Moreover, VEGF-A expression correlates with clinical stages of osteosarcoma. The adipokine resistin exhibits proinflammatory, proangiogenic and metastatic properties, and evidence suggests that resistin may serve as a prognostic biomarker linking obesity and inflammation to cancer. However, whether resistin has a role in osteosarcoma angiogenesis is unclear. This investigation shows that resistin promotes VEGF-A expression in human osteosarcoma cells and activates the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 signaling pathways, while ERK, JNK, and p38 inhibitors or their small interfering RNAs (siRNAs) inhibit resistin-induced VEGF-A expression as well as endothelial progenitor cell (EPC) migration and tube formation. We also found that resistin upregulates VEGF-A expression by enhancing activation of the transcription factor nuclear factor-kappa B (NF-κB). Finally, resistin promotes angiogenesis in the chick chorioallantoic membrane (CAM) model. Resistin appears to be a promising target for human osteosarcoma.
Collapse
|
26
|
Deshmukh SK, Srivastava SK, Poosarla T, Dyess DL, Holliday NP, Singh AP, Singh S. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:593. [PMID: 31807574 DOI: 10.21037/atm.2019.09.68] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most commonly diagnosed malignancy and a leading cause of cancer-related death in women worldwide. It also exhibits pronounced racial disparities in terms of incidence and clinical outcomes. There has been a growing interest in research community to better understand the role of the microenvironment in cancer. Several lines of evidence have highlighted the significance of chronic inflammation at the local and/or systemic level in breast tumor pathobiology. Inflammation can influence breast cancer progression, metastasis and therapeutic outcome by establishing a tumor supportive immune microenvironment. These processes are mediated through a variety of cytokines and hormones that exert their biological actions either locally or distantly via systemic circulation. Targeting of immune and inflammatory pathways has met tremendous success in some cancers underscoring the importance of research to further our understanding of these systems in breast cancer. This knowledge can be helpful not only in the development of novel prevention and therapeutic strategies, but also help in better prediction of therapeutic responses in patients. This review summarizes some of the significant findings on the role of inflammation in breast cancer to gain collective molecular and mechanistic insights. We also discuss ongoing efforts and future outlook to exploit the existing knowledge for improved breast cancer management.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Teja Poosarla
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Donna Lynn Dyess
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
27
|
Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, Lavi A, Poretsky L. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine 2019; 120:155-164. [PMID: 31085453 DOI: 10.1016/j.cyto.2019.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Breast cancer incidence and metastasis in postmenopausal women are known to associate with obesity, but the molecular mechanisms behind this association are largely unknown. We investigated the effect of adipokine resistin on epithelial to mesenchymal transition (EMT) and stemness in breast cancer cells in vitro. Previous reports demonstrated that the inflammatory actions of resistin are mediated by the adenylyl cyclase-associated protein 1 (CAP1), which serves as its receptor. As a model for our study, we used MCF-7 and MDA-MB-231 breast cancer and MCF-10A breast epithelial cells. We showed that in MCF-7 cells resistin increases the migration of MCF-7 and MDA-MB-231 cells and induces the formation of cellular protrusions through reorganization of F-actin filaments. Resistin upregulated the expression of mesenchymal markers involved in EMT (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin), and downregulated those of epithelial markers (E-cadherin and claudin-1). Resistin also potentiated the nuclear translocation of SNAIL protein, indicating initiation of EMT reprogramming. We further induced EMT in non-carcinogenic breast epithelial MCF-10A cells demonstrating that the effects of resistin on EMT were not breast cancer cell specific. In order to assess whether resistin-induced EMT depends on CAP1, we used siRNA approach to silence CAP1 gene in MCF-7 cells. Results demonstrated that when CAP1 was silenced, the induction of SNAIL, ZEB1 and vimentin expression by resistin as well as SNAIL and ZEB1 nuclear translocation, were abolished. Additionally, CAP1 silencing resulted in a suppression of MCF-7 cells migration. We performed quantitative PCR array profiling the expression of 84 genes related to cancer stem cells (CSC), pluripotency and metastasis and selected a set of genes (ALDH1A1, ITGA4, LIN28B, SMO, KLF17, PTPRC, PROM1, SIRT1, and PECAM1) that were modulated by resistin. Further experiments demonstrated that the effect of resistin on the expression of some of these genes (PROM1, PTPRC, KLF17, SIRT1, and PECAM1) was also dependent on CAP1. Our results demonstrate that resistin promotes the metastatic potential of breast cancer cells by inducing EMT and stemness and some of these effects are mediated by CAP1.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA; The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Anabel Garcia
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Beatriz Caraballo
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | | | - Sela Marin
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Julianna Bianco
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Aaron Lavi
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Leonid Poretsky
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA; The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
28
|
Rowland LK, Campbell PS, Mavingire N, Wooten JV, McLean L, Zylstra D, Thorne G, Daly D, Boyle K, Whang S, Unternaehrer J, Brantley EJ. Putative tumor suppressor cytoglobin promotes aryl hydrocarbon receptor ligand-mediated triple negative breast cancer cell death. J Cell Biochem 2019; 120:6004-6014. [PMID: 30450577 PMCID: PMC6382570 DOI: 10.1002/jcb.27887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
Nearly 40 000 women die annually from breast cancer in the United States. Clinically available targeted breast cancer therapy is largely ineffective in triple negative breast cancer (TNBC), characterized by tumors that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2). TNBC is associated with a poor prognosis. Previous reports show that aryl hydrocarbon receptor (AhR) partial agonist 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) selectively inhibits the growth of breast cancer cells, including those of the TNBC subtype. We previously demonstrated that 5F 203 induced the expression of putative tumor suppressor gene cytoglobin (CYGB) in breast cancer cells. In the current study, we determined that 5F 203 induces apoptosis and caspase-3 activation in MDA-MB-468 TNBC cells and in T47D ER+ PR + Her2 - breast cancer cells. We also show that caspases and CYGB promote 5F 203-mediated apoptosis in MDA-MB-468 cells. 5F 203 induced lysosomal membrane permeabilization (LMP) and cathepsin B release in MDA-MB-468 and T47D cells. In addition, silencing CYGB attenuated the ability of 5F 203 to induce caspase-3/-7 activation, proapoptotic gene expression, LMP, and cathepsin B release in MDA-MB-468 cells. Moreover, 5F 203 induced CYGB protein expression, proapoptotic protein expression, and caspase-3 cleavage in MDA-MB-468 cells and in MDA-MB-468 xenograft tumors grown orthotopically in athymic mice. These data provide a basis for the development of AhR ligands with the potential to restore CYGB expression as a novel strategy to treat TNBC.
Collapse
Affiliation(s)
- Leah K. Rowland
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Petreena S. Campbell
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Nicole Mavingire
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Jonathan V. Wooten
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Lancelot McLean
- Dental Education Services, Loma Linda University Health School of Dentistry, Loma Linda, CA
| | - Dain Zylstra
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA
| | - Gabriell Thorne
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
- Department of Pharmacy and Health Professions, Elizabeth City State University, Elizabeth City, NC, USA
| | - Devin Daly
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Kristopher Boyle
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA
| | - Sonya Whang
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Juli Unternaehrer
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Eileen J. Brantley
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA
| |
Collapse
|
29
|
Kanchanapally R, Deshmukh SK, Chavva SR, Tyagi N, Srivastava SK, Patel GK, Singh AP, Singh S. Drug-loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: a comparative analysis. Int J Nanomedicine 2019; 14:531-541. [PMID: 30666112 PMCID: PMC6333392 DOI: 10.2147/ijn.s191313] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Despite tremendous advancement, cancer still remains one of the leading causes of death worldwide. Inefficiency of current drug delivery regimens is one important factor that limits the therapeutic efficacy of existing drugs, thus contributing to cancer mortality. To address this limitation, synthetic nanotechnology-based delivery systems have been developed; however, they raise concern of inducing adverse immunogenic reactions. Exosomes (Exos) are nonimmunogenic nanosized vesicles that have received significant attention as efficient drug delivery system. Methods Drug loading in Exos were achieved by incubating different cell types viz pancreatic cancer cells (PCCs), pancreatic stellate cells (PSCs), and macrophages (MØs) with Doxorubicin (DOX). Differential ultracentrifugation was performed to isolate exosome and their size was determined by dynamic light scattering analysis. The efficacy of drug packaging into Exos was evaluated by HPLC. Flow cytometry was performed to examine the apoptosis. Cell viability was determined using the WST-1 assay. Results PCCs shed the most Exos and were the most efficient in drug loading followed by MØs and PSCs as examined by HPLC quantification. However, when compared for antitumor efficacy, MØ-derived Exos loaded with DOX (MØ-Exo-DOX) showed highest activity followed by PSCs and PCCs. Conclusion These varying antitumor activities likely resulted from nondrug contents of Exos since we did not observe any significant differences in their uptake by the cancer cells. Altogether, our data suggest that donor cell-specific differences exist in Exos, which could influence their utility as drug carrier for therapeutic purposes.
Collapse
Affiliation(s)
- Rajashekhar Kanchanapally
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem
| | - Sachin Kumar Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem
| | - Suhash Reddy Chavva
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem
| | - Sanjeev Kumar Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA, ; seem
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA, ; seem.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA, ; seem
| |
Collapse
|
30
|
Qiu L, Zhang GF, Yu L, Wang HY, Jia XJ, Wang TJ. Novel oncogenic and chemoresistance-inducing functions of resistin in ovarian cancer cells require miRNAs-mediated induction of epithelial-to-mesenchymal transition. Sci Rep 2018; 8:12522. [PMID: 30131543 PMCID: PMC6104088 DOI: 10.1038/s41598-018-30978-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Resistin plays a role in the growth, proliferation, angiogenesis, metastasis and therapeutic resistance in different cancers. However, such effects of resistin have never been evaluated in ovarian cancer, a deadly gynecological malignancy. We observed a significant induction of ovarian cancer cells' growth, invasion and cisplatin resistance, and established a mechanism of resistin action that included induction of EMT and stemness, as evidenced by down-regulated epithelial marker e-cadherin and up-regulated mesenchymal markers vimentin/ ZEB1 and stemness markers sox2, oct4 and nanog. The mechanism also included suppression of tumor suppressor miRNAs, let-7a, miR-200c and miR-186. Over-expression of these miRNAs significantly reversed the resistin-mediated effects on invasion and chemoresistance. We further validated our results in vivo where resistin administration significantly enhanced tumor growth in mice. Our results provide first evidence for such oncogenic effects of resistin in ovarian cancer models and a rationale for future studies to further understand the mechanistic role of resistin in ovarian cancer invasiveness, metastasis and therapy resistance.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Guo-Feng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lei Yu
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Hong-Yong Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jing Jia
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Deshmukh SK, Tyagi N, Khan MA, Srivastava SK, Al-Ghadhban A, Dugger K, Carter JE, Singh S, Singh AP. Gemcitabine treatment promotes immunosuppressive microenvironment in pancreatic tumors by supporting the infiltration, growth, and polarization of macrophages. Sci Rep 2018; 8:12000. [PMID: 30097594 PMCID: PMC6086900 DOI: 10.1038/s41598-018-30437-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy-induced immunosuppression poses an additional challenge to its limited efficacy in pancreatic cancer (PC). Here we investigated the effect of gemcitabine on macrophages, which are the first line of immune-defense mechanisms. We observed an increased presence of macrophages in orthotopic human pancreatic tumor xenografts from mice treated with gemcitabine as compared to those from vehicle only-treated mice. Conditioned media from gemcitabine-treated PC cells (Gem-CM) promoted growth, migration and invasion of RAW264.7 macrophage. In addition, Gem-CM also induced upregulation of M2-polarized macrophage markers, arginase-1 and TGF-β1. Cytokine profiling of gemcitabine-treated PC cells identified IL-8 as the most differentially-expressed cytokine. Incubation of Gem-CM with IL-8 neutralizing antibody diminished its ability to induce growth, migration and invasion of RAW264.7 macrophages, but did not abrogate their M2 polarization. Together, our findings identify IL-8 as an important mediator in the gemcitabine-induced infiltration of macrophages within the pancreatic tumor microenvironment and suggest the requirement of additional mechanism(s) for macrophage polarization.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, 600 Clinic Drive, 3rd Floor, Mobile, AL, 36688, USA
| | - Ahmed Al-Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kari Dugger
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James Elliot Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
32
|
Malvi P, Chaube B, Singh SV, Mohammad N, Vijayakumar MV, Singh S, Chouhan S, Bhat MK. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab 2018; 6:2. [PMID: 29568521 PMCID: PMC5859707 DOI: 10.1186/s40170-018-0176-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Obesity is associated with increased risk, poor prognosis and outcome of therapy, in various cancers. Obesity-associated factors or adipokines, especially leptin and resistin, are purported to promote growth, survival, proliferation, and invasiveness of cancer cells. However, the mechanistic link between these adipokines and therapeutic response in malignancies is not clearly understood. Methods ob/ob and db/db mouse models were used in this study to evaluate the role of leptin and resistin towards the outcome of dacarbazine (DTIC) therapy in melanoma. Unique in vitro approaches were employed to complement in vivo findings by culturing melanoma cells in the serum collected from the experimental mice. Results Here, we have shown the role of important adipokines leptin and resistin in growth and the outcome of DTIC therapy in melanoma. Both leptin and resistin not only enhance proliferation of melanoma cells but also are involved in impairing the therapeutic efficacy of DTIC. Leptin and resistin treatment caused an increase in the protein levels of fatty acid synthase (FASN) and caveolin 1 (Cav-1) respectively, through their stabilization in A375 cells. Further, it was observed that leptin and resistin impaired the response of melanoma cells to DTIC via upregulation of heat shock protein 90 (Hsp90) and P-glycoprotein (P-gp) respectively. Conclusion These findings unraveled the involvement of adipokines (leptin and resistin) in melanoma progression, and more importantly, in the outcome of DTIC therapy.
Collapse
Affiliation(s)
- Parmanand Malvi
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Balkrishna Chaube
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Shivendra Vikram Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Naoshad Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | | | - Snahlata Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Surbhi Chouhan
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| |
Collapse
|
33
|
The association between socioeconomic factors and breast cancer-specific survival varies by race. PLoS One 2017; 12:e0187018. [PMID: 29211739 PMCID: PMC5718412 DOI: 10.1371/journal.pone.0187018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Although racial disparity is well described for oncologic outcomes, factors associated with survival within racial groups remains unexplored. The objective of this study is to determine whether breast cancer survival among White or Black patients is associated with differing patient factors. Women diagnosed with breast cancer from 1998 through 2012 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Cox proportional hazard logistic regression was used to estimate cause-specific survival in the combined cohort, and separate cohorts of Black or White patients only. Main outcomes included cause-specific survival in cohorts of Black only, White only, or all patients adjusted for demographic and oncologic factors. A total of 406,907 Black (10.8%) or White (89.2%) patients diagnosed with breast cancer from 1998 through 2012 were isolated. Cancer-specific survival analysis of the combined cohort showed significantly decreased hazard ratio (H.R.) in patients from the higher economic quartiles (Q1: 1.0 (ref), Q2: 0.95 (p<0.01), Q3: 0.94 (p<0.01), Q4: 0.87 (p<0.001)). Analysis of the White only cohort showed a similar relationship with income (Q1: 1.0 (ref), Q2: 0.95 (p<0.01), Q3: 0.95 (p<0.01), Q4: 0.86 (p<0.001)). However, analysis of the Black only cohort did not show a relationship with income (Q1: 1.0 (ref), Q2: 1.04 (p = 0.34), Q3: 0.97 (p = 0.53), Q4: 1.04 (p = 0.47)). A test of interaction confirmed that the association between income and cancer-specific survival is dependent on patient race, both with and without adjustment for demographic and oncologic characteristics (p<0.01). While median county income is positively associated with cancer-specific survival among White patients, this is not the case with Black patients. Similar findings were noted for education level. These findings suggest that the association between socioeconomic status and breast cancer survival commonly reported in the literature is specific to White patients. These findings provide insight into differences between White and Black patients in cancer-specific survival.
Collapse
|
34
|
Gupta V, Haque I, Chakraborty J, Graff S, Banerjee S, Banerjee SK. Racial disparity in breast cancer: can it be mattered for prognosis and therapy. J Cell Commun Signal 2017; 12:119-132. [PMID: 29188479 DOI: 10.1007/s12079-017-0416-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) has emerged as a deadly disease that affects the lives of millions of women worldwide. It is the second leading cause of cancer-related deaths in the United States. Advancements in BC screening, preventive measures and treatment have resulted in significant decline in BC related deaths. However, unacceptable levels of racial disparity have been consistently reported, especially in African-American (AA) women compared to European American (EA). AA women go through worse prognosis, shorter survival time and higher mortality rates, despite higher cancer incidence reported in EA. These disparities are independent of socioeconomic status, access to healthcare or age, or even the stage of BC. Recent race-specific genetic and epigenetic studies have reported biological causes, which form the crux of this review. However, the developments are just the tip of the iceberg. Prioritizing primary research towards studying race-specific tumor microenvironment and biological composition of the host system in delineating the cause of these disparities is utmost necessary to ameliorate the disparity and design appropriate diagnosis/treatment regimen for AA women suffering from BC. In this review article, we discuss emerging trends and exciting discoveries that reveal how genetic/epigenetic circuitry contributed to racial disparity and discussed the strategies that may help in future therapeutic development.
Collapse
Affiliation(s)
- Vijayalaxmi Gupta
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Inamul Haque
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jinia Chakraborty
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Blue Valley West High School, Overland Park, KS, USA
| | - Stephanie Graff
- Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
35
|
Tyagi N, Deshmukh SK, Srivastava SK, Azim S, Ahmad A, Al-Ghadhban A, Singh AP, Carter JE, Wang B, Singh S. ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Mol Cancer Res 2017; 16:187-196. [PMID: 29117940 DOI: 10.1158/1541-7786.mcr-17-0219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022]
Abstract
The ETS family transcription factor ETV4 is aberrantly expressed in a variety of human tumors and plays an important role in carcinogenesis through upregulation of relevant target gene expression. Here, it is demonstrated that ETV4 is overexpressed in pancreatic cancer tissues as compared with the normal pancreas, and is associated with enhanced growth and rapid cell-cycle progression of pancreatic cancer cells. ETV4 expression was silenced through stable expression of a specific short hairpin RNA (shRNA) in two pancreatic cancer cell lines (ASPC1 and Colo357), while it was ectopically expressed in BXPC3 cells. Silencing of ETV4 in ASPC1 and Colo357 cells reduced the growth by 55.3% and 38.9%, respectively, while forced expression of ETV4 in BXPC3 cells increased the growth by 46.8% in comparison with respective control cells. Furthermore, ETV4-induced cell growth was facilitated by rapid transition of cells from G1- to S-phase of the cell cycle. Mechanistic studies revealed that ETV4 directly regulates the expression of Cyclin D1 CCND1, a protein crucial for cell-cycle progression from G1- to S-phase. These effects on the growth and cell cycle were reversed by the forced expression of Cyclin D1 in ETV4-silenced pancreatic cancer cells. Altogether, these data provide the first experimental evidence for a functional role of ETV4 in pancreatic cancer growth and cell-cycle progression.Implications: The functional and mechanistic data presented here regarding ETV4 in pancreatic cancer growth and cell-cycle progression suggest that ETV4 could serve as a potential biomarker and novel target for pancreatic cancer therapy. Mol Cancer Res; 16(2); 187-96. ©2017 AACR.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sachin K Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, Mobile, Alabama
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ahmed Al-Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
36
|
Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, Jeleń M, Akim AM, Ang KP, Ooi KK. 10 H-3,6-Diazaphenothiazine induces G 2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3045-3063. [PMID: 29123378 PMCID: PMC5661483 DOI: 10.2147/dddt.s144415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing
| | - Chen Ming
- Department of Gynecologic Oncology, Taizhou People's Hospital, Jiangsu, People's Republic of China
| | | | | | - Beata Morak-Młodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
| | | | - Kah Kooi Ooi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang.,Research Centre for Crystaline Materials, School of Science and Technology, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
37
|
Deshmukh SK, Srivastava SK, Tyagi N, Ahmad A, Singh AP, Ghadhban AAL, Dyess DL, Carter JE, Dugger K, Singh S. Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: a closer look at the surroundings. Carcinogenesis 2017; 38:757-765. [PMID: 28430867 DOI: 10.1093/carcin/bgx037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 12/24/2022] Open
Abstract
Although increased awareness leading to early detection and prevention, as well as advancements in treatment strategies, have resulted in superior clinical outcomes, African American women with breast cancer continue to have greater mortality rates, compared to Caucasian American counterparts. Moreover, African American women are more likely to have breast cancer at a younger age and be diagnosed with aggressive tumor sub-types. Such racial disparities can be attributed to socioeconomic differences, but it is increasingly being recognized that these disparities may indeed be due to certain genetic and other non-genetic biological differences. Tumor microenvironment, which provides a favorable niche for the growth of tumor cells, is comprised of several types of stromal cells and the various proteins secreted as a consequence of bi-directional tumor-stromal cross-talk. Emerging evidence suggests inherent biological differences in the tumor microenvironment of breast cancer patients from different racial backgrounds. Tumor microenvironment components, affected by the genetic make-up of the tumor cells as well as other non-tumor-associated factors, may also render patients more susceptible to the development of aggressive tumors and faster progression of disease resulting in early onset, thus adversely affecting patients' survival. This review provides an overview of breast cancer racial disparity and discusses the existence of race-associated differential tumor microenvironment and its underlying genetic and non-genetic causal factors. A better understanding of these aspects would help further research on effective cancer management and improved approaches for reducing the racial disparities gaps in breast cancer patients.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, 600 Clinic Drive, 3rd Floor, Mobile, AL 36688, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ahmed A L Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Donna L Dyess
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
| | - Kari Dugger
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|