1
|
Kaushal JB, Takkar S, Batra SK, Siddiqui JA. Diverse landscape of genetically engineered mouse models: Genomic and molecular insights into prostate cancer. Cancer Lett 2024; 593:216954. [PMID: 38735382 DOI: 10.1016/j.canlet.2024.216954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
2
|
Amiran MR, Taghdir M, Joozdani FA. Molecular insights into the behavior of the allosteric and ATP-competitive inhibitors in interaction with AKT1 protein: A molecular dynamics study. Int J Biol Macromol 2023; 242:124853. [PMID: 37172698 DOI: 10.1016/j.ijbiomac.2023.124853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditions. In this study, we investigated the effect of several different inhibitors on two conformations of the AKT1 by computational approach. We studied the effects of four inhibitors, including MK-2206, Miransertib, Herbacetin, and Shogaol, on the inactive conformation of AKT1 protein and the effects of four inhibitors, Capivasertib, AT7867, Quercetin, and Oridonin molecules on the active conformation of AKT1 protein. The results of simulations showed that each inhibitor creates a stable complex with AKT1 protein, although AKT1/Shogaol and AKT1/AT7867 complexes showed less stability than other complexes. Based on RMSF calculations, the fluctuation of residues in the mentioned complexes is higher than in other complexes. As compared to other complexes in either of its two conformations, MK-2206 has a stronger binding free energy affinity in the inactive conformation, -203.446 kJ/mol. MM-PBSA calculations showed that the van der Waals interactions contribute more than the electrostatic interactions to the binding energy of inhibitors to AKT1 protein.
Collapse
Affiliation(s)
- Mohammad Reza Amiran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| |
Collapse
|
3
|
Diao H, Cheng J, Huang X, Huang B, Shao X, Zhao J, Lan D, Zhu Q, Yan M, Zhang Y, Rong X, Guo J. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115261. [PMID: 35447198 DOI: 10.1016/j.jep.2022.115261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi (FTZ) is a traditional Chinese herbal prescription that has been used to treat dyslipidemia, nonalcoholic fatty liver disease, atherosclerosis, diabetes and its complications in the clinic for almost ten years. Endothelial-mesenchymal transition (EndMT) is the key driver of atherosclerosis. However, the effects of FTZ on endothelial dysfunction and EndMT remain unknown. AIM OF THE STUDY To evaluate the therapeutic effects of FTZ against EndMT and the underlying mechanisms. MATERIALS AND METHODS An in vivo model of atherosclerosis was established by feeding ApoE-/- mice with a high-fat diet (HFD). The body weight, lipid levels, plaque area, lipid deposition and EndMT were evaluated using standard assays 12 weeks after intragastric administration of FTZ and simvastatin. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate EndMT in vitro. The degree of EndMT was assessed after treating the cells with FTZ or transfection with si-Akt1. The expression levels of genes involved in EndMT were quantified by real-time PCR or western blotting. RESULTS FTZ ameliorated dyslipidemia and endothelial dysfunction in the atherosclerotic mice. In addition, FTZ reduced body weight and the total cholesterol, triglycerides and low-density lipoprotein levels, and increased that of high-density lipoproteins. FTZ also upregulated the expression of endothelial markers (CD31 and VE-cadherin) and decreased that of mesenchymal markers (ɑ-SMA and FSP1), indicating that it inhibits EndMT. Knocking down Akt1 exacerbated EndMT and reversed the therapeutic effect of FTZ. CONCLUSION FTZ delayed atherosclerosis by inhibiting EndMT via the Akt1/β-catenin pathway.
Collapse
Affiliation(s)
- Hongtao Diao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiawen Cheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xueying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Bingying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingjing Zhao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dingming Lan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qing Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Alwhaibi A, Parvathagiri V, Verma A, Artham S, Adil MS, Somanath PR. Regulation of Let-7a-5p and miR-199a-5p Expression by Akt1 Modulates Prostate Cancer Epithelial-to-Mesenchymal Transition via the Transforming Growth Factor-β Pathway. Cancers (Basel) 2022; 14:cancers14071625. [PMID: 35406397 PMCID: PMC8996869 DOI: 10.3390/cancers14071625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The molecular mechanisms regulating the switch from the growth of tumor cells to invasive phenotype for metastasis is largely unknown. Molecules such as Akt1 and TGFβ have been demonstrated to play reciprocal roles in the early and advanced stages of cancers, and epithelial-to-mesenchymal transition has been identified as a common link in the process. Advancing our knowledge on the direct association between these two pathways and how their effects are reconciled in the advanced stages of cancers such as prostate cancer will have therapeutic benefits. Identifying the role of microRNAs in the process will also benefit the scientific community. Abstract Akt1 suppression in advanced cancers has been indicated to promote metastasis. Our understanding of how Akt1 orchestrates this is incomplete. Using the NanoString®-based miRNA and mRNA profiling of PC3 and DU145 cells, and subsequent data analysis using the DIANA-mirPath, dbEMT, nCounter, and Ingenuity® databases, we identified the miRNAs and associated genes responsible for Akt1-mediated prostate cancer (PCa) epithelial-to-mesenchymal transition (EMT). Akt1 loss in PC3 and DU145 cells primarily induced changes in the miRNAs and mRNAs regulating EMT genes. These include increased miR-199a-5p and decreased let-7a-5p expression associated with increased TGFβ-R1 expression. Treatment with locked nucleic acid (LNA) miR-199a-5p inhibitor and/or let-7a-5p mimic induced expression changes in EMT genes correlating to their anticipated effects on PC3 and DU145 cell motility, invasion, and TGFβ-R1 expression. A correlation between increased miR-199a-5p and TGFβ-R1 expression with reduced let-7a-5p was also observed in high Gleason score PCa patients in the cBioportal database analysis. Collectively, our studies show the effect of Akt1 suppression in advanced PCa on EMT modulating miRNA and mRNA expression changes and highlight the potential benefits of miR-199a-5p and let-7a-5p in therapy and/or early screening of mPCa.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Clinical Pharmacy Department, College of Pharmacy at King Saud University, Riyadh 11451, Saudi Arabia
| | - Varun Parvathagiri
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
5
|
Hu X, Yuan G, Li Q, Huang J, Cheng X, Chen J. DEAH-box polypeptide 32 promotes hepatocellular carcinoma progression via activating the β-catenin pathway. Ann Med 2021; 53:437-447. [PMID: 33729094 PMCID: PMC7971220 DOI: 10.1080/07853890.2021.1898674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is refractory cancer with high morbidity and high mortality. DEAH-box polypeptide 32 (DHX32) was upregulated in several types of malignancies and predicted poor prognosis. Herein, we investigated the role of DHX32 in HCC progression. METHODS The expression of DHX32, β-catenin, and epithelial-mesenchymal transition (EMT)-related makers were determined by Western blot and quantitative real-time PCR assays. Cell proliferation was tested by EdU cell proliferation assay. The effect of DHX32 and β-catenin on cell migration and invasion were detected by wound-healing and Traswell invasion assays. Tumour xenografts were performed to determine the effect of DHX32 on HCC tumour growth. RESULTS High level of DHX32 expression was associated with reduced overall survival in HCC patients. DHX32 expression was upregulated in human HCC cells and ectopic expression of DHX32 induced EMT, promoted the mobility and proliferation of HCC cells, and enhanced tumour growth in vivo. Silencing DHX32 reversed EMT, inhibited the malignancy behaviors of HCC cells, and suppressed tumour growth. Mechanistically, silencing DHX32 decreased the expression of β-cateninin in nucleus and β-catenin siRNA abrogated DHX32-mediated HCC progression. CONCLUSION DHX32 was an attractive regulator of HCC progression and indicated DHX32 canserve as a potential biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Xiaoyun Hu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guosheng Yuan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Cheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yang M, Liu H, Qiu GP, Gao F. Silencing Akt1 enhances the resistance of prostate cancer cells to starvation and inhibits starvation-induced lung metastasis through epithelial-mesenchymal transition in prostate cancer. Med Oncol 2021; 39:8. [PMID: 34761338 DOI: 10.1007/s12032-021-01600-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
Nutritional starvation (NST) is the basis of tumor anti-angiogenesis and metabolic therapy strategy. Silencing Akt1 inhibits prostate cancer (PCa) cells growing; slow-growing cells tend to consume less nutrition. It is suggested that Akt1-silenced cancer cells will have a more substantial tolerance to NST. Clarify this critical question is vital for tumor treatment strategies based on Akt1 and NST. The Akt1 gene of PC3 and DU145 cells was silenced by lent-virus. NST model was established by serum stripping. Cell viability was detected by MTT assay and cell counting method. Apoptosis was detected by TUNEL and flow cytometry, and cell invasion was determined by transwells and ECIS. The markers of epithelial-mesenchymal transition (EMT) were detected by western blotting. PCa lung metastasis model was established by tail vein injection and quantified by Indian ink and GFP fluorescence. Silencing Akt1 slowed down the decrease of cell number and increase of apoptosis caused by NST. Silencing Akt1 with NST exposure in PCa cells could down-regulate epithelial markers (E-cadherin, claudin-5, and ZO-1) and up-regulate mesenchymal markers N-cadherin and EMT regulators Snail. Although silencing Akt1 enhanced the invasion of PCa cells induced by NST in vitro, silencing Akt1 inhibited the PCa lung metastasis induced by NST in vivo. Silencing Akt1 gene enhances the resistance of PCa cells to NST. The invasion results in vitro were inconsistent with those metastases in vivo, which may be related to a combination of NST with silencing Akt1 to maintain the mesenchymal state of PCa cells through EMT.
Collapse
Affiliation(s)
- Mei Yang
- Department of Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Liu
- Department of Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Guo-Ping Qiu
- Department of Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Fei Gao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 of YouYi RD, YuZong District, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Chen B, Deng YN, Wang X, Xia Z, He Y, Zhang P, Syed SE, Li Q, Liang S. miR-26a enhances colorectal cancer cell growth by targeting RREB1 deacetylation to activate AKT-mediated glycolysis. Cancer Lett 2021; 521:1-13. [PMID: 34419497 DOI: 10.1016/j.canlet.2021.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
We previously reported the inhibitory effects of microRNA-26a (miR-26a) on the conversion of pyruvate to acetyl coenzyme A in glucose metabolism by directly targeting pyruvate dehydrogenase protein X component in colorectal cancer (CRC) cells (Chen B et al., BMC Cancer 2014). Here, using microRNA in situ hybridization, we confirmed that miR-26a levels were elevated in 77 human CRC tissue samples and further investigated the key miR-26a-mediated metabolic regulation elements and signaling pathways in CRC cells through quantitative proteomic dissection combined with cancer cell biology and biochemical loss-of-function analysis. We found that AKT transcription signaling was a target pathway via miR-26a-mediated deacetylation modification of Ras-responsive element-binding protein 1 (RREB1) at the Lys-60 residue. miR-26a improved the deacetylation level of RREB1, thus contributing to RREB1 binding to the AKT1 promoter to activate AKT transcription and its related signaling pathway in glycolysis. Moreover, miR-26a promoted CRC tumorigenesis in CRC cells and subcutaneous xenograft mice. Thus, miR-26a is a key regulator of CRC tumorigenesis that mediates the deacetylation modification of RREB1 to enhance AKT1 transcription and downstream target gene expression in glycolysis for CRC growth.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China; Department of Rheumatology and Immunology, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Samina Ejaz Syed
- Department of Biochemistry and Biotechnology, Baghdad Campus, The Islamia University of Bahawalpur, Pakistan.
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| |
Collapse
|
8
|
Yang SJ, Wang DD, Zhong SL, Chen WQ, Wang FL, Zhang J, Xu WX, Xu D, Zhang Q, Li J, Zhang HD, Hou JC, Mao L, Tang JH. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis 2021; 12:420. [PMID: 33911067 PMCID: PMC8080849 DOI: 10.1038/s41419-021-03680-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Circular RNAs (circRNAs) are increasingly gaining importance and attention due to their diverse potential functions and their value as diagnostic biomarkers (disease specific). This study aims to explore the novel mechanisms by which exosome-contained circRNAs promote tumor development and metastasis in TNBC. We identified increased circRNA circPSMA1 in TNBC cells, their exosomes, and serum exosomes samples from TNBC patients. The overexpression of circPSMA1 promoted TNBC cell proliferation, migration, and metastasis both in vitro and in vivo. Moreover, we investigated the tumor-infiltrating immune cells (TICs) or stromal components in immune microenvironment (IME), and identified the significant differences in the immune cells between TNBC and non-TNBC samples. Mechanistically, circPSMA1 acted as a "miRNAs sponge" to absorb miR-637; miR-637 inhibited TNBC cell migration and metastasis by directly targeted Akt1, which recognized as a key immune-related gene and affected downstream genes β-catenin and cyclin D1. Subsequent co-culture experiments also demonstrated that exosomes from TNBC carrying large amounts of circPSMA1 could transmit migration and proliferation capacity to recipient cells. Kaplan-Meier plots showed that high expression of Akt1 and low expression of mir-637 are highly correlated with poor prognosis in patients with lymph node metastasis of TNBC. Collectively, all these results reveal that circPSMA1 functions as a tumor promoter through the circPSMA1/miR-637/Akt1-β-catenin (cyclin D1) regulatory axis, which can facilitate the tumorigenesis, metastasis, and immunosuppression of TNBC. Our research proposes a fresh perspective on novel potential biomarkers and immune treatment strategies for TNBC.
Collapse
Affiliation(s)
- Su-jin Yang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Dan-dan Wang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Shan-liang Zhong
- grid.89957.3a0000 0000 9255 8984The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009 P.R. China ,grid.452509.f0000 0004 1764 4566Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, 210009 P.R. China
| | - Wen-quan Chen
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Feng-liang Wang
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics and Gynecology, Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210009 P.R. China
| | - Jian Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Wen-xiu Xu
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Di Xu
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Qian Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Jian Li
- grid.89957.3a0000 0000 9255 8984The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009 P.R. China
| | - He-da Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Jun-chen Hou
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Ling Mao
- grid.470132.3Department of Thyroid and Breast Surgery, the Affiliated Huai’an Hospital of Xuzhou Medical University, the Second People’s Hospital of Huai’an, Huai’an, 223002 P.R. China
| | - Jin-hai Tang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| |
Collapse
|
9
|
Zhao H, Zhang X, Shi Z, Guo B, Zhang W, He K, Hu X, Shi S. Identification of a Prognostic Signature Model with Tumor Microenvironment for predicting Disease-free Survival after Radical Prostatectomy. J Cancer 2021; 12:2371-2384. [PMID: 33758613 PMCID: PMC7974886 DOI: 10.7150/jca.51173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The tumor microenvironment (TME) and immune checkpoint inhibitors have been shown to promote active immune responses through different mechanisms. We attempted to identify the important prognostic genes and prognostic characteristics related to TME in prostate cancer (PCa). Methods: The gene transcriptome profiles and clinical information of PCa patients were obtained from The Cancer Genome Atlas (TCGA) database, and the immune and stromal scores were calculated by the ESTIMATE algorithm. We evaluated the prognostic value of the risk score (RS) model based on univariate Cox analysis and least absolute shrinkage and selection operation (LASSO) Cox regression analysis and established a nomogram to predict disease-free survival (DFS) in PCa patients. The GSE70768 dataset was utilized for external validation. Twenty-two subsets of tumor-infiltrating immune cells were analyzed using the CIBERSORT algorithm. Results: In this study, the patients with higher immune/stromal scores were associated with a worse DFS, higher Gleason score, and higher pathological T stage. Based on the immune and stromal scores, 515 differentially expressed genes (DEGs) were identified. The univariate Cox and LASSO Cox regression models were employed to select 18 DEGs from 515 DEGs and construct an RS model. The DFS of the high-RS group was significantly lower than that of the low-RS group (P<0.001). The AUCs for the 1-year, 3-year and 5-year DFS rates in the RS model were 0.890, 0.877 and 0.841, respectively. A nomogram of DFS was established based on the RS and Gleason score, and the AUCs for the 1-year, 3-year and 5-year DFS rates in the nomogram were 0.907, 0.893, and 0.872, respectively. These results were further validated in the GSE70768 dataset. In addition, the proportion of Tregs was determined to be higher in high-RS patients (P<0.05), and the expression levels of five immune checkpoints (CTLA-4, PD-1, LAG-3, TIM-3 and TIGIT) were observed to be higher in high-RS patients (P<0.05). Conclusions: Our study established and validated an 18-gene prognostic signature model associated with TME, which might serve as a prognosis stratification tool to predict DFS in PCa patients after radical prostatectomy.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xuening Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Shi
- Department of Medicine, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - Bingxin Guo
- Department of Urology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450002, China
| | - Wenli Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Kun He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqi Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songhe Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Adil MS, Khulood D, Somanath PR. Targeting Akt-associated microRNAs for cancer therapeutics. Biochem Pharmacol 2020; 189:114384. [PMID: 33347867 DOI: 10.1016/j.bcp.2020.114384] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The uncontrolled growth and spread of abnormal cells because of activating protooncogenes and/or inactivating tumor suppressor genes are the hallmarks of cancer. The PI3K/Akt signaling is one of the most frequently activated pathways in cancer cells responsible for the regulation of cell survival and proliferation in stress and hypoxic conditions during oncogenesis. Non-coding RNAs are a large family of RNAs that are not involved in protein-coding, and microRNAs (miRNAs) are a sub-set of non-coding RNAs with a single strand of 18-25 nucleotides. miRNAs are extensively involved in the post-transcriptional regulation of gene expression and play an extensive role in the regulatory mechanisms including cell differentiation, proliferation, apoptosis, and tumorigenesis. The impact of cancer on mRNA stability and translation efficiency is extensive and therefore, cancerous tissues exhibit drastic alterations in the expression of miRNAs. miRNAs can be modulated by utilizing techniques such as miRNA mimics, miRNA antagonists, or CRISPR/Cas9. In addition to their capacity as potential targets in cancer therapy, they can be used as reliable biomarkers to diagnose the disease at the earliest stage. Recent evidence indicates that microRNA-mediated gene regulation intersects with the Akt pathway, forming an Akt-microRNA regulatory network. miRNAs and Akt in this network operate together to exert their cellular tasks. In the current review, we discuss the Akt-associated miRNAs in several cancers, their molecular regulation, and how this newly emerging knowledge may contribute greatly to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Daulat Khulood
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
11
|
Alharthi A, Verma A, Sabbineni H, Adil MS, Somanath PR. Distinct effects of pharmacological inhibition of stromelysin1 on endothelial-to-mesenchymal transition and myofibroblast differentiation. J Cell Physiol 2020; 236:5147-5161. [PMID: 33319933 DOI: 10.1002/jcp.30221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) and fibroblast-to-myofibroblast (FibroMF) differentiation are frequently reported in organ fibrosis. Stromelysin1, a matrix metalloprotease-3 (MMP3) has been indicated in vascular pathologies and organ injuries that often lead to fibrosis. In the current study, we investigated the role of stromelysin1 in EndMT and FibroMF differentiation, which is currently unknown. In our results, whereas TGFβ2 treatment of endothelial cells (ECs) induced EndMT associated with increased expression of stromelysin1 and mesenchymal markers such as α-smooth muscle actin (αSMA), N-cadherin, and activin linked kinase-5 (ALK5), inhibition of stromelysin1 blunted TGFβ2-induced EndMT. In contrast, treatment of NIH-3T3 fibroblasts with TGFβ1 promoted FibroMF differentiation accompanied by increased expression of αSMA, N-cadherin, and ALK5. Intriguingly, stromelysin1 inhibition in TGFβ1-stimulated myofibroblasts further exacerbated fibroproliferation with increased FibroMF marker expression. Gene Expression Omnibus (GEO) data analysis indicated increased stromelysin1 expression associated with EndMT and decreased stromelysin1 expression in human pulmonary fibrosis fibroblasts. In conclusion, our study has identified that EndMT and FibroMF differentiation are reciprocally regulated by stromelysin1.
Collapse
Affiliation(s)
- Ahlam Alharthi
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Arti Verma
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Harika Sabbineni
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Mir S Adil
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Payaningal R Somanath
- Department of Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
12
|
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2020; 9:1848212. [PMID: 33300427 DOI: 10.1080/21688370.2020.1848212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial and endothelial cell-cell contacts are established and maintained by several intercellular junctional complexes. These structurally and biochemically differentiated regions on the plasma membrane primarily include tight junctions (TJs), and anchoring junctions. While the adherens junctions (AJs) provide essential adhesive and mechanical properties, TJs hold the cells together and form a near leak-proof intercellular seal by the fusion of adjacent cell membranes. AJs and TJs play essential roles in vascular permeability. Considering their involvement in several key cellular functions such as barrier formation, proliferation, migration, survival, and differentiation, further research is warranted on the composition and signaling pathways regulating cell-cell junctions to develop novel therapeutics for diseases such as organ injuries. The current review article presents our current state of knowledge on various cell-cell junctions, their molecular composition, and mechanisms regulating their expression and function in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| |
Collapse
|
13
|
Verma A, Najahi-Missaoui W, Cummings BS, Somanath PR. Sterically stabilized liposomes targeting P21 (RAC1) activated kinase-1 and secreted phospholipase A 2 suppress prostate cancer growth and metastasis. Oncol Lett 2020; 20:179. [PMID: 32934746 PMCID: PMC7471734 DOI: 10.3892/ol.2020.12040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Metastatic prostate cancer (PCa) has a very high mortality rate in men, in Western countries and lacks reliable treatment. The advanced-stage PCa cells overexpress P21 (RAC1) activated kinase-1 (PAK1) and secreted phospholipase A2 (sPLA2) suggesting the potential utility of pharmacologically targeting these molecules to treat metastatic PCa. The small molecule, inhibitor targeting PAK1 activation-3 (IPA3) is a highly specific allosteric inhibitor of PAK1; however, it is metabolically unstable once in the plasma thus, limiting its utility as a chemotherapeutic agent. In the present study, the efficacy and specificity of IPA3 were combined with the stability and the sPLA2-targeted delivery method of two sterically stabilized liposomes [sterically stabilized long-circulating liposomes (SSL)-IPA3 and sPLA2 responsive liposomes (SPRL)-IPA3, respectively] to inhibit PCa growth and metastasis. It was found that twice-a-week administration of either SSL-IPA3 or SPRL-IPA3 for 3 weeks effectively suppressed the growth of PC-3 cell tumor xenografts implanted in athymic nude mice. Both drug formulations also inhibited the metastasis of intravenously administered murine RM1 PCa cells to the lungs of C57BL/6 mice. Whereas the twice-a-week administration of SSL-IPA3 significantly inhibited the spontaneous PCa metastasis to the lungs in Transgenic Adenocarcinoma of the Mouse Prostate mice, the administration of free IPA3 had no significant therapeutic benefit. The results present two novel IPA3 encapsulated liposomes to treat metastatic PCa.
Collapse
Affiliation(s)
- Arti Verma
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Augusta, GA 30602, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
- Department of Medicine and Cancer Center, Augusta University, Augusta, GA 30602, USA
| |
Collapse
|
14
|
Gah A, Adil MS, Sabbineni H, Verma A, Somanath PR. Differential regulation of TGFβ type-I receptor expressions in TGFβ1-induced myofibroblast differentiation. Can J Physiol Pharmacol 2020; 98:841-848. [PMID: 32702244 DOI: 10.1139/cjpp-2020-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast-to-myofibroblast (FibroMF) differentiation is crucial for embryogenesis and organ fibrosis. Although transforming growth factor-β (TGFβ) is the primary mediator of FibroMF differentiation, the type-I receptor (TGFβRI) responsible for this has not yet been confirmed. In the current study, we investigated the ALK1 and ALK5 expressions in TGFβ1-stimulated NIH 3T3 fibroblasts to compare with the data from the Gene Expression Omnibus (GEO) repository. In our results, whereas TGFβ1 treatment promoted FibroMF differentiation accompanied by increased ALK5 expression and reduced ALK1 expression, TGFβ1-induced FibroMF differentiation and increased α-smooth muscle actin (αSMA) and ALK5 expression were inhibited by co-treatment with ALK5 inhibitor SB431542. GEO database analysis indicated increased ALK5 expression and reduced ALK1 expression in fibrotic compared to normal mouse or human tissues correlating with organ fibrosis progression. Finally, the inhibitors of Akt, mTOR, and β-catenin suppressed TGFβ1-induced ALK5 expression, indicating that the Akt pathway promotes FibroMF differentiation via ALK5 expression and fibrosis.
Collapse
Affiliation(s)
- Asma Gah
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.,Department of Medicine, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Artham S, Verma A, Alwhaibi A, Adil MS, Manicassamy S, Munn DH, Somanath PR. Delayed Akt suppression in the lipopolysaccharide-induced acute lung injury promotes resolution that is associated with enhanced effector regulatory T cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L750-L761. [PMID: 32073894 DOI: 10.1152/ajplung.00251.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The adaptive immune response could play a major role in the resolution of lung injury. Although regulatory T cells (Tregs) have been implicated in promoting the resolution of lung injury, therapeutic strategies to enhance Treg quantity and activity at the site of injury need further exploration. In the current study, Akt inhibition using triciribine (TCBN), given 48 h after lipopolysaccharide (LPS) administration, increased Tregs-promoted resolution of acute lung injury (ALI). TCBN treatment enhanced the resolution of LPS-induced ALI on day 7 by reducing pulmonary edema and neutrophil activity associated with an increased number of CD4+/FoxP3+/CD103+ and CTLA4+ effector Tregs, specifically in the injured lungs and not in the spleen. Treatment of EL-4 T-lymphocytes with two Akt inhibitors (TCBN and MK-2206) for 72 h resulted in increased FoxP3 expression in vitro. On the other end, Treg-specific PTEN knockout (PTENTreg KO) mice that have a higher Akt activity in its Tregs exhibited a significant impairment in ALI resolution, increased edema, and neutrophil activity associated with a reduced number of CD4+/FoxP3+/CD103+ and CTLA4+ effector Tregs as compared with the control group. In conclusion, our study identifies a potential target for the treatment of late-stage ALI by promoting resolution through effector Treg-mediated suppression of inflammation.
Collapse
Affiliation(s)
- Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Mir S Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Vascular Biology Center, Augusta University, Augusta, Georgia.,Department of Medicine, Augusta University, Augusta, Georgia
| |
Collapse
|
16
|
Tong Y, Guo D, Yan D, Ma C, Shao F, Wang Y, Luo S, Lin L, Tao J, Jiang Y, Lu Z, Xing D. KAT2A succinyltransferase activity-mediated 14-3-3ζ upregulation promotes β-catenin stabilization-dependent glycolysis and proliferation of pancreatic carcinoma cells. Cancer Lett 2020; 469:1-10. [PMID: 31610265 DOI: 10.1016/j.canlet.2019.09.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Frequently occurring histone lysine succinylation is a newly identified histone modification that can be regulated by KAT2A histone succinyltransferase, which is also a histone acetyltransferase. KAT2A histone succinyltransferase activity is important for tumorigenesis; however, the mechanism underlying this tumor-promoting effect remains elusive. Here we demonstrate that KAT2A is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens and positively correlated with advanced stages of PDAC and short patients' survival. In addition, KAT2A expression in PDAC specimens is correlated with 14-3-3ζ expression, and KAT2A regulates H3K79 succinylation in the promoter region of YWHAZ (encoding for 14-3-3ζ) to promote YWHAZ mRNA and 14-3-3ζ expression, thereby preventing β-catenin degradation. Expression of succinyltransferase activity-defective KAT2A Y645A reduces H3K79 succinylation and 14-3-3ζ expression, leading to decreased β-catenin stability and subsequently decreased expression of cyclin D1, c-Myc, GLUT1, and LDHA. KAT2A-mediated 14-3-3ζ and β-catenin expression promotes glycolysis, cell proliferation, and migration and invasion of PDAC cells with epithelial-to-mesenchymal transition. These findings reveal a novel and instrumental role of KAT2A-mediated histone succinylation in regulation of gene expression and β-catenin stability to promote tumor cell proliferation and invasion.
Collapse
Affiliation(s)
- Yingying Tong
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
| | - Dong Yan
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Chunmin Ma
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China; Qingdao Cancer Institute, Qingdao, Shandong, 266071, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
| | - Liming Lin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
| | - Jingjing Tao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhimin Lu
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China; Qingdao Cancer Institute, Qingdao, Shandong, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Liu T, Huang JZ, Lei ZY, Yan RS, Fan DL. FoxO3a depletion accelerates cutaneous wound healing by regulating epithelial‑mesenchymal transition through β‑catenin activation. Mol Med Rep 2020; 21:1224-1232. [PMID: 31922245 PMCID: PMC7003051 DOI: 10.3892/mmr.2020.10912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
The hysteresis of keratinocyte (KC) re-epithelialization is an important factor resulting in chronic wounds; however, the molecular mechanisms involved in this cellular response remain yet to be completely elucidated. The present study demonstrated the function of transcription factor Forkhead box O3a (FoxO3a) in KC growth and migration functional effects, resulting in restrained KC re-epithelialization during wound healing. In chronic wound tissue samples, the expression of FoxO3a was significantly increased when compared with the acute wound healing group (P<0.01). Overexpressing FoxO3a significantly inhibited, whereas silencing endogenous FoxO3a enhanced, the growth and migration of HaCaT cells in vitro. Further investigation revealed that FoxO3a negatively regulated matrix metalloproteinases 1 and 9, and increased the expression of tissue inhibitor of metalloproteinase 1. In addition, the upregulation of FoxO3a retarded, whereas the downregulation of FoxO3a accelerated, transforming growth factor-β1-induced epithelial-mesenchymal transition in HaCaT cells. Mechanistically, the overexpression of FoxO3a inactivated β-catenin signaling and markedly reduced the levels of nuclear β-catenin. These results reveal a novel mechanism of FoxO3a in regulating KC re-epithelialization, and provide novel targets for the prevention and treatment of chronic wounds.
Collapse
Affiliation(s)
- Ting Liu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| | - Jing-Zhuo Huang
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| | - Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| | - Rong-Shuai Yan
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
18
|
Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019; 17:154. [PMID: 31752925 PMCID: PMC6873690 DOI: 10.1186/s12964-019-0450-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AKT, also known as protein kinase B, is a key element of the PI3K/AKT signaling pathway. Moreover, AKT regulates the hallmarks of cancer, e.g. tumor growth, survival and invasiveness of tumor cells. After AKT was discovered in the early 1990s, further studies revealed that there are three different AKT isoforms, namely AKT1, AKT2 and AKT3. Despite their high similarity of 80%, the distinct AKT isoforms exert non-redundant, partly even opposing effects under physiological and pathological conditions. Breast cancer as the most common cancer entity in women, frequently shows alterations of the PI3K/AKT signaling. MAIN CONTENT A plethora of studies addressed the impact of AKT isoforms on tumor growth, metastasis and angiogenesis of breast cancer as well as on therapy response and overall survival in patients. Therefore, this review aimed to give a comprehensive overview about the isoform-specific effects of AKT in breast cancer and to summarize known downstream and upstream mechanisms. Taking account of conflicting findings among the studies, the majority of the studies reported a tumor initiating role of AKT1, whereas AKT2 is mainly responsible for tumor progression and metastasis. In detail, AKT1 increases cell proliferation through cell cycle proteins like p21, p27 and cyclin D1 and impairs apoptosis e.g. via p53. On the downside AKT1 decreases migration of breast cancer cells, for instance by regulating TSC2, palladin and EMT-proteins. However, AKT2 promotes migration and invasion most notably through regulation of β-integrins, EMT-proteins and F-actin. Whilst AKT3 is associated with a negative ER-status, findings about the role of AKT3 in regulation of the key properties of breast cancer are sparse. Accordingly, AKT1 is mutated and AKT2 is amplified in some cases of breast cancer and AKT isoforms are associated with overall survival and therapy response in an isoform-specific manner. CONCLUSIONS Although there are several discussed hypotheses how isoform specificity is achieved, the mechanisms behind the isoform-specific effects remain mostly unrevealed. As a consequence, further effort is necessary to achieve deeper insights into an isoform-specific AKT signaling in breast cancer and the mechanism behind it.
Collapse
Affiliation(s)
- Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
20
|
Alwhaibi A, Verma A, Adil MS, Somanath PR. The unconventional role of Akt1 in the advanced cancers and in diabetes-promoted carcinogenesis. Pharmacol Res 2019; 145:104270. [PMID: 31078742 PMCID: PMC6659399 DOI: 10.1016/j.phrs.2019.104270] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
Abstract
Decades of research have elucidated the critical role of Akt isoforms in cancer as pro-tumorigenic and metastatic regulators through their specific effects on the cancer cells, tumor endothelial cells and the stromal cells. The pro-cancerous role of Akt isoforms through enhanced cell proliferation and suppression of apoptosis in cancer cells and the cells in the tumor microenvironment is considered a dogma. Intriguingly, studies also indicate that the Akt pathway is essential to protect the endothelial-barrier and prevent aberrant vascular permeability, which is also integral to tumor perfusion and metastasis. To complicate this further, a flurry of recent reports strongly indicates the metastasis suppressive role of Akt, Akt1 in particular in various cancer types. These reports emanated from different laboratories have elegantly demonstrated the paradoxical effect of Akt1 on cancer cell epithelial-to-mesenchymal transition, invasion, tumor endothelial-barrier disruption, and cancer metastasis. Here, we emphasize on the specific role of Akt1 in mediating tumor cell-vasculature reciprocity during the advanced stages of cancers and discuss how Akt1 differentially regulates cancer metastasis through mechanisms distinct from its pro-tumorigenic effects. Since Akt is integral for insulin signaling, endothelial function, and metabolic regulation, we also attempt to shed some light on the specific effects of diabetes in modulating Akt pathway in the promotion of tumor growth and metastasis.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Arti Verma
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Mir S Adil
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Payaningal R Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, USA.
| |
Collapse
|
21
|
Alwhaibi A, Verma A, Artham S, Adil MS, Somanath PR. Nodal pathway activation due to Akt1 suppression is a molecular switch for prostate cancer cell epithelial-to-mesenchymal transition and metastasis. Biochem Pharmacol 2019; 168:1-13. [PMID: 31202735 DOI: 10.1016/j.bcp.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
Several studies have unraveled the negative role of Akt1 in advanced cancers, including metastatic prostate cancer (mPCa). Hence, understanding the consequences of targeting Akt1 in the mPCa and identifying its downstream novel targets is essential. We studied how Akt1 deletion in PC3 and DU145 cells activates the Nodal pathway and promotes PCa epithelial-to-mesenchymal transition (EMT) and metastasis. Here we show that Akt1 loss increases Nodal expression in PCa cells accompanied by activation of FoxO1/3a, and EMT markers Snail and N-cadherin as well as loss of epithelial marker E-cadherin. Treatment with FoxO inhibitor AS1842856 abrogated the Nodal expression in Akt1 deleted PCa cells. Akt1 deficient PCa cells exhibited enhanced cell migration and invasion in vitro and lung metastasis in vivo, which were attenuated by treatment with Nodal pathway inhibitor SB505124. Interestingly, Nodal mRNA analysis from two genomic studies in cBioportal showed a positive correlation between Nodal expression and Gleason score indicating the positive role of Nodal in human mPCa. Collectively, our data demonstrate Akt1-FoxO3a-Nodal pathway as an important mediator of PCa metastasis and present Nodal as a potential target to treat mPCa patients.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Mir S Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
22
|
Alwhaibi A, Kolhe R, Gao F, Cobran EK, Somanath PR. Genome atlas analysis based profiling of Akt pathway genes in the early and advanced human prostate cancer. Oncoscience 2019; 6:317-336. [PMID: 31360736 PMCID: PMC6650170 DOI: 10.18632/oncoscience.482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
Recent studies conducted in the mouse and cellular models suggest a stage-specific, differential effect of Akt activity modulation on tumor growth and metastasis in various cancers. In prostate cancer (PCa), although the deletion of Akt1 gene in a neuroendocrine model of TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) blunted oncogenic transformation and tumor growth, Akt1 suppression in the advanced PCa resulted in the activation of transforming growth factor-β pathway and enhanced metastasis to the lungs. Such a dual role for the Akt isoforms and its signaling partners has not been investigated in human PCa. In the current study, we performed genomic database analysis of Akt isoforms and associated pathway molecules in human prostate adenocarcinoma, castration-resistant PCa, neuroendocrine PCa and metastatic PCa for mutations, genetic alterations, mRNA and protein expressions and activating phosphorylations from cBioportal. Results from the protein data analysis from the cBioportal were compared to the results of our data on human PCa tissue analysis and the cellular effects of Akt1 suppression using MK-2206 on PCa cell aggressiveness. Our study indicates the existence of a dual role for Akt1 in PCa and warrants a large-scale analysis of the early and advanced stage PCa clinical samples for further clarity.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA 30912
| | - Fei Gao
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Ewan K. Cobran
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912
- Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912
| |
Collapse
|
23
|
Akt1 inhibition promotes breast cancer metastasis through EGFR-mediated β-catenin nuclear accumulation. Cell Commun Signal 2018; 16:82. [PMID: 30445978 PMCID: PMC6240210 DOI: 10.1186/s12964-018-0295-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood. Methods Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib. Results Knockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition. Conclusion EGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
Collapse
|
24
|
Alwhaibi A, Gao F, Artham S, Hsia BM, Mondal A, Kolhe R, Somanath PR. Modulation in the microRNA repertoire is responsible for the stage-specific effects of Akt suppression on murine neuroendocrine prostate cancer. Heliyon 2018; 4:e00796. [PMID: 30238065 PMCID: PMC6143703 DOI: 10.1016/j.heliyon.2018.e00796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/12/2023] Open
Abstract
Recent studies indicate a stage-specific, differential role for the oncogene Akt on various cancers. In prostate cancer (PCa), suppression of Akt activity in the advanced stages promoted transforming growth factor-β (TGFβ) pathway-mediated epithelial-to-mesenchymal transition (EMT) and metastasis to the lungs. In the current study, we performed Affymetrix analysis to compare the expression profile of microRNAs in the mouse prostate tissues collected at the prostatic inter-epithelial neoplasia (PIN) stage from Transgenic adenocarcinoma of the mouse (TRAMP)/Akt1+/+ versus TRAMP/Akt1–/– mice, and at the advanced stage from TRAMP/Akt1+/+ mice treated with triciribine (Akt inhibitor) versus DMSO-treated control. Our analysis demonstrates that in the early stage, Akt1 in the TRAMP prostate tumors express a set of miRNAs responsible for regulating cancer cell survival, proliferation, and tumor growth, whereas, in the advanced stages, a different set of miRNAs that promote EMT and cancer metastasis is expressed. Our study has identified novel Akt-regulated signature microRNAs in the early and advanced PCa and demonstrates their differential effects on PCa growth and metastasis.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Fei Gao
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Bernard M Hsia
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ashis Mondal
- Department of Pathology, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Endothelial Akt1 loss promotes prostate cancer metastasis via β-catenin-regulated tight-junction protein turnover. Br J Cancer 2018; 118:1464-1475. [PMID: 29755115 PMCID: PMC5988746 DOI: 10.1038/s41416-018-0110-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background Cancer research, in general, is focused on targeting tumour cells to limit tumour growth. These studies, however, do not account for the specific effects of chemotherapy on tumour endothelium, in turn, affecting metastasis. Methods We determined how endothelial deletion of Akt1 promotes prostate cancer cell invasion in vitro and metastasis to the lungs in vivo in endothelial-specific Akt1 knockdown mice. Results Here we show that metastatic human PC3 and DU145 prostate cancer cells invade through Akt1-deficient human lung endothelial cell (HLEC) monolayer with higher efficiency compared to control HLEC. Although the endothelial Akt1 loss in mice had no significant effect on RM1 tumour xenograft growth in vivo, it promoted metastasis to the lungs compared to the wild-type mice. Mechanistically, Akt1-deficient endothelial cells exhibited increased phosphorylation and nuclear translocation of phosphorylated β-catenin, and reduced expression of tight-junction proteins claudin-5, ZO-1 and ZO-2. Pharmacological inhibition of β-catenin nuclear translocation using compounds ICG001 and IWR-1 restored HLEC tight-junction integrity and inhibited prostate cancer cell transendothelial migration in vitro and lung metastasis in vivo. Conclusions Here we show for the first time that endothelial-specific loss of Akt1 promotes cancer metastasis in vivo involving β-catenin pathway.
Collapse
|
26
|
Chen C, Feng ZY, Jiang GQ, Gu YL, Jin K, Chu DM. TGF-β1 gene silencing can enhances the sensitivity of breast cancer to cisplatin partially by restraining the occurrence of EMT. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10751-10758. [PMID: 31966418 PMCID: PMC6965821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/17/2017] [Indexed: 06/10/2023]
Abstract
Breast cancer is one of the most common gynecological malignant tumors, the main reason of treatment failure is distant metastasis and local recurrence. TGF-β1 as a versatile polypeptide molecule plays an important role in inducing EMT to promote tumor invasion and metastasis. This study aims to investigate the effect of TGF-β1 on cisplatin (DDP) inhibiting the proliferation, migration and invasion of breast cancer and its correlation with EMT. TGF-β1 siRNA were transfected into MCF-7 cells. The cell morphology, proliferation, migration and invasion ability changes were detected by inverted microscope, clone formation assay, cell adhesion assay and Transwell Chamber Invasion. The expression of E-cadherin, vimentin, α-SMA were detected by Western blot. The results showed that TGF-β1 siRNA were transfected into MCF-7 cells successfully (P<0.05). The inhibitory activity of cisplatin on cell proliferation, migration and invasion of breast cancer were significantly enhanced after TGF-β1 siRNA transfection (P<0.05). The expression of E-cadherin was up-regulated, and vimentin and α-SMA were down-regulated with TGF-β1 siRNA transfection (P<0.05). Therefore, we concluded that TGF-β1 gene silencing can enhance the sensitivity of breast cancer to cisplatin on proliferation, migration and invasion partially by restraining the occurrence of EMT.
Collapse
Affiliation(s)
- Chao Chen
- Department of General Surgery, Changshu No.2 People’s HospitalChangshu, China
| | - Zhen-Yu Feng
- Department of General Surgery, The Second Hospital of Suzhou UniversitySuzhou, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Hospital of Suzhou UniversitySuzhou, China
| | - Yan-Lin Gu
- Department of General Surgery, The Second Hospital of Suzhou UniversitySuzhou, China
| | - Ke Jin
- Department of General Surgery, Changshu No.2 People’s HospitalChangshu, China
| | - Dong-Ming Chu
- Department of General Surgery, Changshu Dong-Ming HospitalChangshu, China
| |
Collapse
|
27
|
Liu Y, Chen H, Zheng P, Zheng Y, Luo Q, Xie G, Ma Y, Shen L. ICG-001 suppresses growth of gastric cancer cells and reduces chemoresistance of cancer stem cell-like population. J Exp Clin Cancer Res 2017; 36:125. [PMID: 28893318 PMCID: PMC5594604 DOI: 10.1186/s13046-017-0595-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND ICG-001, a small molecule, binds CREB-binding protein (CBP) to disrupt its interaction with β-catenin and inhibits CBP function as a co-activator of Wnt/β-catenin-mediated transcription. Given its ability to inhibit Wnt/β-catenin signaling pathway, ICG-001 has been used in some tumor types to exert its anticarcinogenic effect. Here, we examined ICG-001 and its potential role as a therapeutic in gastric cancer (GC). METHODS The gastric cancer cell lines SGC-7901, MGC-803, BGC-823 and MKN-45 were used in vitro and in vivo. The abilities of cell proliferation, tumor sphere formation, metastasis, tumorgenesis and chemoresistance to chemotherapy drugs in vitro were evaluated by MTT assay, colony formation assay, flow cytometry, migration and invasion assay, and tumor spheres culture. The in vivo experiments were performed using a subcutaneous transplantation tumor model in athymic nude mice. Alterations at RNA and protein levels were followed by qRT-PCR, western blot, coimmunoprecipitations and immunofluorescence assay. RESULTS In this study, we showed that ICG-001 significantly inhibited growth and metastasis of multiple GC cell lines, induced cell apoptosis, and augmented in vitro tumor spheres suppression when used in combination with chemotherapy drugs probably through robustly blocking association of β-catenin with CBP and N-cadherin, but promoting association of β-catenin with P300 and E-cadherin, instead of altering the distribution and expression of β-catenin. CONCLUSIONS Our findings suggest that ICG-001 suppresses GC cell line growth, metastasis and reduces its stem cell-like properties and chemoresistance, indicating that ICG-001 is a potentially useful small molecule therapeutic for GC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Peiming Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Qin Luo
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| |
Collapse
|