1
|
Wen X, Li D, Wang H, Zhang D, Song J, Zhou Z, Huang W, Xia X, Hu X, Liu W, Gonzales J, Via LE, Zhang L, Wang D. IQGAP1 domesticates macrophages to favor mycobacteria survival via modulating NF-κB signal and augmenting VEGF secretion. Int Immunopharmacol 2024; 138:112549. [PMID: 38944950 DOI: 10.1016/j.intimp.2024.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), still ranks among the leading causes of annual human death by infectious disease. Mtb has developed several strategies to survive for years at a time within the host despite the presence of a robust immune response, including manipulating the progression of the inflammatory response and forming granulomatous lesions. Here we demonstrate that IQGAP1, a highly conserved scaffolding protein, compartmentalizes and coordinates multiple signaling pathways in macrophages infected with Mycobacterium marinum (Mm or M.marinum), the closest relative of Mtb. Upregulated IQGAP1 ultimately suppresses TNF-α production by repressing the MKK3 signal and reducing NF-κBp65 translocation, deactivating the p38MAPK pathway. Accordingly, IQGAP1 silencing and overexpression significantly alter p38MAPK activity by modulating the production of phosphorylated MKK3 during mycobacterial infection. Pharmacological inhibition of IQGAP1-associated microtubule assembly not only alleviates tissue damage caused by M.marinum infection but also significantly decreases the production of VEGF-a critical player for granuloma-associated angiogenesis during pathogenic mycobacterial infection. Similarly, IQGAP1 silencing in Mm-infected macrophages diminishes VEGF production, while IQGAP1 overexpression upregulates VEGF. Our data indicate that mycobacteria induce IQGAP1 to hijack NF-κBp65 activation, preventing the expression of proinflammatory cytokines as well as promoting VEGF production during infection and granuloma formation. Thus, therapies targeting host IQGAP1 may be a promising strategy for treating tuberculosis, particularly in drug-resistant diseases.
Collapse
Affiliation(s)
- Xin Wen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Dan Li
- Department of Tuberculosis, The Third People's Hospital of Yichang, Yichang 443003, PR China
| | - Hankun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Jingrui Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Ziwei Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Weifeng Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Xiaohong Hu
- Department of Tuberculosis, The Third People's Hospital of Yichang, Yichang 443003, PR China
| | - Wei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, PR China; Institute of Digestive Disease, China Three Gorges University, Yichang, PR China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, PR China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20982, MD, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20982, MD, USA
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, PR China.
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
2
|
Guerrero-Pepinosa NY, Veloza LA, Sepúlveda-Arias JC. The n-Butanol Extract Obtained from the Inner Bark of Tabebuia rosea (Bertol.) DC, Specioside, and Catalposide Induce Leukemia Cell Apoptosis in the Presence of Apicidin. Molecules 2024; 29:3986. [PMID: 39274835 PMCID: PMC11396062 DOI: 10.3390/molecules29173986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.
Collapse
Affiliation(s)
- Nancy Yadira Guerrero-Pepinosa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
- Facultad de Ciencias Naturales, Exactas y de la Educación, Programa de Biología, Universidad del Cauca, Popayán 190001, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
3
|
Dulak K, Sordon S, Matera A, Wilczak A, Huszcza E, Popłoński J. Novel enzymatic route to the synthesis of C-8 hydroxyflavonoids including flavonols and isoflavones. Sci Rep 2024; 14:18217. [PMID: 39107441 PMCID: PMC11303751 DOI: 10.1038/s41598-024-68513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Flavin-dependent monooxygenases (FMOs) are a valuable group of biocatalysts that can regioselectively introduce a hydroxy group for the targeted modification of biologically active compounds. Here, we present the fdeE, the FMO from Herbaspirillum seropedicae SmR1 that is a part of the naringenin degradation pathway and is active towards a wide range of flavonoids-flavanones, flavones, isoflavones, and flavonols. Bioinformatics and biochemical analysis revealed a high similarity between the analyzed enzyme and other F8H FMOs what might indicate convergent evolutionary mechanism of flavonoid degradation pathway emergence by microorganism. A simple approach with the manipulation of the reaction environment allowed the stable formation of hydroxylation products, which showed very high reactivity in both in vivo and in vitro assays. This approach resulted in an 8-hydroxyquercetin-gossypetin titer of 0.16 g/L and additionally it is a first report of production of this compound.
Collapse
Affiliation(s)
- Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Agata Matera
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Wilczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Reyad-Ul-Ferdous M, Gul I, Raheem MA, Pandey V, Qin P. Mitochondrial UCP1: Potential thermogenic mechanistic switch for the treatment of obesity and neurodegenerative diseases using natural and epigenetic drug candidates. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155672. [PMID: 38810549 DOI: 10.1016/j.phymed.2024.155672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Brown fat is known to provide non-shivering thermogenesis through mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1). Non-shivering is not dependent on UCP2, UCP4, and BMCP1/UCP5 genes, which are distinct from UCP1 in a way that they are not constitutive uncouplers. Although they are susceptible to free fatty acid and free radical activation, their functioning has a significant impact on the performance of neurons. METHODOLOGY Using subject-specific keywords (Adipose tissue; Adipocytes; Mitochondria; Obesity; Thermogenesis; UCP's in Neurodegeneration; Alzheimer's disease; Parkinson's disease), research articles and reviews were retrieved from Web of Science, ScienceDirect, Google Scholar, and PubMed. This article includespublications published between 2018 and 2023. The drugs that upregulate UCP1 are included in the study while the drugs that do not impact UCP1 are were not included. RESULTS Neuronal UCPs have a direct impact on synaptic plasticity, neurodegenerative processes, and neurotransmission, by modulating calcium flux, mitochondrial biogenesis, local temperature, and free radical generation. Numerous significant advances in the study of neuronal UCPs and neuroprotection are still to be made. Identification of the tissue-dependent effects of UCPs is essential first. Pharmacologically targeting neuronal UCPs is a key strategy for preventing both neurodegenerative diseases and physiological aging. Given that UCP2 has activities that are tissue-specific, it will be essential to develop treatments without harmful side effects. The triggering of UCPs by CoQ, an essential cofactor, produces nigral mitochondrial uncoupling, reduces MPTP-induced toxicity, and may even decrease the course of Parkinson's disease, according to early indications. CONCLUSION Herein, we explore the potential of UCP1 as a therapeutic target for treating obesity, neurodegenerative diseases as well as a potential activator of both synthetic and natural drugs. A deeper knowledge of synaptic signaling and neurodegeneration may pave the way to new discoveries regarding the functioning and controlling of these genes.
Collapse
Affiliation(s)
- Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
6
|
Seok J, Kim MO, Kim SH, Ryu KY, Kim JY, Lee HJ, Kim YG, Lee Y. Flavonoid gossypetin protects alveolar bone and limits inflammation in ligature-induced periodontitis in mice. J Periodontol 2024. [PMID: 39031888 DOI: 10.1002/jper.23-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bacterial-induced inflammation instigates the destruction of hard and soft tissues surrounding teeth in periodontitis. In severe cases, the increased number and activity of osteoclasts induces the resorption of alveolar bones, ultimately leading to tooth loss. Because of their diverse chemical structures and bioactivities, natural compounds are often suggested to treat a wide variety of diseases, including inflammatory disorders. METHODS In the present study, we demonstrated an inhibitory effect of gossypetin, a hexahydroxy flavone, on osteoclast differentiation and bone resorption using in vitro culture of osteoclasts from mouse bone marrow macrophage (BMM) precursors and in vivo model of ligature-induced periodontitis in mice. RESULTS Gossypetin significantly reduced the differentiation of osteoclasts from mouse BMM precursors in the presence of the receptor activator of nuclear factor κB ligand (RANKL). In vitro, gossypetin inhibited critical signaling events downstream of RANKL including the auto-amplification of nuclear factor of activated T-cells, cytoplasmic 1, Ca2+ oscillations, and the generation of reactive oxygen species. In a mouse ligature-induced periodontitis model, the administration of gossypetin significantly reduced osteoclastogenesis and alveolar bone resorption. Furthermore, gossypetin prevented the ligature-induced increase in macrophages and T cells and reduced the production of tumor necrosis factor-α and interleukin-6. CONCLUSION Taken together, these results show anti-osteoclastogenic and anti-inflammatory effects of gossypetin, suggesting the potential use of this natural compound in periodontitis.
Collapse
Affiliation(s)
- Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- Department of Animal Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, South Korea
| | - Ka-Young Ryu
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
7
|
Xu C, Tai H, Chu Y, Liu Y, He J, Wang Y, Su B, Li S. Gossypetin targets the liver-brain axis to alleviate pre-existing liver fibrosis and hippocampal neuroinflammation in mice. Front Pharmacol 2024; 15:1385330. [PMID: 38860164 PMCID: PMC11163038 DOI: 10.3389/fphar.2024.1385330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Liver fibrosis occurs in response to chronic damage and inflammation to the liver. Leaving untreated, it can lead to decreased liver function and can eventually progress to cirrhosis, a more advanced and irreversible state of liver damage. Clinical investigations showed that chronic liver disease associated with neurological symptoms including anxiety, depression, and cognitive decline. However, few therapeutic options are available for treating liver and related brain pathologies simultaneously. In this study, we aim to find therapeutic candidates that target the liver-brain axis. Gossypetin, a flavonoid from sedum, shows promising capability in treating liver and brain pathologies in CCl4-induced mouse model. Short term of gossypetin administration is sufficient to ameliorate impaired liver function and pre-existing liver fibrosis, suppress MKK3/6-p38 MAPK and p53 activation, and abolish the activation of hepatic stellate cells and Kupffer cells. Although we observe no neuronal loss in the brain of mice with liver fibrosis, we do observe astrogliosis and microglial activation in certain brain regions, especially the hippocampus. Brief gossypetin administration also shows potential in alleviating neuroinflammation in these regions. These results suggest that gossypetin can target the liver-brain axis and be a promising candidate for treating chronic liver fibrosis patients with neurological symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Lv J, He Q, Yan Z, Xie Y, Wu Y, Li A, Zhang Y, Li J, Huang Z. Inhibitory Impact of Prenatal Exposure to Nano-Polystyrene Particles on the MAP2K6/p38 MAPK Axis Inducing Embryonic Developmental Abnormalities in Mice. TOXICS 2024; 12:370. [PMID: 38787149 PMCID: PMC11125576 DOI: 10.3390/toxics12050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Nanoplastics, created by the fragmentation of larger plastic debris, are a serious pollutant posing substantial environmental and health risks. Here, we developed a polystyrene nanoparticle (PS-NP) exposure model during mice pregnancy to explore their effects on embryonic development. We found that exposure to 30 nm PS-NPs during pregnancy resulted in reduced mice placental weight and abnormal embryonic development. Subsequently, our transcriptomic dissection unveiled differential expression in 102 genes under PS-NP exposure and the p38 MAPK pathway emerged as being significantly altered in KEGG pathway mapping. Our findings also included a reduction in the thickness of the trophoblastic layer in the placenta, diminished cell invasion capabilities, and an over-abundance of immature red cells in the blood vessels of the mice. In addition, we validated our findings through the human trophoblastic cell line, HTR-8/SVneo (HTR). PS-NPs induced a drop in the vitality and migration capacities of HTR cells and suppressed the p38 MAPK signaling pathway. This research highlights the embryotoxic effects of nanoplastics on mice, while the verification results from the HTR cells suggest that there could also be certain impacts on the human trophoblast layer, indicating a need for further exploration in this area.
Collapse
Affiliation(s)
- Junyi Lv
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Qing He
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Zixiang Yan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yuan Xie
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yao Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Anqi Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China;
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| |
Collapse
|
9
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
10
|
Huang K, Liu Z, Kim MO, Kim KR. Anticancer effects of gossypetin from Hibiscus sabdariffa in oral squamous cell carcinoma. J Appl Oral Sci 2023; 31:e20230243. [PMID: 37820185 PMCID: PMC10561964 DOI: 10.1590/1678-7757-2023-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE Gossypetin, isolated from Hibiscus sabdariffa L, has been shown to have various pharmacological effects including anti-inflammatory and antibacterial activity against various diseases. However, since the effect of gossypetin in oral cancer remains to be reported, we aimed to investigate the anticancer activity and mechanisms of gossypetin in oral squamous cell carcinoma (OSCC). METHODOLOGY The proliferation of OSCC cells was evaluated by cell viability and soft agar colony assays. The effects of gossypetin on the migration and invasion of OSCC cells was investigated by wound healing and transwell invasion assays, respectively. Apoptosis and cell cycle arrest were measured by flow cytometry. Moreover, the anticancer mechanism of gossypetin in OSCC cells was analyzed by western blotting. RESULTS Gossypetin inhibited the proliferation, migration, and invasion of OSCC cells and induced apoptosis by upregulating the Bax/Bcl-2 ratio and cell cycle arrest at the G2/M phase. Furthermore, gossypetin regulated the activation of extracellular signal-regulated kinase and nuclear factor-kappa B. CONCLUSION Results showed that gossypetin inhibits the proliferation, migration, and invasion of OSCC cells and triggers apoptosis and cell cycle arrest in OSCC. Therefore, gossypetin has the potential for use as a chemopreventive agent in oral cancer.
Collapse
Affiliation(s)
- Ke Huang
- Kyungpook National University, Graduate School of Science and Technology, Department of Dental Hygiene, Sangju 37224, Republic of Korea
- Kyungpook National University, Research Center for Horse Industry, Department of Animal Science and Biotechnology, Sangju 37224, Republic of Korea
| | - Zhibin Liu
- Kyungpook National University, Graduate School of Science and Technology, Department of Dental Hygiene, Sangju 37224, Republic of Korea
- Kyungpook National University, Research Center for Horse Industry, Department of Animal Science and Biotechnology, Sangju 37224, Republic of Korea
| | - Myoung-Ok Kim
- Kyungpook National University, Research Center for Horse Industry, Department of Animal Science and Biotechnology, Sangju 37224, Republic of Korea
| | - Ki-Rim Kim
- Kyungpook National University, Graduate School of Science and Technology, Department of Dental Hygiene, Sangju 37224, Republic of Korea
| |
Collapse
|
11
|
Cai M, Xiang Y, Li Z, Xie J, Wen F. Network pharmacology and molecular docking predictions of the active compounds and mechanism of action of Huangkui capsule for the treatment of idiopathic membranous nephropathy. Medicine (Baltimore) 2023; 102:e35214. [PMID: 37713831 PMCID: PMC10508523 DOI: 10.1097/md.0000000000035214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Huangkui Capsule is a single herbal concoction prepared from the flower of Abelmoschus manihot, which is used to treat idiopathic membranous nephropathy (IMN), a frequent pathologically damaging kidney condition. It has been widely utilized to treat a variety of renal disorders, including IMN, in clinical practice. However, the active compounds and mechanism of action underlying the anti-IMN effects of Huangkui Capsule remain unclear. In this study, we aimed to predict the potential active compounds and molecular targets of Huangkui Capsule for the treatment of IMN. METHODS The possible active components of Huangkui were located using the SymMap v2 database. The targets of these drugs were predicted using Swiss Target Prediction, while IMN-related genes with association scores under 5 were gathered from the GeneCards and DisGeNET databases. The common targets of the disease and the components were determined using VENNY 2.1. Using Cytoscape 3.8.0, a drug-disease network diagram was created. Molecular docking was carried out with Pymol, AutoDock Tools, and AutoDock Vina. RESULTS With 1260 IMN-related illness genes gathered from GeneCards and DisGeNET databases, we were able to identify 5 potentially active chemicals and their 169 target proteins in Huangkui. Based on degree value, the top 6 targets for Huangkui treatment of IMN were chosen, including AKT, MAPK3, PPARG, MMP9, ESR1, and KDR. CONCLUSION This work theoretically explains the mechanism of action of Huangkui Capsule in treating IMN and offers a foundation for using Huangkui Capsule in treating IMN in clinical settings. The findings require additional experimental validation.
Collapse
Affiliation(s)
- Meng Cai
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongjing Xiang
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhengsheng Li
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Xie
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fulong Wen
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
12
|
Proença C, Rufino AT, Santos I, Albuquerque HMT, Silva AMS, Fernandes E, Ferreira de Oliveira JMP. Gossypetin Is a Novel Modulator of Inflammatory Cytokine Production and a Suppressor of Osteosarcoma Cell Growth. Antioxidants (Basel) 2023; 12:1744. [PMID: 37760046 PMCID: PMC10525374 DOI: 10.3390/antiox12091744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Osteosarcoma (OS) is a common childhood sarcoma, and its treatment is hindered by adverse effects, chemoresistance, and recurrence. Interleukin (IL)-6 production by tumors plays a significant role in inflammation, carcinogenesis, and metastasis. This study aimed to investigate the antiproliferative potential of luteolin derivatives in OS and to evaluate interleukin production. MG-63, Saos-2, HOS, and 143B human OS cell lines were incubated with luteolin and eight derivatives containing hydroxy, chlorine, or alkyl substitutions. The cell viability and growth were evaluated in the presence of these compounds. Apoptosis was also examined through the analysis of the Bax expression and caspase-3 activity. Finally, the gossypetin effects were measured regarding the production of proinflammatory cytokines interleukin (IL)-6, IL-1β, and IL-12p70. Our findings show that gossypetin was the most potent compound, with proliferation-suppressing activities that induced a series of critical events, including the inhibition of the cell viability and growth. Apoptosis was associated with enhanced caspase-3 activity and increased Bax expression, indicating the involvement of the intrinsic pathway of apoptosis. Moreover, pre-/co-treatment with gossypetin significantly reduced the autocrine production of proinflammatory cytokines. Further investigation is required; nevertheless, considering the link between inflammation, carcinogenesis, and metastasis in OS, our findings suggest that gossypetin exhibits anti-proliferative and anti-inflammatory properties that are potentially relevant in the clinical context.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - Ana Teresa Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - Isabela Santos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - Hélio M. T. Albuquerque
- LAQV, REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV, REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (A.M.S.S.)
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.); (A.T.R.); (I.S.); (E.F.)
| |
Collapse
|
13
|
Jagtap U, Paul A. UCP1 activation: Hottest target in the thermogenesis pathway to treat obesity using molecules of synthetic and natural origin. Drug Discov Today 2023; 28:103717. [PMID: 37467882 DOI: 10.1016/j.drudis.2023.103717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Uncoupling protein 1 (UCP1) has been discovered as a possible target for obesity treatment because of its widespread distribution in the inner mitochondrial membrane of brown adipose tissue (BAT) and high energy expenditure capabilities to burn calories as heat. UCP1 is dormant and does not produce heat without activation as it is inhibited by purine nucleotides. However, activation of UCP1 via either direct interaction with the UCP1 protein, an increase in the expression of UCP1 genes or the physiological production of fatty acids can lead to a rise in the thermogenesis phenomenon. Hence, activation of UCP1 through small molecules of synthetic and natural origin can be considered as a promising strategy to mitigate obesity.
Collapse
Affiliation(s)
- Utkarsh Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Atish Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
14
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Mustafa S, Anwar H, Ain QU, Ahmed H, Iqbal S, Ijaz MU. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62237-62248. [PMID: 36940025 DOI: 10.1007/s11356-023-26469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3β-HSD, and 17β-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
16
|
Yeo JH, Roh DH. The mTOR inhibitor rapamycin suppresses trigeminal neuropathic pain and p-MKK4/p-p38 mitogen-activated protein kinase-mediated microglial activation in the trigeminal nucleus caudalis of mice with infraorbital nerve injury. Front Mol Neurosci 2023; 16:1172366. [PMID: 37122619 PMCID: PMC10140572 DOI: 10.3389/fnmol.2023.1172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Neuropathic pain caused by trigeminal nerve injury is a typical refractory orofacial chronic pain accompanied by the development of hyperalgesia and allodynia. We previously demonstrated that the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed orofacial formalin injection-induced nociception; however, the underlying mechanism is unclear, and it is unknown whether it can reduce trigeminal neuropathic pain. In mice, left infraorbital nerve and partial nerve ligation (ION-pNL) was performed using a silk suture (8-0). Fourteen days after surgery, neuropathic pain behavior was examined on a whisker pad and rapamycin (0.1, 0.3, and 1.0 mg/kg) was administered intraperitoneally. Mechanical and cold sensitivities in the orofacial region were quantified using von Frey filaments and acetone solution, respectively. Changes in mTOR and related proteins, such as p-MKK3/6, p-MKK4, p-JNK, p-ERK, p-p38 MAPK, GFAP, and Iba-1, in the trigeminal nucleus caudalis (TNC) or the trigeminal ganglia (TG) tissues were examined via western blot analysis or immunohistochemistry. Mice demonstrated significant mechanical and cold allodynia 2 weeks following ION-pNL injury, both of which were significantly reduced 1 h after the administration of high-dose rapamycin (1.0 mg/kg). In the TG tissue, ION-pNL surgery or rapamycin treatment did not change p-mTOR and p-4EBP1, but rapamycin reduced the increase of p-S6 and S6 induced by ION-pNL. In the TNC tissue, neither ION-pNL surgery nor rapamycin treatment altered p-mTOR, p-S6, and p-4EBP1 expressions, whereas rapamycin significantly decreased the ION-pNL-induced increase in Iba-1 expression. In addition, rapamycin suppressed the increase in p-p38 MAPK and p-MKK4 expressions but not p-MKK3/6 expression. Moreover, p-p38 MAPK-positive cells were colocalized with increased Iba-1 in the TNC. Our findings indicate that rapamycin treatment reduces both mechanical and cold orofacial allodynia in mice with trigeminal neuropathic pain, which is closely associated with the modulation of p-MKK4/p-p38 MAPK-mediated microglial activation in the TNC.
Collapse
|
17
|
Jo KW, Lee D, Cha DG, Oh E, Choi YH, Kim S, Park ES, Kim JK, Kim KT. Gossypetin ameliorates 5xFAD spatial learning and memory through enhanced phagocytosis against Aβ. Alzheimers Res Ther 2022; 14:158. [PMID: 36271414 PMCID: PMC9585741 DOI: 10.1186/s13195-022-01096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Microglia are the resident immune cells found in our brain. They have a critical role in brain maintenance. Microglia constantly scavenge various waste materials in the brain including damaged or apoptotic neurons and Aβ. Through phagocytosis of Aβ, microglia prevent the accumulation of Aβ plaque in the brain. However, in Alzheimer's disease (AD) patients, chronic exposure to Aβ makes microglia to become exhausted, which reduces their phagocytic activity against Aβ. Since microglia play an important role in Aβ clearance, enhancing microglial phagocytic activity against Aβ is a promising target for AD treatment. Therefore, there is a great need for therapeutic candidate that enhances microglial Aβ clearance while inhibiting microglia's pathogenic properties. METHODS In vivo studies were conducted with 5xFAD AD model mice by treating gossypetin for 13 weeks through intragastric administration. Their spatial learning and memory were evaluated through behavior tests such as Y-maze and Morris Water Maze test. Hippocampus and cortex were acquired from the sacrificed mice, and they were used for histological and biochemical analysis. Also, mouse tissues were dissociated into single cells for single-cell RNA sequencing (scRNA-seq) analysis. Transcriptome of microglial population was analyzed. Mouse primary microglia and BV2 mouse microglial cell line were cultured and treated with fluorescent recombinant Aβ to evaluate whether their phagocytic activity is affected by gossypetin. RESULTS Gossypetin treatment improved the spatial learning and memory of 5xFAD by decreasing Aβ deposition in the hippocampus and cortex of 5xFAD. Gossypetin induced transcriptomic modulations in various microglial subpopulations, including disease-associated microglia. Gossypetin enhanced phagocytic activity of microglia while decreasing their gliosis. Gossypetin also increased MHC II+ microglial population. CONCLUSIONS Gossypetin showed protective effects against AD by enhancing microglial Aβ phagocytosis. Gossypetin appears to be a novel promising therapeutic candidate against AD.
Collapse
Affiliation(s)
- Kyung Won Jo
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 Republic of Korea
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd, Pohang, Gyeongbuk 37668 Republic of Korea
| | - Dong Gon Cha
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Eunji Oh
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yoon Ha Choi
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 Republic of Korea
| | - Somi Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 Republic of Korea
| | - Eun Seo Park
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Jong Kyoung Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 Republic of Korea
| | - Kyong-Tai Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
18
|
Takahashi D, Matsunaga E, Yamashita T, Caaveiro JM, Abe Y, Ueda T. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis. Biochem Biophys Res Commun 2022; 596:22-28. [DOI: 10.1016/j.bbrc.2022.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|
19
|
MiR-1298-5p level downregulation induced by Helicobacter pylori infection inhibits autophagy and promotes gastric cancer development by targeting MAP2K6. Cell Signal 2022; 93:110286. [DOI: 10.1016/j.cellsig.2022.110286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
|
20
|
Dissection of the MKK3 Functions in Human Cancer: A Double-Edged Sword? Cancers (Basel) 2022; 14:cancers14030483. [PMID: 35158751 PMCID: PMC8833818 DOI: 10.3390/cancers14030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The role played by MKK3 in human cancer is controversial. MKK3 is an evolutionarily conserved protein kinase that activates in response to a variety of stimuli. Phosphorylates, specifically the p38MAPK family proteins, contribute to the regulation of a plethora of cellular processes such as proliferation, differentiation, apoptosis, invasion, and cell migration. Genes in carcinogenesis are classified as oncogenes and tumor suppressors; however, a clear distinction is not always easily made as it depends on the cell context and tissue specificity. The aim of this study is the examination of the potential contribution of MKK3 in cancer through a systematic analysis of the recent literature. The overall results reveal a complex scenario of MKK3’s involvement in cancer. The oncogenic functions of MKK3 were univocally documented in several solid tumors, such as colorectal, prostate cancer, and melanoma, while its tumor-suppressing functions were described in glioblastoma and gastric cancer. Furthermore, a dual role of MKK3 as an oncogene as well as tumor a suppressor has been described in breast, cervical, ovarian, liver, esophageal, and lung cancer. However, overall, more evidence points to its role as an oncogene in these diseases. This review indicates that the oncogenic and tumor-suppressing roles of MKK3 are strictly dependent on the tumor type and further suggests that MKK3 could represent an efficient putative molecular target that requires contextualization within a specific tumor type in order to adequately evaluate its potential effectiveness in designing novel anticancer therapies.
Collapse
|
21
|
Xie Y, Wang D, Gao C, Hu J, Zhang M, Gao W, Shu S, Chai X. Effect of perioperative flurbiprofen axetil on long-term survival of patients with esophageal carcinoma who underwent thoracoscopic esophagectomy: A retrospective study. J Surg Oncol 2021; 124:540-550. [PMID: 34143443 PMCID: PMC8453976 DOI: 10.1002/jso.26553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Background and Objectives Nonsteroidal anti‐inflammatory drugs (NSAIDs) have an anti‐inflammatory response, but it remains unclear whether the perioperative use of flurbiprofen axetil can influence postoperative tumor recurrence and survival in esophageal carcinoma. We aimed to explore the effect of perioperative intravenous flurbiprofen axetil on recurrence‐free survival (RFS) and overall survival (OS) in patients with esophageal carcinoma who underwent thoracoscopic esophagectomy. Methods This retrospective study included patients who underwent surgery for esophageal carcinoma between December 2009 and May 2015 at the Department of Thoracic Surgery, Anhui Provincial Hospital. Patients were categorized into a non‐NSAIDs group (did not receive flurbiprofen axetil), single‐dose NSAIDs group (received a single dose of flurbiprofen axetil intravenously), and multiple‐dose NSAIDs group (received multiple doses of flurbiprofen). Results A total of 847 eligible patients were enrolled. Univariable and multivariable analyses revealed that the intraoperative use of flurbiprofen was associated with long‐term RFS (hazard ratio [HR]: 0.56, 95% confidence interval [CI]: 0.42–0.76, p = .001) and prolonged OS (HR: 0.49, 95% CI: 0.38–0.63, p = .001). Conclusions Perioperative flurbiprofen axetil therapy may be associated with prolonged RFS and OS in patients with esophageal carcinoma undergoing thoracoscopic esophagectomy.
Collapse
Affiliation(s)
- Yanhu Xie
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Chen Gao
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Jicheng Hu
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Zhang
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Gao
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuhua Shu
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Hefei, Anhui, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
22
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
23
|
Zhang Y, Lu W, Chen Y, Lin Y, Yang X, Wang H, Liu Z. The miR-19b-3p-MAP2K3-STAT3 feedback loop regulates cell proliferation and invasion in esophageal squamous cell carcinoma. Mol Oncol 2021; 15:1566-1583. [PMID: 33660414 PMCID: PMC8096789 DOI: 10.1002/1878-0261.12934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 02/26/2021] [Indexed: 02/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most refractory malignancies worldwide. Mitogen-activated protein kinase 3 (MAP2K3) has a contradictory role in tumor progression, and the function and expression patterns of MAP2K3 in ESCC remain to be determined. We found that MAP2K3 expression to be downregulated in ESCC, and MAP2K3 downregulation correlated with clinically poor survival. MAP2K3 inhibited ESCC cell proliferation and invasion in vitro and in vivo. MAP2K3 suppressed STAT3 expression and activation. Mechanistically, MAPSK3 interacted with MDM2 to promote STAT3 degradation via the ubiquitin-proteasome pathway. Furthermore, exosomal miR-19b-3p derived from the plasma of patients with ESCC could suppress MAP2K3 expression to promote ESCC tumorigenesis. STAT3 was found to bind to the MIR19B promoter and increased the expression of miR-19b-3p in ESCC cells. In summary, our results demonstrated that the miR-19b-3p-MAP2K3-STAT3 feedback loop regulates ESCC tumorigenesis and elucidates the potential of therapeutically targeting this pathway in ESCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of PathologySun Yat‐Sen University Cancer CenterGuangzhouChina
- Sun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Weiqing Lu
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yelong Chen
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Youbin Lin
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xia Yang
- Sun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hu Wang
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zhaoyong Liu
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
24
|
Zhang H, Yi JK, Huang H, Park S, Park S, Kwon W, Kim E, Jang S, Kim SY, Choi SK, Kim SH, Liu K, Dong Z, Ryoo ZY, Kim MO. Rhein Suppresses Colorectal Cancer Cell Growth by Inhibiting the mTOR Pathway In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13092176. [PMID: 33946531 PMCID: PMC8125196 DOI: 10.3390/cancers13092176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial-mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Korea;
| | - Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu 41566, Korea; (S.P.); (S.-K.C.)
- Department of Brain and Cognitive Science, DGIST, Daegu 41566, Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu 41566, Korea;
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu 41566, Korea; (S.P.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 41566, Korea;
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
- Correspondence: (Z.Y.R.); (M.O.K.); Tel.: +82-53-950-7361 (Z.Y.R.); +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
- Correspondence: (Z.Y.R.); (M.O.K.); Tel.: +82-53-950-7361 (Z.Y.R.); +82-54-530-1234 (M.O.K.)
| |
Collapse
|
25
|
Lan T, Xue X, Dunmall LC, Miao J, Wang Y. Patient-derived xenograft: a developing tool for screening biomarkers and potential therapeutic targets for human esophageal cancers. Aging (Albany NY) 2021; 13:12273-12293. [PMID: 33903283 PMCID: PMC8109069 DOI: 10.18632/aging.202934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 04/15/2023]
Abstract
Esophageal cancer (EC) represents a human malignancy, diagnosed often at the advanced stage of cancer and resulting in high morbidity and mortality. The development of precision medicine allows for the identification of more personalized therapeutic strategies to improve cancer treatment. By implanting primary cancer tissues into immunodeficient mice for expansion, patient-derived xenograft (PDX) models largely maintain similar histological and genetic representations naturally found in patients' tumor cells. PDX models of EC (EC-PDX) provide fine platforms to investigate the tumor microenvironment, tumor genomic heterogeneity, and tumor response to chemoradiotherapy, which are necessary for new drug discovery to combat EC in addition to optimization of current therapeutic strategies for EC. In this review, we summarize the methods used for establishing EC-PDX models and investigate the utilities of EC-PDX in screening predictive biomarkers and potential therapeutic targets. The challenge of this promising research tool is also discussed.
Collapse
Affiliation(s)
- Tianfeng Lan
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Xue
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- The Academy of Medical Science, Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, P.R. China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Hugon J, Paquet C. The PKR/P38/RIPK1 Signaling Pathway as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22063136. [PMID: 33808629 PMCID: PMC8003462 DOI: 10.3390/ijms22063136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway.
Collapse
Affiliation(s)
- Jacques Hugon
- Correspondence: ; Tel.: +33-140-054-313; Fax: +33-140-054-339
| | | |
Collapse
|
27
|
Jia X, Huang C, Hu Y, Wu Q, Liu F, Nie W, Chen H, Li X, Dong Z, Liu K. Cirsiliol targets tyrosine kinase 2 to inhibit esophageal squamous cell carcinoma growth in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:105. [PMID: 33731185 PMCID: PMC7972218 DOI: 10.1186/s13046-021-01903-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01903-z.
Collapse
Affiliation(s)
- Xuechao Jia
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Chuntian Huang
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Yamei Hu
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Qiong Wu
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Fangfang Liu
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiang Li
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China. .,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, The School of Basic Medical Sciences, AMS, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China. .,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Li Z, Li X, He X, Jia X, Zhang X, Lu B, Zhao J, Lu J, Chen L, Dong Z, Liu K, Dong Z. Proteomics Reveal the Inhibitory Mechanism of Levodopa Against Esophageal Squamous Cell Carcinoma. Front Pharmacol 2020; 11:568459. [PMID: 33101026 PMCID: PMC7546765 DOI: 10.3389/fphar.2020.568459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
High recurrence rates and poor survival of patients with esophageal squamous cell carcinoma (ESCC) after treatment make ongoing research on chemoprevention drugs for ESCC particularly important. In this study, we screened a large number of FDA-approved drugs and found levodopa, a drug used to treat Parkinson's disease, had an inhibitory effect on the growth of ESCC cells. To elucidate the molecular mechanisms involved, we applied quantitative proteomics to investigate the anti-tumor activity of levodopa on ESCC. The results suggest that levodopa could down-regulate oxidative phosphorylation, non-alcoholic fatty liver disease, and Parkinson's disease pathways. Major mitochondrial respiratory compounds were involved in the pathways, including succinate dehydrogenase subunit D, NADH-ubiquinone oxidoreductase Fe-S protein 4, and mitochondrial cytochrome c oxidase subunit 3. Down-regulation of these proteins was associated with mitochondrial dysfunction. Western blotting and immunofluorescence results confirmed the proteomics findings. Cell viability assays indicated mitochondrial activity was suppressed after levodopa treatment. Reduced mitochondrial membrane potential was detected using JC-1 staining and TMRE assays. Transmission electron microscopy revealed changes in the morphology of mitochondria. Taken together, these results indicate that levodopa inhibited the growth of ESCC through restraining mitochondria function.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaofan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Lexia Chen
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
29
|
Yang X, Amgad M, Cooper LAD, Du Y, Fu H, Ivanov AA. High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients. J Transl Med 2020; 18:334. [PMID: 32873298 PMCID: PMC7465409 DOI: 10.1186/s12967-020-02502-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African American women experience a twofold higher incidence of triple-negative breast cancer (TNBC) and are 40% more likely to die from breast cancer than women of other ethnicities. However, the molecular bases for the survival disparity in breast cancer remain unclear, and no race-specific therapeutic targets have been proposed. To address this knowledge gap, we performed a systematic analysis of the relationship between gene mRNA expression and clinical outcomes determined for The Cancer Genome Atlas (TCGA) breast cancer patient cohort. METHODS The systematic differential analysis of mRNA expression integrated with the analysis of clinical outcomes was performed for 1055 samples from the breast invasive carcinoma TCGA PanCancer cohorts. A deep learning fully-convolutional model was used to determine the association between gene expression and tumor features based on breast cancer patient histopathological images. RESULTS We found that more than 30% of all protein-coding genes are differentially expressed in White and African American breast cancer patients. We have determined a set of 32 genes whose overexpression in African American patients strongly correlates with decreased survival of African American but not White breast cancer patients. Among those genes, the overexpression of mitogen-activated protein kinase kinase 3 (MKK3) has one of the most dramatic and race-specific negative impacts on the survival of African American patients, specifically with triple-negative breast cancer. We found that MKK3 can promote the TNBC tumorigenesis in African American patients in part by activating of the epithelial-to-mesenchymal transition induced by master regulator MYC. CONCLUSIONS The poor clinical outcomes in African American women with breast cancer can be associated with the abnormal elevation of individual gene expression. Such genes, including those identified and prioritized in this study, could represent new targets for therapeutic intervention. A strong correlation between MKK3 overexpression, activation of its binding partner and major oncogene MYC, and worsened clinical outcomes suggests the MKK3-MYC protein-protein interaction as a new promising target to reduce racial disparity in breast cancer survival.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mohamed Amgad
- Department of Biomedical Informatics, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis 2020; 11:524. [PMID: 32655130 PMCID: PMC7354992 DOI: 10.1038/s41419-020-2730-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor survival. It is urgent to search for new efficient drugs with good stability and safety for clinical therapy. This study aims to identify potential anticancer drugs from a compound library consisting of 429 natural products. Echinatin, a compound isolated from the Chinese herb Glycyrrhiza uralensis Fisch, was found to markedly induce apoptosis and inhibit proliferation and colony-formation ability in ESCC. Confocal fluorescence microscopy data showed that echinatin significantly induced autophagy in ESCC cells, and autophagy inhibitor bafilomycinA1 attenuated the suppressive effects of echinatin on cell viability and apoptosis. Mechanistically, RNA sequencing coupled with bioinformatics analysis and a series of functional assays revealed that echinatin induced apoptosis and autophagy through inactivation of AKT/mTOR signaling pathway, whereas constitutive activation of AKT significantly abrogated these effects. Furthermore, we demonstrated that echinatin had a significant antitumor effect in the tumor xenograft model and markedly suppressed cell migration and invasion abilities of ESCC cells in a dose-dependent manner. Our findings provide the first evidence that echinatin could be a novel therapeutic strategy for treating ESCC.
Collapse
|
31
|
Kwong AJ, Scheidt KA. Non-'classical' MEKs: A review of MEK3-7 inhibitors. Bioorg Med Chem Lett 2020; 30:127203. [PMID: 32389527 PMCID: PMC7299838 DOI: 10.1016/j.bmcl.2020.127203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.
Collapse
Affiliation(s)
- Ada J Kwong
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States.
| |
Collapse
|