1
|
Cai Y, Zhao G, Ma P, Fang H, Dong X, Wang Y, Ding J, Wang S, Li N. Harnessing the power of TCR-T cell therapy: A new era in cancer immunotherapy. Cancer Lett 2025; 613:217507. [PMID: 39892699 DOI: 10.1016/j.canlet.2025.217507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Affiliation(s)
- Yuanting Cai
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Zhao
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiwen Ma
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Fang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyuan Dong
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuning Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiatong Ding
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ning Li
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Zhou Z, Chen J, Lin S, Hong L, Wei DQ, Xiong Y. GRATCR: Epitope-Specific T Cell Receptor Sequence Generation With Data-Efficient Pre-Trained Models. IEEE J Biomed Health Inform 2025; 29:2271-2283. [PMID: 40031605 DOI: 10.1109/jbhi.2024.3514089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
T cell receptors (TCRs) play a crucial role in numerous immunotherapies targeting tumor cells. However, their acquisition and optimization present significant challenges, involving laborious and time-consuming wet lab experimental resource. Deep generative models have demonstrated remarkable capabilities in functional protein sequence generation, offering a promising solution for enhancing the acquisition of specific TCR sequences. Here, we propose GRATCR, a framework incorporates two pre-trained modules through a novel "grafting" strategy, to de-novo generate TCR sequences targeting specific epitopes. Experimental results demonstrate that TCRs generated by GRATCR exhibit higher specificity toward desired epitopes and are more biologically functional compared with the state-of-the-art model, by using significantly fewer training data. Additionally, the generated sequences display novelty compared to natural sequences, and the interpretability evaluation further confirmed that the model is capable of capturing important binding patterns.
Collapse
|
3
|
Wu Y, Lin C, Qian Y, Huang X, Xu Y, Li J, He Y, Xie C, Su H. Identification of immune subtypes associated with CD8+ T cell-related genes providing new treatment strategies of esophageal carcinoma. Front Immunol 2025; 16:1512230. [PMID: 40083549 PMCID: PMC11903738 DOI: 10.3389/fimmu.2025.1512230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Background CD8+ T lymphocytes greatly affect the efficacy of immunotherapy, displaying promising potential in various tumors. Here, we aimed to identify immune subtypes associated with CD8+ T cell-related genes to predict the efficacy of treatment in esophageal cancer (ESCA). Methods We obtained 13 immune cell-related datasets from the Gene Expression Omnibus (GEO) database and removed batch effects. Weighted correlation network analysis (WGCNA) and co-expression analysis were performed to identify highly correlated CD8+ T cell genes. Cox analysis was used to process ESCA clinical information, and the immune clusters (ICs) were constructed through consensus cluster analysis. Furthermore, we constructed an immune risk score model to predict the prognosis of ESCA based on these CD8+ T cell genes. This model was verified using the IMvigor210 dataset, and we functionally validated the immune risk score model in vitro. Results The results revealed significant correlations between CD8+ T cell-related genes and immune-related pathways. Three ICs were identified in ESCA, with IC3 demonstrating the most favorable prognosis. The final 6-gene prognostic risk model exhibited stable predictive performance in datasets across different platforms. Compared with that in normal esophageal epithelial (HEEC cells), CHMP7 in the 6-gene prognostic risk model was upregulated in KYSE150 and TE-1 cells. Si-CHMP7 transfection led to a decrease in tumor cell migration, invasion, and proliferation, accompanied by an accelerated apoptotic process. Conclusions Collectively, we identified the immune subtypes of CD8+ T cell-related genes with different prognostic significance. We designated CHMP7 in the 6-gene prognostic risk model as a potential target to improve tumor cell prognosis. These insights provide a strong basis for improving prognosis and facilitating more personalized and accurate treatment decisions for the immunotherapy of ESCA.
Collapse
Affiliation(s)
- Youyi Wu
- Department Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Rui’an People Hospital, Ruian, Zhejiang, China
| | - Chen Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchen Qian
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajing Xu
- Department of Radiation Oncology Wenzhou Central Hospital Theorem Hospital Affiliated of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youdi He
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Yi MH, Lee J, Moon S, So E, Bang G, Moon KS, Lee KH. Divergent Crosstalk Between Microglia and T Cells in Brain Cancers: Implications for Novel Therapeutic Strategies. Biomedicines 2025; 13:216. [PMID: 39857798 PMCID: PMC11763300 DOI: 10.3390/biomedicines13010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Brain cancers represent a formidable oncological challenge characterized by their aggressive nature and resistance to conventional therapeutic interventions. The tumor microenvironment has emerged as a critical determinant of tumor progression and treatment efficacy. Within this complex ecosystem, microglia and macrophages play fundamental roles, forming intricate networks with peripheral immune cell populations, particularly T cells. The precise mechanisms underlying microglial interactions with T cells and their contributions to immunosuppression remain incompletely understood. Methods: This review comprehensively examines the complex cellular dialogue between microglia and T cells in two prominent brain malignancies: primary glioblastoma and secondary brain metastases. Results: Through a comprehensive review of the current scientific literature, we explore the nuanced mechanisms through which microglial-T cell interactions modulate tumor growth and immune responses. Conclusions: Our analysis seeks to unravel the cellular communication pathways that potentially underpin tumor progression, with the ultimate goal of illuminating novel therapeutic strategies for brain cancer intervention.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea; (M.-H.Y.)
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Jinkyung Lee
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Subin Moon
- Department of Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - EunA So
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Geonhyeok Bang
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea; (M.-H.Y.)
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea;
| | - Kyung-Hwa Lee
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
5
|
Yang H, Cai J, Huang X, Zhan C, Lu C, Gu J, Ma T, Zhang H, Cheng T, Xu F, Ge D. Gram-Negative Microflora Dysbiosis Facilitates Tumor Progression and Immune Evasion by Activating the CCL3/CCL5-CCR1-MAPK-PD-L1 Pathway in Esophageal Squamous Cell Carcinoma. Mol Cancer Res 2025; 23:71-85. [PMID: 39352512 PMCID: PMC11694060 DOI: 10.1158/1541-7786.mcr-24-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 01/03/2025]
Abstract
Gram-negative (G-) microflora dysbiosis occurs in multiple digestive tumors and is found to be the dominant microflora in the esophageal squamous cell carcinoma (ESCC) microenvironment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the microimmune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually upregulated after G- bacilli metabolite lipopolysaccharide stimulation. First, we found that CCR1 high expression levels were associated with poor overall survival in ESCC. Importantly, we found that high levels of CCR1 expression upregulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T-cell exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T-cell exhaustion and cytotoxicity suppression in ESCC microenvironment and highlights the potential value of CCR1 as a therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.
Collapse
Affiliation(s)
- Huiqin Yang
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahao Cai
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Cheng Zhan
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunlai Lu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Gu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Teng Ma
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Cheng
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengkai Xu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
7
|
Zhu Q, Zhang K, Cao Y, Hu Y. Adipose stem cell exosomes, stimulated by pro-inflammatory factors, enhance immune evasion in triple-negative breast cancer by modulating the HDAC6/STAT3/PD-L1 pathway through the transporter UCHL1. Cancer Cell Int 2024; 24:385. [PMID: 39568023 PMCID: PMC11577656 DOI: 10.1186/s12935-024-03557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by high invasiveness and metastasis potential. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is strongly associated with breast cancer progression, although the underlying mechanisms are largely unknown. METHODS The gene expression profiles of TNBC samples were downloaded from the TCGA database, and ubiquitination enzymes related to immune regulation were screened. UCHL1 expression in the TNBC tissues and in adipose-derived mesenchymal stem cells (ADSCs) stimulated in vitro with pro-inflammatory cytokines were analyzed. Exosomes were isolated from these stimulated ADSCs and transfected with scrambled (si-NC) or UCHL1-specific (si-UCHL1) siRNA constructs. TNBC cells were treated with the ADSCs-derived exosomes (ADSCs-Exos) and then co-cultured with macrophages or T cells. Finally, the tumorigenic potential of the ADSCs-Exos was evaluated by injecting the exosomes into mice bearing TNBC xenografts. RESULTS UCHL1 was highly expressed in TNBC tissues and the stimulated ADSCs. The exosomes derived from stimulated ADSCs increased the viability and migration capacity of TNBC cells in vitro, and significantly increased Ki-67 expression through UCHL1. Furthermore, ADSCs-Exos induced M2 polarization of THP-1 monocytes by upregulating CD206 and Arg-1, and downregulating TNF-α and iNOS, and also decreased the proportion of CD3+CD8+ T cells. Mechanistically, UCHL1 regulated the STAT3 and PD-L1 signaling pathways through HDAC6. Exosomes derived from the control and cytokine-stimulated ADSCs also promoted tumor growth in vivo, and increased the expression of UCHL1, CD206, HDAC6, STAT3, and PD-L1. However, UCHL1 knockdown reversed the pro-tumorigenic effects of the ADSCs-derived exosomes in vivo and in vitro. CONCLUSION Pro-inflammatory factors (IFN-γ + TNF-α) stimulating ADSCs-Exos enhance immune evasion in triple-negative breast cancer by regulating the HDAC6/STAT3/PD-L1 pathway via UCHL1 transporter. Thus, UCHL1 inhibition may enhance the response of TNBC to immunotherapy.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Cao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Wen YH, Lin YX, Zhou L, Lin C, Zhang L. The immune landscape in apical periodontitis: From mechanism to therapy. Int Endod J 2024; 57:1526-1545. [PMID: 39087849 DOI: 10.1111/iej.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Apical periodontitis (AP) is featured by a persistent inflammatory response and alveolar bone resorption initiated by microorganisms, posing risks to both dental and systemic health. Nonsurgical endodontic treatment is the recommended treatment plan for AP with a high success rate, but in some cases, periapical lesions may persist despite standard endodontic treatment. Better comprehension of the AP inflammatory microenvironment can help develop adjunct therapies to improve the outcome of endodontic treatment. This review presents an overview of the immune landscape in AP, elucidating how microbial invasion triggers host immune activation and shapes the inflammatory microenvironment, ultimately impacting bone homeostasis. The destructive effect of excessive immune activation on periapical tissues is emphasized. This review aimed to systematically discuss the immunological basis of AP, the inflammatory bone resorption and the immune cell network in AP, thereby providing insights into potential immunotherapeutic strategies such as targeted therapy, antioxidant therapy, adoptive cell therapy and cytokine therapy to mitigate AP-associated tissue destruction.
Collapse
Affiliation(s)
- Yuan-Hao Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Xiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhang B, Zhang B, Wang T, Huang B, Cen L, Wang Z. Integrated bulk and single-cell profiling characterize sphingolipid metabolism in pancreatic cancer. BMC Cancer 2024; 24:1347. [PMID: 39487387 PMCID: PMC11531184 DOI: 10.1186/s12885-024-13114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Abnormal sphingolipid metabolism (SM) is closely linked to the incidence of cancers. However, the role of SM in pancreatic cancer (PC) remains unclear. This study aims to explore the significance of SM in the prognosis, immune microenvironment, and treatment of PC. METHODS Single-cell and bulk transcriptome data of PC were acquired via TCGA and GEO databases. SM-related genes (SMRGs) were obtained via MSigDB database. Consensus clustering was utilized to construct SM-related molecular subtypes. LASSO and Cox regression were utilized to build SM-related prognostic signature. ESTIMATE and CIBERSORT algorithms were employed to assess the tumour immune microenvironment. OncoPredict package was used to predict drug sensitivity. CCK-8, scratch, and transwell experiments were performed to analyze the function of ANKRD22 in PC cell line PANC-1 and BxPC-3. RESULTS A total of 153 SMRGs were acquired, of which 48 were linked to PC patients' prognosis. Two SM-related subtypes (SMRGcluster A and B) were identified in PC. SMRGcluster A had a poorer outcome and more active SM process compared to SMRGcluster B. Immune analysis revealed that SMRGcluster B had higher immune and stromal scores and CD8 + T cell abundance, while SMRGcluster A had a higher tumour purity score and M0 macrophages and activated dendritic cell abundance. PC with SMRGcluster B was more susceptible to gemcitabine, paclitaxel, and oxaliplatin. Then SM-related prognostic model (including ANLN, ANKRD22, and DKK1) was built, which had a very good predictive performance. Single-cell analysis revealed that in PC microenvironment, macrophages, epithelial cells, and endothelial cells had relatively higher SM activity. ANKRD22, DKK1, and ANLN have relatively higher expression levels in epithelial cells. Cell subpopulations with high expression of ANKRD22, DKK1, and ANLN had more active SM activity. In vitro experiments showed that ANKRD22 knockdown can inhibit the proliferation, migration, and invasion of PC cells. CONCLUSION This study revealed the important significance of SM in PC and identified SM-associated molecular subtypes and prognostic model, which provided novel perspectives on the stratification, prognostic prediction, and precision treatment of PC patients.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bolin Zhang
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle- Wittenberg, University Medical Center Halle, Halle, Germany
| | - Tingxin Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bingqian Huang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Lijun Cen
- Department of Transfusion Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
- Key Laboratory of Molecular Pathology in Tumors of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
10
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
11
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Na SW, Yi JM, Yeo H, Park SM, Jeong M, Chun J, Jeong MK. Bojungikki-Tang Augments Pembrolizumab Efficacy in Human PBMC-Injected H460 Tumor-Bearing Mice. Life (Basel) 2024; 14:1246. [PMID: 39459546 PMCID: PMC11508561 DOI: 10.3390/life14101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Bojungikki-Tang (BJIKT) is traditionally used to enhance digestive function and immunity. It has gained attention as a supplement to chemotherapy or targeted therapy owing to its immune-boosting properties. This study aimed to evaluate the synergistic anti-tumor effects of BJIKT in combination with pembrolizumab in a preclinical model. MHC I/II double knockout NSG mice were humanized with peripheral blood mononuclear cells (PBMCs) and injected subcutaneously with H460 lung tumor cells to establish a humanized tumor model. Both agents were administered to evaluate their impact on tumor growth and immune cell behavior. Immunohistochemistry showed decreased exhaustion markers in CD8(+) and CD4(+) T cells within the tumor, indicating enhanced T cell activity. Additionally, RNA sequencing, transcriptome analysis, and quantitative PCR analysis were performed on tumor tissues to investigate the molecular mechanisms underlying the observed effects. The results confirmed that BJIKT improved T cell function and tumor necrosis factor signaling while suppressing transforming growth factor-β signaling. This modulation led to cell cycle arrest and apoptosis. These findings demonstrate that BJIKT, when combined with pembrolizumab, produces significant anti-tumor effects by altering immune pathways and enhancing the anti-tumor immune response. This study provides valuable insights into the role of BJIKT in the tumor microenvironment and its potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Se Won Na
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Heerim Yeo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.Y.); (S.-M.P.)
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.Y.); (S.-M.P.)
| | - Mibae Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| |
Collapse
|
13
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
14
|
Zhang C, Zhang G, Xue L, Zhang Z, Zeng Q, Wu P, Wang L, Yang Z, Zheng B, Tan F, Xue Q, Gao S, Sun N, He J. Patterns and prognostic values of programmed cell death-ligand 1 expression and CD8 + T-cell infiltration in small cell carcinoma of the esophagus: a retrospective analysis of 34 years of National Cancer Center data in China. Int J Surg 2024; 110:4297-4309. [PMID: 36974732 PMCID: PMC11254267 DOI: 10.1097/js9.0000000000000064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/12/2022] [Indexed: 03/29/2023]
Abstract
BACKGROUND Small cell carcinoma of the esophagus (SCCE) is an extremely rare and highly aggressive neuroendocrine malignancy with a strikingly poor prognosis. Given the great clinical successes of checkpoint immunotherapies, we explored the expression profile and clinical significance of programmed cell death-ligand 1 (PD-L1) and CD8 + T cell in SCCE for the first time. MATERIALS AND METHODS Tumor-infiltrating immune cells (TIICs) and tumor cells in postoperative, whole tumor sections from 147 SCCE patients were stained for PD-LI expression. We also evaluated each patient's Combined Positive Score (CPS). Multiplex immunofluorescence staining (CD3, CD20, CD68, and PD-L1) was introduced to clarify the location of PD-L1. CD8 density was analyzed by digital imaging and analysis of entire slides. Clinical outcomes were tested for correlations with both PD-L1 expression and CD8 density. RESULTS No patients had PD-L1 expressed in their tumor cells. PD-L1 + expression in TIICs was detected in 65 patients (44.2%) and 42 (28.6%) exhibited CPS positivity. Multiplex immunofluorescence staining demonstrated that most of the PD-L1 was expressed on the CD68 + monocytes/macrophages. PD-L1 expression in the TIICs and CPS was found to be correlated with paraffin block age, tumor length, macroscopic type, T stage, and increased overall survival (OS). Expression of PD-L1 in TIICs showed significantly prolonged relapse-free survival (RFS). Increasing CD8 densities were associated with increased PD-L1 expression ( Ptrend <0.0001). Multivariate regression confirmed that PD-L1 in TIICs and CD8 states were independent predictors of OS, and CD8 status were found to be independently predictive of RFS. A stratification based on PD-L1 and CD8 status was also significantly associated with both OS and RFS. CONCLUSION Expression of PD-L1 was only detected in TIICs from approximately half of the patients with SCCEs. In SCCEs, PD-L1 and CD8 status are novel prognostic biomarkers and may inform the implementation of risk-related therapeutic strategies. SCCEs with higher CD8 infiltration also had higher expression of PD-L1, suggesting the development of resistance against adaptive immunity. These findings support the assertion that PD-L1/programmed cell death 1 inhibitors should be investigated in this rare malignancy.
Collapse
Affiliation(s)
- Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Lide Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
15
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Agioti S, Zaravinos A. Immune Cytolytic Activity and Strategies for Therapeutic Treatment. Int J Mol Sci 2024; 25:3624. [PMID: 38612436 PMCID: PMC11011457 DOI: 10.3390/ijms25073624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie Agioti
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| |
Collapse
|
18
|
Huang Z, Liu X, Guo Q, Zhou Y, Shi L, Cai Q, Tang S, Ouyang Q, Zheng J. Extracellular vesicle-mediated communication between CD8 + cytotoxic T cells and tumor cells. Front Immunol 2024; 15:1376962. [PMID: 38562940 PMCID: PMC10982391 DOI: 10.3389/fimmu.2024.1376962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tumors pose a significant global public health challenge, resulting in numerous fatalities annually. CD8+ T cells play a crucial role in combating tumors; however, their effectiveness is compromised by the tumor itself and the tumor microenvironment (TME), resulting in reduced efficacy of immunotherapy. In this dynamic interplay, extracellular vesicles (EVs) have emerged as pivotal mediators, facilitating direct and indirect communication between tumors and CD8+ T cells. In this article, we provide an overview of how tumor-derived EVs directly regulate CD8+ T cell function by carrying bioactive molecules they carry internally and on their surface. Simultaneously, these EVs modulate the TME, indirectly influencing the efficiency of CD8+ T cell responses. Furthermore, EVs derived from CD8+ T cells exhibit a dual role: they promote tumor immune evasion while also enhancing antitumor activity. Finally, we briefly discuss current prevailing approaches that utilize functionalized EVs based on tumor-targeted therapy and tumor immunotherapy. These approaches aim to present novel perspectives for EV-based tumor treatment strategies, demonstrating potential for advancements in the field.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuehui Liu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qinghao Guo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Shi
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shupei Tang
- Department of Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
19
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
21
|
Zhang J, Wu G, Peng R, Cao J, Tu D, Zhou J, Su B, Jin S, Jiang G, Zhang C, Bai D. A Novel Scoring Model of Deubiquitination Patterns Predicts Prognosis and Immunotherapeutic Response in Hepatocellular Carcinoma. Transl Oncol 2023; 38:101789. [PMID: 37734237 PMCID: PMC10518587 DOI: 10.1016/j.tranon.2023.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Aberrant expression of deubiquitinases (DUBs) is significantly associated with tumorigenesis. However, the precise impact of deubiquitination on the tumour microenvironment (TME) and immunotherapy in hepatocellular carcinoma (HCC) remains unclear. In this study, we comprehensively characterized the transcriptional and genetic alterations of 26 overall survival (OS)-related DUBs in HCC. The consensus clustering algorithm was used to identify patients with distinct deubiquitination patterns. We then established a DUBscore model using the principal component analysis (PCA) algorithm to quantify the deubiquitination patterns of individual HCC patients. Finally, we performed weighted gene coexpression network analysis (WGCNA) to identify the key DUBs. Consequently, three distinct deubiquitination patterns were identified, each showing significant differences in the characteristics of the TME, immune response, and clinical prognosis. Further analysis revealed that the DUBscore was an independent prognostic factor and could predict the response to immunotherapy for patients with HCC. Ultimately, BRCC3 was identified as a key DUB based on the DUBscore, which was significantly overexpressed in tumour tissues, as confirmed by qRT‒PCR and immunohistochemistry (IHC). We analysed the distribution and expression of BRCC3 in various types of immune cells using single-cell RNA sequencing (scRNA-seq). In conclusion, our study revealed the crucial role of deubiquitination patterns in shaping TME complexity and diversity. A more personalized and effective antitumour immunotherapy strategy can be developed by utilizing the DUBscore model to identify deubiquitination patterns in individual HCC patients. Our findings also highlight that BRCC3 may serve as a potential therapeutic target in HCC and a predictive marker for immunotherapeutic response.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China; Dalian Medical University, Dalian 116000, China
| | - Gefeng Wu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China; Dalian Medical University, Dalian 116000, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, 98 West Nantong Rd, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
22
|
Chuang WH, Pislyagin E, Lin LY, Menchinskaya E, Chernikov O, Kozhemyako V, Gorpenchenko T, Manzhulo I, Chaikina E, Agafonova I, Silchenko A, Avilov S, Stonik V, Tzou SC, Aminin D, Wang YM. Holothurian triterpene glycoside cucumarioside A 2-2 induces macrophages activation and polarization in cancer immunotherapy. Cancer Cell Int 2023; 23:292. [PMID: 38001420 PMCID: PMC10668486 DOI: 10.1186/s12935-023-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite intensive developments of adoptive T cell and NK cell therapies, the efficacy against solid tumors remains elusive. Our study demonstrates that macrophage-based cell therapy could be a potent therapeutic option against solid tumors. METHODS To this end, we determine the effect of a natural triterpene glycoside, cucumarioside A2-2 (CA2-2), on the polarization of mouse macrophages into the M1 phenotype, and explore the antitumor activity of the polarized macrophage. The polarization of CA2-2-pretreated macrophages was analyzed by flow cytometry and confocal imaging. The anti-cancer activity of CA2-2 macrophages was evaluated against 4T1 breast cancer cells and EAC cells in vitro and syngeneic mouse model in vivo. RESULTS Incubation of murine macrophages with CA2-2 led to polarization into the M1 phenotype, and the CA2-2-pretreated macrophages could selectively target and kill various types of cancer in vitro. Notably, loading near-infrared (NIR) fluorochrome-labeled nanoparticles, MnMEIO-mPEG-CyTE777, into macrophages substantiated that M1 macrophages can target and penetrate tumor tissues in vivo efficiently. CONCLUSION In this study, CA2-2-polarized M1 macrophages significantly attenuated tumor growth and prolonged mice survival in the syngeneic mouse models. Therefore, ex vivo CA2-2 activation of mouse macrophages can serve as a useful model for subsequent antitumor cellular immunotherapy developments.
Collapse
Affiliation(s)
- Wen-Han Chuang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Evgeny Pislyagin
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Liang-Yu Lin
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ekaterina Menchinskaya
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Oleg Chernikov
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Valery Kozhemyako
- Pacific State Medical University, Ostryakova Avenue, Building 2, Vladivostok, 690002, Russia
| | - Tatiana Gorpenchenko
- Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Science, Palchevskogo str. 17, Vladivostok, 690041, Russia
| | - Elena Chaikina
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Irina Agafonova
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Alexandra Silchenko
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Sergey Avilov
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Valentin Stonik
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Dmitry Aminin
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Science, 159, Pr. 100 let Vladivostoku, Vladivostok, 690022, Russia.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
23
|
Zhang Z, Duan Z, Cui Y. CD8 + T cells in brain injury and neurodegeneration. Front Cell Neurosci 2023; 17:1281763. [PMID: 38077952 PMCID: PMC10702747 DOI: 10.3389/fncel.2023.1281763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 02/19/2024] Open
Abstract
The interaction between the peripheral immune system and the brain is increasingly being recognized as an important layer of neuroimmune regulation and plays vital roles in brain homeostasis as well as neurological disorders. As an important population of T-cell lymphocytes, the roles of CD8+ T cells in infectious diseases and tumor immunity have been well established. Recently, increasing number of complex functions of CD8+ T cells in brain disorders have been revealed. However, an advanced summary and discussion of the functions and mechanisms of CD8+ T cells in brain injury and neurodegeneration are still lacking. Here, we described the differentiation and function of CD8+ T cells, reviewed the involvement of CD8+ T cells in the regulation of brain injury including stroke and traumatic brain injury and neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and discussed therapeutic prospects and future study goals. Understanding these processes will promote the investigation of T-cell immunity in brain disorders and provide new intervention strategies for the treatment of brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhongying Duan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Sovunjov E, Halbutoğulları ZS, Gacar G, Öztürk A, Duruksu G, Yazır Y. Examining the effect of activated cytotoxic (CD8 +) T-cell exosomes to the lung cancer. Med Oncol 2023; 40:359. [PMID: 37966661 DOI: 10.1007/s12032-023-02198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023]
Abstract
Lung cancer continues to be a major health problem worldwide owing to its incidence, and causes physical, psychological, social, and economic problems. Activated cytotoxic T cells (ACTC) are positively correlated with the tumor microenvironment (TME), improving the prognosis of cancer patients. Recently, ACTC-derived exosomes (ACTC-dExo) were implicated in this effect by inhibiting mesenchymal stem cells, which may promote metastasis in the TME. Exosomes are thought to be advantageous for the specific delivery of drugs to cancer cells because they have the characteristics of natural liposomes, are nanosized, and remain largely stable in the blood due to the protein and lipid content they carry on their membranes. In this study, we aimed to determine the cytotoxic and metastatic inhibitory effects of ACTC-dExo in A549 cells in vitro. Cytotoxic CD8+ T cells were isolated from whole blood obtained from healthy individuals and cultured for 5-7 days after stimulation. The ACTC-dExo serum-free culture medium was collected by ultracentrifugation. Characterization and quantification of the isolated exosomes were performed using flow cytometry, electron microscopy, zeta-sizer measurements, and bicinchoninic acid (BCA) assays. We co-cultured ACTC and ACTC-dExo with A549 cells for 48 h. The viability of A549 cells was evaluated using a WST-1 assay. The metastasis-related genes MMP2, MMP9, TWIST, SNAI1, and CDH1 were detected by qRT-PCR, and MMP2 and MMP9 proteins were evaluated by confocal microscopy. In addition, changes in cell migration were investigated using a scratch assay. ACTC-dExo were found to have anti-proliferative and anti-metastatic effects and reduced cancer cell proliferation and metastatic properties.
Collapse
Affiliation(s)
- Eldar Sovunjov
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Zehra Seda Halbutoğulları
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey.
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey.
| | - Gülçin Gacar
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Ahmet Öztürk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Yusufhan Yazır
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| |
Collapse
|
25
|
Tong F, Lu G, Zang J, Hao D, Xu W, Chen J, Ding Q, Xiong H. FKBP5 associated CD8 T cell infiltration is a novel prognostic biomarker in luminal B breast cancer. J Int Med Res 2023; 51:3000605231211771. [PMID: 37987640 PMCID: PMC10664447 DOI: 10.1177/03000605231211771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE To investigate the relationship between FKBP prolyl isomerase 5 (FKBP5) gene expression and CD8 T cells in tumour progression and immunology of the luminal B subtype of breast cancer (LBBC) using bioinformatics analyses. METHODS The Gene Expression Profiling Interactive Analysis 2, Human Protein Atlas and breast cancer gene-expression miner v4.5 databases were used for data mining and analysing FKBP5, its co-expressed genes and CD8 T cell-related markers. The Tumor IMmune Estimation Resource 2.0 database was used for analysing the correlation and prognosis of FKBP5 and CD8 T cell infiltration level in LBBC. RESULTS Upregulated FKBP5 expression was correlated with improved survival in LBBC. Upregulated FKBP5-related CD8 T cell markers were also demonstrated to be significantly correlated with better survival in LBBC and might play a role in the biological activity of FKBP5. CONCLUSION These findings suggest that FKBP5 and its associated CD8 T cell infiltration are potential benign prognostic indicators for LBBC.
Collapse
Affiliation(s)
- Fei Tong
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Genlin Lu
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Jie Zang
- Department of General Surgery, Zhejiang Putuo Hospital, Zhoushan, Zhejiang Province, China
| | - Dingji Hao
- Department of Thyroid Breast Hernia Surgery, Tonglu County Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Wangjue Xu
- Department of General Surgery, The People's Hospital of Long you County, Quzhou, Zhejiang Province, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qiong Ding
- Department of General Surgery, Zhejiang Putuo Hospital, Zhoushan, Zhejiang Province, China
| | - Hanchu Xiong
- Cancer Centre, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Yue S, Wang Q, Zhang J, Hu Q, Liu C. Understanding cervical cancer at single-cell resolution. Cancer Lett 2023; 576:216408. [PMID: 37769795 DOI: 10.1016/j.canlet.2023.216408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Cervical cancer is now the fourth most prevalent malignancy in women worldwide, representing a tremendous burden of cancer. The heterogeneity of complex tumor ecosystem impacts tumorigenesis, malignant progression, and response to treatment; thus, a thorough understanding of the tumor ecosystem is vital for enhancing the prognosis of patients with cervical cancer. The rapid development and widespread use of single-cell sequencing have generated a new paradigm of cancer research, providing a comprehensive and in-depth understanding of cancers. In this review, we give an overview of the recent advances made by leveraging single-cell sequencing studies in the dissection of cervical cancer ecosystem heterogeneity. We highlight the evolution of the cervical cancer ecosystem during tumor initiation, progression, and treatment. High-resolution dissection of cervical cancer at the single-cell level has the potential to drive the development of targeted therapies and enable the realization of personalized medicine.
Collapse
Affiliation(s)
- Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiajun Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Chao Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
27
|
Zhao R, Chen S, Cui W, Xie C, Zhang A, Yang L, Dong H. PTPN1 is a prognostic biomarker related to cancer immunity and drug sensitivity: from pan-cancer analysis to validation in breast cancer. Front Immunol 2023; 14:1232047. [PMID: 37936713 PMCID: PMC10626546 DOI: 10.3389/fimmu.2023.1232047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Background Protein tyrosine phosphatase non-receptor type 1 (PTPN1), a member of the protein tyrosine phosphatase superfamily, has been identified as an oncogene and therapeutic target in various cancers. However, its precise role in determining the prognosis of human cancer and immunological responses remains elusive. This study investigated the relationship between PTPN1 expression and clinical outcomes, immune infiltration, and drug sensitivity in human cancers, which will improve understanding regarding its prognostic value and immunological role in pan-cancer. Methods The PTPN1 expression profile was obtained from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia databases. Kaplan-Meier, univariate Cox regression, and time-dependent receiver operating characteristic curve analyses were utilized to clarify the relationship between PTPN1 expression and the prognosis of pan-cancer patients. The relationships between PTPN1 expression and the presence of tumor-infiltrated immune cells were analyzed using Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data and Tumor Immune Estimation Resource. The cell counting kit-8 (CCK-8) assay was performed to examine the effects of PTPN1 level on the sensitivity of breast cancer cells to paclitaxel. Immunohistochemistry and immunoblotting were used to investigate the relationship between PTPN1 expression, immune cell infiltration, and immune checkpoint gene expression in human breast cancer tissues and a mouse xenograft model. Results The pan-cancer analysis revealed that PTPN1 was frequently up-regulated in various cancers. High PTPN1 expression was associated with poor prognosis in most cancers. Furthermore, PTPN1 expression correlated highly with the presence of tumor-infiltrating immune cells and the expression of immune checkpoint pathway marker genes in different cancers. Furthermore, PTPN1 significantly predicted the prognosis for patients undergoing immunotherapy. The results of the CCK-8 viability assay revealed that PTPN1 knockdown increased the sensitivity of MDA-MB-231 and MCF-7 cells to paclitaxel. Finally, our results demonstrated that PTPN1 was associated with immune infiltration and immune checkpoint gene expression in breast cancer. Conclusion PTPN1 was overexpressed in multiple cancer types and correlated with the clinical outcome and tumor immunity, suggesting it could be a valuable potential prognostic and immunological biomarker for pan-cancer.
Collapse
Affiliation(s)
- Ruijun Zhao
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuanglong Chen
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Weiheng Cui
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Chaoyu Xie
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Aiping Zhang
- Department of Breast Surgery, Suichuan County Maternal and Child Health Care Hospital, Jian, China
| | - Li Yang
- Department of Breast Surgery, Nancheng County Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Jiang J, Liu Y, Zeng Y, Fang B, Chen Y. Annihilation of Non-small Cell Lung Cancer by NKG2D CAR-T Cells Produced from T Cells from Peripheral Blood of Healthy Donors. J Interferon Cytokine Res 2023; 43:445-454. [PMID: 37819621 DOI: 10.1089/jir.2023.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Some progress has been made in immunotherapy with chimeric antigen receptor (CAR)-T cells targeting NKG2D-NKG2DL with the purpose of eradicating solid tumors. Non-small cell lung cancer (NSCLC) has been shown to express NKG2DL. This study hence evaluated the therapeutic effect of NKG2D CAR-T cells on NSCLC. Accordingly, NKG2D CAR-T cells were obtained from diverse human autologous T cell sources. T cells from peripheral blood T lymphocytes of healthy volunteers (without NKG2D CAR insertion) were used as NT-T cells. Coculture of effector cells (CAR-T cells or NT-T cells) with target cells (NSCLC cells such as PC-9 or NCL-H460 cells) was performed at different ratios. The cytotoxicity of CAR-T cells was examined using lactate dehydrogenase assay kits. Murine xenograft assay was conducted to investigate the in vivo antitumor effect of CAR-T cells. Cytokines secreted from CAR-T cells were assessed by enzyme-linked immunosorbent assay. CAR-T cell infiltration into xenografts was observed through immunochemical assay. Based on the results, NKG2DL was highly expressed in NSCLC cells. Compared with NT-T cells, NKG2D CAR-T cells from different sources of T cells delivered stronger toxicity, and secreted more effector and memory function-related cytokines to NSCLC cells, and those from the peripheral blood of healthy donors (H-T cells) exhibited the strongest effect. Furthermore, compared with NT-T cells, H-T cells and NKG2D CAR-T cells from NSCLC patients' peripheral blood diminished tumor, improved survival, increased body weight and tumor-infiltrating capacity, and upregulated serum IFN-γ level in NOG mice. Collectively speaking, NKG2D CAR-T cells exhibit a robust effect on eradicating NSCLC in a NKG2DL-dependent manner, thus making themselves a promising therapeutic candidate for NSCLC patients.
Collapse
Affiliation(s)
- Jinhong Jiang
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | - Yonghua Liu
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | - Yuxiao Zeng
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | - Bingmu Fang
- The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui City, China
| | | |
Collapse
|
29
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
30
|
Dabas P, Danda A. Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. Med Oncol 2023; 40:275. [PMID: 37608202 DOI: 10.1007/s12032-023-02146-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising new treatment for cancer that involves genetically modifying a patient's T-cells to recognize and attack cancer cells. This review provides an overview of the latest discoveries and clinical trials related to CAR-T cell therapy, as well as the concept and applications of the therapy. The review also discusses the limitations and potential side effects of CAR-T cell therapy, including the high cost and the risk of cytokine release syndrome and neurotoxicity. While CAR-T cell therapy has shown promising results in the treatment of hematologic malignancies, ongoing research is needed to improve the efficacy and safety of the therapy and expand its use to solid tumors. With continued research and development, CAR-T cell therapy has the potential to revolutionize cancer treatment and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Preeti Dabas
- St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Adithi Danda
- St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
31
|
Niu H, Zhao P, Sun W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater 2023; 166:1-13. [PMID: 37137403 DOI: 10.1016/j.actbio.2023.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.
Collapse
Affiliation(s)
- Huanqing Niu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Penghui Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Born Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
32
|
Guo T, Wei Q. Cell Reprogramming Techniques: Contributions to Cancer Therapy. Cell Reprogram 2023; 25:142-153. [PMID: 37530737 DOI: 10.1089/cell.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The reprogramming of terminally differentiated cells over the past few years has become important for induced pluripotent stem cells (iPSCs) in the field of regenerative medicine and disease drug modeling. At the same time, iPSCs have also played an important role in human cancer research. iPSCs derived from cancer patients can be used to simulate the early progression of cancer, for drug testing, and to study the molecular mechanism of cancer occurrence. In recent years, with the application of cellular immunotherapy in cancer therapy, patient-derived iPSC-induced immune cells (T, natural killer, and macrophage cells) solve the problem of immune rejection and have higher immunogenicity, which greatly improves the therapeutic efficiency of immune cell therapy. With the continuous progress of cancer differentiation therapy, iPSC technology can reprogram cancer cells to a more primitive pluripotent undifferentiated state, and successfully reverse cancer cells to a benign phenotype by changing the epigenetic inheritance of cancer cells. This article reviews the recent progress of cell reprogramming technology in human cancer research, focuses on the application of reprogramming technology in cancer immunotherapy and the problems solved, and summarizes the malignant phenotype changes of cancer cells in the process of reprogramming and subsequent differentiation.
Collapse
Affiliation(s)
- Tongtong Guo
- College of Life Science, Northwest University, Xi'an, China
| | - Qi Wei
- Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
33
|
Yang W, Pang Y, Wang X, Lai Z, Lu Y, Zheng S, Wang W. A novel CTLA-4 blocking strategy based on nanobody enhances the activity of dendritic cell vaccine-stimulated antitumor cytotoxic T lymphocytes. Cell Death Dis 2023; 14:406. [PMID: 37419930 PMCID: PMC10328924 DOI: 10.1038/s41419-023-05914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Despite the great success of CTLA-4 blocking in cancer treatment, the use of anti-CTLA-4 monoclonal antibodies still faces many limitations. Now, immune checkpoint blocking coupled with adoptive cell therapy is gaining much attention. In this paper, we reported a strategy on the basis of anti-CTLA-4 nanobody (Nb)-modified liposomes to improve these obstacles. An Nb36/liposome complex was constructed and utilized as a blocker of the CTLA-4/B7 signal pathway in a combination with dendritic cell (DC)/tumor fusion vaccine to enhance the CD8+ T cell cytokine secretion, activation, proliferation, as well as specific cytotoxicity. Moreover, the CD8+ T cells induced by LPS-Nb36 and DC/tumor fusion vaccine led to higher CD8+ T cell effector function in vivo, which significantly retarded tumor growth and lengthened survival of tumor-bearing mice (HepG2, A549, and MGC-803). Our data demonstrate that the anti-CTLA-4 Nb-modified liposomes in connection with DC/tumor fusion vaccines enhance the CD8+ T cell antitumor activity in vitro and in vivo, and is expected to be an alternative therapy for patients with malignancies that have T cell dysfunction or have poor treatment against anti-CTLA-4 mAb.
Collapse
Affiliation(s)
- Wenli Yang
- Public Research Center of Hainan Medical University, Hainan Medical University, Haikou, 570100, China
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
- Department of Anatomy, Zunyi Medical University, Zunyi, 563006, China
| | - Yanyang Pang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, 530021, China
| | - Xi Wang
- Department of Anesthesiology, Haikou Third People's Hospital, Haikou, 570100, China
| | - Zhiheng Lai
- Department of Anorectal, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Yanda Lu
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Shaojiang Zheng
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Wu Wang
- Public Research Center of Hainan Medical University, Hainan Medical University, Haikou, 570100, China.
| |
Collapse
|
34
|
Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. SMALL METHODS 2023; 7:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy has been a revolutionary cancer treatment modality because it can not only eliminate primary tumors but also prevent metastases and recurrent tumors. Immunogenic cell death (ICD) induced by various treatment modalities, including chemotherapy, phototherapy, and radiotherapy, converts dead cancer cells into therapeutic vaccines, eliciting a systemic antigen-specific antitumor. However, the outcome effect of cancer immunotherapy induced by ICD has been limited due to the low accumulation efficiency of ICD inducers in the tumor site and concomitant damage to normal tissues. The boom in smart nanomaterials is conducive to overcoming these hurdles owing to their virtues of good stability, targeted lesion site, high bioavailability, on-demand release, and good biocompatibility. Herein, the design of targeted nanomaterials, various ICD inducers, and the applications of nanomaterials responsive to different stimuli, including pH, enzymes, reactive oxygen species, or dual responses are summarized. Furthermore, the prospect and challenges are briefly outlined to provide reference and inspiration for designing novel smart nanomaterials for immunotherapy induced by ICD.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Cheng Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
35
|
Yu L, Lanqing G, Huang Z, Xin X, Minglin L, Fa-hui L, Zou H, Min J. T cell immunotherapy for cervical cancer: challenges and opportunities. Front Immunol 2023; 14:1105265. [PMID: 37180106 PMCID: PMC10169584 DOI: 10.3389/fimmu.2023.1105265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer cellular immunotherapy has made inspiring therapeutic effects in clinical practices, which brings new hope for the cure of cervical cancer. CD8+T cells are the effective cytotoxic effector cells against cancer in antitumor immunity, and T cells-based immunotherapy plays a crucial role in cellular immunotherapy. Tumor infiltrated Lymphocytes (TIL), the natural T cells, is approved for cervical cancer immunotherapy, and Engineered T cells therapy also has impressive progress. T cells with natural or engineered tumor antigen binding sites (CAR-T, TCR-T) are expanded in vitro, and re-infused back into the patients to eradicate tumor cells. This review summarizes the preclinical research and clinical applications of T cell-based immunotherapy for cervical cancer, and the challenges for cervical cancer immunotherapy.
Collapse
Affiliation(s)
- Lingfeng Yu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gong Lanqing
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Huang
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Xiaoyan Xin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Liang Minglin
- School of Arts and Sciences, Brandeis University, Boston, MA, United States
| | - Lv Fa-hui
- Department of Obstetrics and Gynecology, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Hongmei Zou
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Chen F, Shen L, Wang Y, Chen Y, Pan X, Liang H, Yu H. Signatures of immune cell infiltration for predicting immune escape and immunotherapy in cervical cancer. Aging (Albany NY) 2023; 15:1685-1698. [PMID: 36917087 PMCID: PMC10042703 DOI: 10.18632/aging.204583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
The cervical cancer tumor microenvironment is a diverse and complex ecosystem. Tumor-immune cell infiltration (ICI) may influence immune escape and immunotherapeutic responses. However, the relationship between immune cell infiltrations, immune escape, and immunotherapy in cervical cancer has not been fully clarified. Here, Principal component analysis (PCA) and Tumor immune dysfunction and exclusion (TIDE) were applied to calculate individual ICI scores and probabilities of immune escape, respectively. Through the IMvigor210 and the Cancer Immunome Atlas (TCIA) datasets, we validated the different responses to immunotherapy in two subgroups of patients. Furthermore, therapeutic benefits of different patients were predicted by the pRRophetic package. We found that patients with high ICI scores were prone to immune escape due to the activated JAK-STAT signaling pathway, along with lower CD8+ T cells. High ICI scores patients could benefit more from anti-PD-L1 immunotherapy, and individuals with low scores may be better candidates for the anti-CTLA-4 treatment. Combinations of immunotherapies with targeted inhibitors may improve clinical efficacy and reduce the risk of tumor recurrence. The ICI model not only helps us enhance the cognition of immune escape, but also guides the application of immunotherapy in cervical cancer patients.
Collapse
Affiliation(s)
- Fuxing Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Lingzhi Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Ying Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Yaping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Xuejiao Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Hui Liang
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Hu Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| |
Collapse
|
37
|
Dai J, Wu M, Xu Y, Yao H, Lou X, Hong Y, Zhou J, Xia F, Wang S. Platelet membrane camouflaged AIEgen-mediated photodynamic therapy improves the effectiveness of anti-PD-L1 immunotherapy in large-burden tumors. Bioeng Transl Med 2023; 8:e10417. [PMID: 36925700 PMCID: PMC10013814 DOI: 10.1002/btm2.10417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Although immunotherapy has achieved recent clinical success in antitumor therapy, it is less effective for solid tumors with large burdens. To overcome this challenge, herein, we report a new strategy based on platelet membrane-camouflaged aggregation-induced emission (AIE) luminogen (Plt-M@P) combined with the anti-programmed death ligand 1 (anti-PD-L1) for tumoral photodynamic-immunotherapy. Plt-M@P is prepared by using poly lactic-co-glycolic acid (PLGA)/PF3-PPh3 complex as a nanocore, and then by co-extrusion with platelet membranes. PF3-PPh3 is an AIE-active conjugated polyelectrolyte with photosensitizing capability for photodynamic therapy (PDT). Plt-M@P exhibits superior tumor targeting capacity in vivo. When applied in small tumor-bearing (~40 mm3) mice, Plt-M@P-mediated PDT significantly inhibits tumor growth. In tumor models with large burdens (~200 mm3), using Plt-M@P-mediated PDT or anti-PD-L1 alone is less effective, but the combination of both is effective in inhibiting tumor growth. Importantly, this combination therapy has good biocompatibility, as demonstrated by the absence of damage to the major organs, especially the reproductive system. In conclusion, we show that Plt-M@P-mediated PDT can improve anti-PD-L1 immunotherapy by enhancing antitumor effects, providing a promising strategy for the treatment of tumors with large burdens.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yating Xu
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Hongming Yao
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Jian Zhou
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
38
|
Immunoscore Signatures in Surgical Specimens and Tumor-Infiltrating Lymphocytes in Pretreatment Biopsy Predict Treatment Efficacy and Survival in Esophageal Cancer. Ann Surg 2023; 277:e528-e537. [PMID: 34334651 PMCID: PMC10060045 DOI: 10.1097/sla.0000000000005104] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Tumor-infiltrating lymphocytes (TILs) have long been recognized as playing an important role in tumor immune microenvironment. Lately, the Immunoscore (IS) has been proposed as a new method of quantifying the number of TILs in association with patient survival in several cancer types. METHODS In 300 preoperatively untreated esophageal cancer (EC) patients who underwent curative resection at two different institutes, immunohistochemical staining using CD3 and CD8 antibodies was performed to evaluate IS, as objectively scored by auto-counted TILs in the tumor core and invasive margin. In addition, in pre-neoadjuvant chemotherapy (pre-NAC) endoscopic biopsies of a different cohort of 146 EC patients who received NAC, CD3, and CD8 were immunostained to evaluate TIL density. RESULTS In all cases, the IS-high (score 3-4) group tended to have better survival [5-year overall survival (OS) of the IS-high vs low group: 77.6 vs 65.8%, P = 0.0722] than the IS-low (score 1-2) group. This trend was more remarkable in cStage II-IV patients (70.2 vs 54.5%, P = 0.0208) and multivariate analysis of OS further identified IS (hazard ratio 2.07, P = 0.0043) to be an independent prognostic variable. In preNAC biopsies, NAC-responders had higher densities than non-responders of both CD3 + ( P = 0.0106) and CD8 + cells ( P = 0.0729) and, particularly CD3 + cell density was found to be an independent prognostic factor (hazard ratio 1.75, P = 0.0169). CONCLUSIONS The IS signature in surgical specimens and TIL density in preNAC- biopsies could be predictive markers of clinical outcomes in EC patients.
Collapse
|
39
|
Xu JL. Wilms Tumor 1-Associated Protein Expression Is Linked to a T-Cell-Inflamed Phenotype in Pancreatic Cancer. Dig Dis Sci 2023; 68:831-840. [PMID: 35859262 DOI: 10.1007/s10620-022-07620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/06/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The molecular driving forces of anti-tumor immunity in pancreatic ductal adenocarcinoma (PDAC) remain unclear, which causing great difficulty in identifying an appropriate treatment strategy. AIMS This study aims to explore the associations between expression of Wilms tumor 1-associated protein (WTAP) and effector T-cell infiltration in PDAC. METHODS In this study, we explored the association between WTAP expression and infiltration level of CD8+ T cells in PDAC. 178 PDAC samples were selected from The Cancer Genome Atlas (TCGA) database. The associations between diverse immune-cell infiltration, Tumor Mutation Burden (TMB), immune checkpoints, and WTAP expression were performed via R software. Transcriptional hallmarks of anti-tumor immunity and known T-cell-inflamed signature of PDAC were both selected to explore the relevance to WTAP expression. Potential immune checkpoint blockade (ICB) response to different WTAP expression was predicted with tumor immune dysfunction and exclusion (TIDE) algorithm. RESULTS WTAP was closely linked to CD8+ T-cell infiltration (r ≥ 0.5, P value < 0.05) and did not show notable association with TMB in PDAC. WTAP positively linked to T-cell-inflamed gene expression profiles (GEP) (IL2RB, IL2RA, ZAP70, ITK, CD3E, CD38, CD27, CD276, CD8A, CMKLR1, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, NKG7, and STAT1), cytolytic activity (GZMA and PRF1), various immune checkpoints (IDO1, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2) and 4-chemokine signature (CCL4, CCL5, CXCL9, and CXCL10). Besides, increased expression of WTAP was related to a higher TIDE score. CONCLUSIONS WTAP marks PDAC tumors with an active anti-tumor phenotype and might help the identification of PDAC patients who might benefit from immunotherapies.
Collapse
Affiliation(s)
- Ji-Li Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Jiang G, Miao Y, Wang Z, Zhang Q, Zhou P, Zhang F. Prognostic significance of epidermal growth factor receptor and programmed cell death-ligand 1 co-expression in esophageal squamous cell carcinoma. Aging (Albany NY) 2023; 15:1107-1129. [PMID: 36812484 PMCID: PMC10008495 DOI: 10.18632/aging.204535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Our study aimed to observe the correlation between epidermal growth factor receptor (EGFR) and programmed cell death-ligand 1 (PD-L1) expression and evaluate prognostic potential of their co-expression in esophageal squamous cell carcinoma (ESCC) patients. EGFR and PD-L1 expression were evaluated by immunohistochemical analysis. We revealed that there was a positive correlation between EGFR and PD-L1 expression in ESCC (P = 0.004). According to the positive relationship between EGFR and PD-L1, all patients were divided into four groups: EGFR (+)/PD-L1 (+), EGFR (+)/PD-L1 (-), EGFR (-)/PD-L1 (+), and EGFR (-)/PD-L1 (-). In 57 ESCC patients without surgery, we found that EGFR and PD-L1 co-expression were statistically correlated with a lower objective response rate (ORR) (p = 0.029), overall survival (OS) (p = 0.018) and progression-free survival (PFS) (p = 0.045) than those with one or none positive protein. Furthermore, PD-L1 expression has a significant positive correlation with infiltration level of 19 immune cells, EGFR expression was significantly correlated with infiltration level of 12 immune cells. The infiltration level of CD8 T cell and B cell were negatively correlated with EGFR expression. On the contrary with EGFR, the infiltration level of CD8 T cell, and B cell were positively correlated with PD-L1 expression. In conclusion, EGFR and PD-L1 co-expression could predict poor ORR and survival in ESCC without surgery, indicating a subset of patients who may benefit from a combination of targeted therapy against EGFR and PD-L1, which may expand the population benefiting from immunotherapy and reduce the occurrence of hyper progressive diseases.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Department of Oncology Radiotherapy, Yantaishan Hospital, Yantai 264025, Shandong, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, Shandong, China
| | - Zhenbo Wang
- Department of Radiation Oncology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong, China
| | - Qi Zhang
- Department of Pathology, The First Hospital of Zibo, Zibo 255200, Shandong, China
| | - Ping Zhou
- Department of Pathology, The First Hospital of Zibo, Zibo 255200, Shandong, China
| | - Fang Zhang
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 26400, Shandong, China
| |
Collapse
|
41
|
Chen L, Chen L, Ni H, Shen L, Wei J, Xia Y, Yang J, Yang M, Zhao Z. Prediction of CD3 T cells and CD8 T cells expression levels in non-small cell lung cancer based on radiomic features of CT images. Front Oncol 2023; 13:1104316. [PMID: 36860311 PMCID: PMC9968855 DOI: 10.3389/fonc.2023.1104316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Background In this work, radiomics characteristics based on CT scans were used to build a model for preoperative evaluation of CD3 and CD8 T cells expression levels in patients with non-small cell lung cancer (NSCLC). Methods Two radiomics models for evaluating tumor-infiltrating CD3 and CD8 T cells were created and validated using computed tomography (CT) images and pathology information from NSCLC patients. From January 2020 to December 2021, 105 NSCLC patients with surgical and histological confirmation underwent this retrospective analysis. Immunohistochemistry (IHC) was used to determine CD3 and CD8 T cells expression, and all patients were classified into groups with high and low CD3 T cells expression and high and low CD8 T cells expression. The CT area of interest had 1316 radiomic characteristics that were retrieved. The minimal absolute shrinkage and selection operator (Lasso) technique was used to choose components from the IHC data, and two radiomics models based on CD3 and CD8 T cells abundance were created. Receiver operating characteristic (ROC), calibration curve, and decision curve analyses were used to examine the models' ability to discriminate and their clinical relevance (DCA). Results A CD3 T cells radiomics model with 10 radiological characteristics and a CD8 T cells radiomics model with 6 radiological features that we created both demonstrated strong discrimination in the training and validation cohorts. The CD3 radiomics model has an area under the curve (AUC) of 0.943 (95% CI 0.886-1), sensitivities, specificities, and accuracy of 96%, 89%, and 93%, respectively, in the validation cohort. The AUC of the CD8 radiomics model was 0.837 (95% CI 0.745-0.930) in the validation cohort, with sensitivity, specificity, and accuracy values of 70%, 93%, and 80%, respectively. Patients with high levels of CD3 and CD8 expression had better radiographic results than patients with low levels of expression in both cohorts (p<0.05). Both radiomic models were therapeutically useful, as demonstrated by DCA. Conclusions When making judgments on therapeutic immunotherapy, CT-based radiomic models can be utilized as a non-invasive way to evaluate the expression of tumor-infiltrating CD3 and CD8 T cells in NSCLC patients.
Collapse
Affiliation(s)
- Lujiao Chen
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Lulin Chen
- Department of Ultrasound, Affiliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongxia Ni
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Jianguo Wei
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Yang Xia
- Department of Radiology, Shaoxing Maternal and Child Health Hospital, Shaoxing, Zhejiang, China
| | - Jianfeng Yang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Minxia Yang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China,*Correspondence: Minxia Yang, ; Zhenhua Zhao,
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China,*Correspondence: Minxia Yang, ; Zhenhua Zhao,
| |
Collapse
|
42
|
Xu Y, Zhu Y, Xia H, Wang Y, Li L, Wan H, Zhang S, Xu A, Wang L, Gong J, Zhang P. Tumor necrosis factor-α-inducible protein 8-like protein 3 (TIPE3): a novel prognostic factor in colorectal cancer. BMC Cancer 2023; 23:131. [PMID: 36755222 PMCID: PMC9909977 DOI: 10.1186/s12885-023-10590-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND To explore the correlation of tumor necrosis factor-α-induced protein 8-like protein 3 (TIPE3) expressions in colorectal cancer (CRC) with tumor-immune infiltration and patient prognosis. METHODS Formalin-fixed paraffin-embedded tumor samples from CRC patients (n = 110) were used in this study. Immunohistochemistry staining of TIPE3 and three prognostic immune biomarkers (CD8, CD20, and CD66b) was conducted in the tumor tissues and adjacent normal tissues. A Cox regression analysis of univariate and multivariate variables was performed to assess the correlation between TIPE3 and patient prognosis. RESULT We found that TIPE3 was mainly expressed in the cytoplasm, with a small amount in the nucleus. The expression of TIPE3 in tumor tissues is significantly higher than in adjacent normal tissues, and it is significantly correlated with the survival rate of patients in tumor tissues (p = 0.0038) and adjacent normal tissues (p<0.0001). Patients with a high TIPE3 expression had a lower survival rate, while patients with a low TIPE3 expression had a higher survival rate. Univariate regression analysis showed that the TIPE3 expression in tumor tissues (p = 0.007), the TIPE3 expression in adjacent normal tissues (p<0.001), the number of CD8+ T cells in tumor tissues (p = 0.020), the number of CD20+ B cells in tumor tissues (p = 0.023), the number of CD20+ B cells in adjacent normal tissues (p = 0.023), the number of CD66b+ neutrophils in tumor tissues (p = 0.005), the number of CD66b+ neutrophils in adjacent normal tissues (p<0.001), lymphatic metastasis (p = 0.010), TNM stage (p = 0.013), and tumor grade (p = 0.027) were significantly correlated with overall survival (OS). These prognostic factors were then subjected to multivariate regression analysis, and the results showed that the expression of TIPE3, the number of CD8+ T cells, and the number of CD66b+ neutrophils were prognostic factors affecting the OS rate of CRC patients. CONCLUSION We found that the TIPE3 protein is upregulated in CRC cancer tissues and is correlated with survival rate.
Collapse
Affiliation(s)
- Yue Xu
- grid.186775.a0000 0000 9490 772XDepartment of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Zhu
- grid.412679.f0000 0004 1771 3402Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,Anhui Public Health Clinical Center, Hefei, China
| | - Hengbo Xia
- grid.412679.f0000 0004 1771 3402Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanan Wang
- grid.186775.a0000 0000 9490 772XDepartment of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lin Li
- grid.186775.a0000 0000 9490 772XDepartment of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hong Wan
- grid.412679.f0000 0004 1771 3402Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,Anhui Public Health Clinical Center, Hefei, China
| | - Shuping Zhang
- grid.412679.f0000 0004 1771 3402Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,Anhui Public Health Clinical Center, Hefei, China
| | - Aman Xu
- grid.412679.f0000 0004 1771 3402Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China ,Anhui Public Health Clinical Center, Hefei, China
| | - Liecheng Wang
- grid.186775.a0000 0000 9490 772XDepartment of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, Wang GY, Cao MY, Dong JJ, Chen YA, Zhang P, Hao L, Xu H, Pan D, Chen ZS, Han CH. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 2023; 66:100907. [PMID: 36527888 DOI: 10.1016/j.drup.2022.100907] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical College, Southeast University, 87 DingjiaQiao, Nanjing, China
| | - Guang-Yue Wang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Ming-Yang Cao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Peng Zhang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
44
|
Xiu W, Pang J, Hu Y, Shi H. Immune-related mechanisms and immunotherapy in extragonadal germ cell tumors. Front Immunol 2023; 14:1145788. [PMID: 37138865 PMCID: PMC10149945 DOI: 10.3389/fimmu.2023.1145788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose of review Extragonadal germ cell tumors (EGCTs) are relatively rare tumors, accounting for 1%-5% of all GCTs. In this review, we summarize the current research progress regarding the pathogenesis, diagnosis, and treatment of EGCTs from an immunology perspective. Recent findings The histological origin of EGCTs is related to a gonadal origin, but they are located outside the gonad. They show great variation in morphology and can occur in the cranium, mediastinum, sacrococcygeal bone, and other areas. The pathogenesis of EGCTs is poorly understood, and their differential diagnosis is extensive and challenging. EGCT behavior varies greatly according to patient age, histological subtype, and clinical stage. Summary This review provides ideas for the future application of immunology in the fight against such diseases, which is a hot topic currently.
Collapse
Affiliation(s)
- Weigang Xiu
- 1Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyun Pang
- 1Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Hu, ; Huashan Shi,
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Hu, ; Huashan Shi,
| |
Collapse
|
45
|
Wang J, Shen Y, Wang X, Zhou Z, Zhong Z, Gu T, Wu B. Long non-coding RNA AL137789.1 promoted malignant biological behaviors and immune escape of pancreatic carcinoma cells. Open Med (Wars) 2023; 18:20230661. [PMID: 37020523 PMCID: PMC10068751 DOI: 10.1515/med-2023-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 04/07/2023] Open
Abstract
Our pre-investigation has revealed that long non-coding RNA (LncRNA) AL137789.1 has the potential to predict the survival of patients with pancreatic carcinoma (PCa). Accordingly, the mechanism underlying the implication of AL137789.1 in PCa is covered in the current study. The non-tumor and paired tumor tissues were collected. Kaplan-Meier curve was employed to estimate the survival of PCa patients with high or low expression of AL137789.1. The proliferation, migration, invasion, and cell cycle of PCa cells were determined, and the cytotoxicity of CD8+ T cells was evaluated as well. Levels of AL137789.1, E-cadherin, N-cadherin, and Vimentin were quantified. According to the experimental results, AL137789.1 was highly expressed in PCa and related to a poor prognosis of patients. Overexpressed AL137789.1 enhanced the proliferation, migration, and invasion of PCa cells, increased the cell population at G2/M and S phases yet decreased that in G0/G1 phase, and diminished the cytotoxicity of CD8+ T cells. Also, overexpressed AL137789.1 elevated levels of N-cadherin and Vimentin, while lessening E-cadherin levels. However, the silencing of AL137789.1 produced contrary effects. Collectively, lncRNA AL137789.1 plays a tumor-promotive role in PCa by enhancing the progression and immune escape.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhongcheng Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Tianyuan Gu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, No.
397, Huancheng North Road, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
46
|
Shi W, Fijardo M, Bruce JP, Su J, Xu W, Bell R, Bissey PA, Hui ABY, Waldron J, Pugh TJ, Yip KW, Liu FF. CD8+ Tumor-Infiltrating Lymphocyte Abundance Is a Positive Prognostic Indicator in Nasopharyngeal Cancer. Clin Cancer Res 2022; 28:5202-5210. [PMID: 36129469 DOI: 10.1158/1078-0432.ccr-22-0979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TIL) are immune cell populations found within tumors, critical in the antigen-specific host immune response. In this study, we aimed to elucidate the prognostic significance of CD3+, CD4+, and CD8+ TILs in nasopharyngeal cancer (NPC). EXPERIMENTAL DESIGN Immune cell infiltration was quantified in NPC samples (n = 50) using RNA-sequencing (RNA-seq) data based on rearranged T-cell receptor (TCR) reads and the Estimation of Stromal and Immune cells in malignant tumors using expression data (ESTIMATE) immune score tool. The differential abundances of TIL subset populations were also characterized through IHC staining of formalin-fixed, paraffin-embedded samples from a training cohort (n = 35), which was a subset of the RNA-seq cohort (n = 50). RESULTS In the RNA-seq cohort, patients with higher rearranged TCR reads experienced superior 5- and 10-year overall survival (OS; P < 0.001), and disease-free survival (DFS; P < 0.001). Similarly, patients with higher ESTIMATE immune scores experienced superior 5- and 10-year OS (P = 0.024) and DFS (P = 0.007). In the training cohort, high abundances of CD8+ TILs were significantly associated with improved 5- and 10-year OS (P = 0.003) and DFS (P = 0.005). These findings were corroborated in an independent validation cohort (n = 84), and combined analysis of the training and validation cohorts [n = 119 (35+84)], which further demonstrated improved 5- and 10-year survival in terms of locoregional control (P < 0.001) and distant metastasis (P = 0.03). CONCLUSIONS Taken together, our study highlights the prognostic value of CD8+ TILs in NPC, and the potential of future investigations into cellular-based immunotherapies employing CD8+ lymphocytes.
Collapse
Affiliation(s)
- Wei Shi
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jeff P Bruce
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Jie Su
- Department of Biostatistics, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bell
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - John Waldron
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Zhang L, Zhang W, Li Z, Lin S, Zheng T, Hao B, Hou Y, Zhang Y, Wang K, Qin C, Yue L, Jin J, Li M, Fan L. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res 2022; 41:227. [PMID: 35864520 PMCID: PMC9306053 DOI: 10.1186/s13046-022-02439-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
CD8+ T cells play a central role in anti-tumor immunity. Naïve CD8+ T cells are active upon tumor antigen stimulation, and then differentiate into functional cells and migrate towards the tumor sites. Activated CD8+ T cells can directly destroy tumor cells by releasing perforin and granzymes and inducing apoptosis mediated by the death ligand/death receptor. They also secrete cytokines to regulate the immune system against tumor cells. Mitochondria are the central hub of metabolism and signaling, required for polarization, and migration of CD8+ T cells. Many studies have demonstrated that mitochondrial dysfunction impairs the anti-tumor activity of CD8+ T cells through various pathways. Mitochondrial energy metabolism maladjustment will cause a cellular energy crisis in CD8+ T cells. Abnormally high levels of mitochondrial reactive oxygen species will damage the integrity and architecture of biofilms of CD8+ T cells. Disordered mitochondrial dynamics will affect the mitochondrial number and localization within cells, further affecting the function of CD8+ T cells. Increased mitochondria-mediated intrinsic apoptosis will decrease the lifespan and quantity of CD8+ T cells. Excessively low mitochondrial membrane potential will cause the release of cytochrome c and apoptosis of CD8+ T cells, while excessively high will exacerbate oxidative stress. Dysregulation of mitochondrial Ca2+ signaling will affect various physiological pathways in CD8+ T cells. To some extent, mitochondrial abnormality in CD8+ T cells contributes to cancer development. So far, targeting mitochondrial energy metabolism, mitochondrial dynamics, mitochondria-mediated cell apoptosis, and other mitochondrial physiological processes to rebuild the anti-tumor function of CD8+ T cells has proved effective in some cancer models. Thus, mitochondria in CD8+ T cells may be a potential and powerful target for cancer treatment in the future.
Collapse
|
48
|
Chen Y, Zhao H, Luo J, Liao Y, Dan X, Hu G, Gu W. A phase I dose-escalation study of neoantigen-activated haploidentical T cell therapy for the treatment of relapsed or refractory peripheral T-cell lymphoma. Front Oncol 2022; 12:944511. [PMID: 36439517 PMCID: PMC9684663 DOI: 10.3389/fonc.2022.944511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Peripheral T-cell lymphoma (PTCL) is a type of highly heterogeneous non-Hodgkin lymphoma with a poor prognosis and lack of effective targeted therapies. Adoptive T-cell therapy has been successfully used in the treatment of B-cell malignancies. We first used adoptive transfer of haploidentical T cells activated by patient-specific neoantigens in vitro to treat an elderly patient with refractory angioimmunoblastic T-cell lymphoma (AITL) in 2017, and the patient achieved long-term complete remission (CR). Here we report on early results from this first-in-human phase 1 clinical trial that aims to assess the safety and tolerability of neoantigen-activated haploidentical T cell therapy (NAHTC) for relapsed/refractory PTCL. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/index.aspx, identifier [ChiCTR1800017440].
Collapse
Affiliation(s)
- Yuan Chen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hu Zhao
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Jing Luo
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Youping Liao
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Xu Dan
- YuceBio Medical Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China,*Correspondence: Guoyu Hu, ; Weiyue Gu,
| | - Weiyue Gu
- Chineo Medical Technology Co., Ltd, Beijing, China,*Correspondence: Guoyu Hu, ; Weiyue Gu,
| |
Collapse
|
49
|
Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022; 10:989881. [PMID: 36440446 PMCID: PMC9682960 DOI: 10.3389/fbioe.2022.989881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2023] Open
Abstract
Currently, tumor treatment research still focuses on the cancer cells themselves, but the fact that the immune system plays an important role in inhibiting tumor development cannot be ignored. The activation of the immune system depends on the difference between self and non-self. Unfortunately, cancer is characterized by genetic changes in the host cells that lead to uncontrolled cell proliferation and evade immune surveillance. Cancer immunotherapy aims to coordinate a patient's immune system to target, fight, and destroy cancer cells without destroying the normal cells. Nevertheless, antitumor immunity driven by the autoimmune system alone may be inadequate for treatment. The development of drug delivery systems (DDS) based on nanoparticles can not only promote immunotherapy but also improve the immunosuppressive tumor microenvironment (ITM), which provides promising strategies for cancer treatment. However, conventional nano drug delivery systems (NDDS) are subject to several limitations in clinical transformation, such as immunogenicity and the potential toxicity risks of the carrier materials, premature drug leakage at off-target sites during circulation and drug load content. In order to address these limitations, this paper reviews the trends and progress of biomimetic NDDS and discusses the applications of each biomimetic system in tumor immunotherapy. Furthermore, we review the various combination immunotherapies based on biomimetic NDDS and key considerations for clinical transformation.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Lin Q, Wu HJ, Song QS, Tang YK. CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy. Front Oncol 2022; 12:937277. [PMID: 36267975 PMCID: PMC9577189 DOI: 10.3389/fonc.2022.937277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives In radiomics, high-throughput algorithms extract objective quantitative features from medical images. In this study, we evaluated CT-based radiomics features, clinical features, in-depth learning features, and a combination of features for predicting a good pathological response (GPR) in non-small cell lung cancer (NSCLC) patients receiving immunotherapy-based neoadjuvant therapy (NAT). Materials and methods We reviewed 62 patients with NSCLC who received surgery after immunotherapy-based NAT and collected clinicopathological data and CT images before and after immunotherapy-based NAT. A series of image preprocessing was carried out on CT scanning images: tumor segmentation, conventional radiomics feature extraction, deep learning feature extraction, and normalization. Spearman correlation coefficient, principal component analysis (PCA), and least absolute shrinkage and selection operator (LASSO) were used to screen features. The pretreatment traditional radiomics combined with clinical characteristics (before_rad_cil) model and pretreatment deep learning characteristics (before_dl) model were constructed according to the data collected before treatment. The data collected after NAT created the after_rad_cil model and after_dl model. The entire model was jointly constructed by all clinical features, conventional radiomics features, and deep learning features before and after neoadjuvant treatment. Finally, according to the data obtained before and after treatment, the before_nomogram and after_nomogram were constructed. Results In the before_rad_cil model, four traditional radiomics features ("original_shape_flatness," "wavelet hhl_firer_skewness," "wavelet hlh_firer_skewness," and "wavelet lll_glcm_correlation") and two clinical features ("gender" and "N stage") were screened out to predict a GPR. The average prediction accuracy (ACC) after modeling with k-nearest neighbor (KNN) was 0.707. In the after_rad_cil model, nine features predictive of GPR were obtained after feature screening, among which seven were traditional radiomics features: "exponential_firer_skewness," "exponential_glrlm_runentropy," "log- sigma-5-0-mm-3d_firer_kurtosis," "logarithm_skewness," "original_shape_elongation," "original_shape_brilliance," and "wavelet llh_glcm_clustershade"; two were clinical features: "after_CRP" and "after lymphocyte percentage." The ACC after modeling with support vector machine (SVM) was 0.682. The before_dl model and after_dl model were modeled by SVM, and the ACC was 0.629 and 0.603, respectively. After feature screening, the entire model was constructed by multilayer perceptron (MLP), and the ACC of the GPR was the highest, 0.805. The calibration curve showed that the predictions of the GPR by the before_nomogram and after_nomogram were in consensus with the actual GPR. Conclusion CT-based radiomics has a good predictive ability for a GPR in NSCLC patients receiving immunotherapy-based NAT. Among the radiomics features combined with the clinicopathological information model, deep learning feature model, and the entire model, the entire model had the highest prediction accuracy.
Collapse
Affiliation(s)
| | - Hai Jun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|