1
|
Lin HK, Blake DA, Liu T, Freeman R, Lesinski GB, Yang L, Rafiq S. Muc16CD is a novel CAR T cell target antigen for the treatment of pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200868. [PMID: 39346763 PMCID: PMC11426034 DOI: 10.1016/j.omton.2024.200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Pancreatic cancer is an aggressive malignancy with a 5-year survival rate of 13% that remains refractory to current immunotherapies, such as chimeric antigen receptor (CAR) T cells. These engineered cells can produce robust anti-tumor responses but require a reliable tumor-associated antigen (TAA) target. Here, we describe the retained ectodomain of Muc16, Muc16CD, as a novel TAA for targeting by CAR T cell therapy in pancreatic cancer. We establish clinically relevant, endogenous Muc16 and Muc16CD expression in pancreatic tumor tissues for CAR T cell targeting. Muc16CD-directed CAR T cells can both recognize and activate in a polyfunctional manner in response to patient-derived pancreatic tumor cells. Last, we demonstrate that Muc16CD-directed CAR T cells can elicit an anti-tumor response in vivo with significantly enhanced tumor control and survival benefits in a pancreatic tumor model. Overall, these findings demonstrate the utility of Muc16CD-targeted CAR T cell therapy in the novel setting of pancreatic cancer.
Collapse
Affiliation(s)
- Heather K Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dejah A Blake
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruby Freeman
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
2
|
Markosyan N, Kim IK, Arora C, Quinones-Ware L, Joshi N, Cheng N, Schechter EY, Tobias JW, Hochberg JE, Corse E, Liu K, Rodriguez DiBlasi V, Chan LCE, Smyth EM, FitzGerald GA, Stanger BZ, Vonderheide RH. Pivotal roles for cancer cell-intrinsic mPGES-1 and autocrine EP4 signaling in suppressing antitumor immunity. JCI Insight 2024; 9:e178644. [PMID: 39298269 DOI: 10.1172/jci.insight.178644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Tumor cell-derived prostaglandin E2 (PGE2) is a tumor cell-intrinsic factor that supports immunosuppression in the tumor microenvironment (TME) by acting on the immune cells, but the impact of PGE2 signaling in tumor cells on the immunosuppressive TME is unclear. We demonstrate that deleting the PGE2 synthesis enzyme or disrupting autocrine PGE2 signaling through EP4 receptors on tumor cells reverses the T cell-low, myeloid cell-rich TME, activates T cells, and suppresses tumor growth. Knockout (KO) of Ptges (the gene encoding the PGE2 synthesis enzyme mPGES-1) or the EP4 receptor gene (Ptger4) in KPCY (KrasG12D P53R172H Yfp CrePdx) pancreatic tumor cells abolished growth of implanted tumors in a T cell-dependent manner. Blockade of the EP4 receptor in combination with immunotherapy, but not immunotherapy alone, induced complete tumor regressions and immunological memory. Mechanistically, Ptges- and Ptger4-KO tumor cells exhibited altered T and myeloid cell attractant chemokines, became more susceptible to TNF-α-induced killing, and exhibited reduced adenosine synthesis. In hosts treated with an adenosine deaminase inhibitor, Ptger4-KO tumor cells accumulated adenosine and gave rise to tumors. These studies reveal an unexpected finding - a nonredundant role for the autocrine mPGES-1/PGE2/EP4 signaling axis in pancreatic cancer cells, further nominating mPGES-1 inhibition and EP4 blockade as immune-sensitizing therapy in cancer.
Collapse
Affiliation(s)
- Nune Markosyan
- Abramson Cancer Center, Perelman School of Medicine
- Abramson Family Cancer Research Institute, Department of Medicine, and
| | - Il-Kyu Kim
- Abramson Cancer Center, Perelman School of Medicine
- Abramson Family Cancer Research Institute, Department of Medicine, and
| | - Charu Arora
- Abramson Cancer Center, Perelman School of Medicine
| | | | - Nikhil Joshi
- Abramson Cancer Center, Perelman School of Medicine
| | - Noah Cheng
- Abramson Cancer Center, Perelman School of Medicine
| | | | - John W Tobias
- Penn Genomics and Sequencing Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Emily Corse
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Kang Liu
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | - Li-Chuan Eric Chan
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Emer M Smyth
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Garret A FitzGerald
- Department of Medicine
- Institute of Translational Medicine and Therapeutics, and
| | - Ben Z Stanger
- Abramson Cancer Center, Perelman School of Medicine
- Abramson Family Cancer Research Institute, Department of Medicine, and
| | - Robert H Vonderheide
- Abramson Cancer Center, Perelman School of Medicine
- Abramson Family Cancer Research Institute, Department of Medicine, and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Qadir RMAB, Umair MB, Tariq UB, Ahmad A, Kiran W, Shahid MH. Unraveling Pancreatic Cancer: Epidemiology, Risk Factors, and Global Trends. Cureus 2024; 16:e72816. [PMID: 39493341 PMCID: PMC11528318 DOI: 10.7759/cureus.72816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies, characterized by late diagnosis, rapid progression, and limited treatment options. This literature review comprehensively examines the epidemiology, risk factors, diagnostic challenges, treatment modalities, and prognosis of pancreatic cancer. It highlights the global disparities in incidence and outcomes, exploring the influence of socioeconomic, environmental, and genetic factors on disease progression. In addition, this review discusses recent advancements in diagnostic tools and treatment strategies, identifying gaps in current research and clinical practices. The synthesis aims to inform future research directions and policy-making efforts to reduce the global burden of pancreatic cancer and improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Umar Bin Tariq
- General Surgery, Southmead Hospital Bristol, North Bristol NHS Trust, Bristol, GBR
| | - Arslan Ahmad
- Emergency Medicine, Weston General Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Weston-super-Mare, GBR
| | - Wajeeha Kiran
- Trauma and Orthopaedics, Morriston Hospital, Swansea, GBR
| | | |
Collapse
|
4
|
Brugiapaglia S, Spagnolo F, Intonti S, Novelli F, Curcio C. Fighting Pancreatic Cancer with a Vaccine-Based Winning Combination: Hope or Reality? Cells 2024; 13:1558. [PMID: 39329742 PMCID: PMC11430323 DOI: 10.3390/cells13181558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma (PDA) represents the fourth leading cause of cancer-related mortality in the USA. Only 20% of patients present surgically resectable and potentially curable tumors at diagnosis, while 80% are destined for poor survival and palliative chemotherapy. Accordingly, the advancement of innovative and effective therapeutic strategies represents a pivotal medical imperative. It has been demonstrated that targeting the immune system represents an effective approach against several solid tumors. The immunotherapy approach encompasses a range of strategies, including the administration of antibodies targeting checkpoint molecules (immune checkpoint inhibitors, ICIs) to disrupt tumor suppression mechanisms and active immunization approaches that aim to stimulate the host's immune system. While vaccines have proved effective against infectious agents, vaccines for cancer remain an unfulfilled promise. Vaccine-based therapy targeting tumor antigens has the potential to be a highly effective strategy for initiating and maintaining T cell recognition, enhancing the immune response, and ultimately promoting cancer treatment success. In this review, we examined the most recent clinical trials that employed diverse vaccine types to stimulate PDA patients' immune systems, either independently or in combination with chemotherapy, radiotherapy, ICIs, and monoclonal antibodies with the aim of ameliorating PDA patients' quality of life and extend their survival.
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Ferdinando Spagnolo
- School of Advanced Defence Studies, Defence Research & Analysis Institute, Piazza della Rovere 83, 00165 Rome, Italy
| | - Simona Intonti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| |
Collapse
|
5
|
Gaikwad S, Srivastava SK. Reprogramming tumor immune microenvironment by milbemycin oxime results in pancreatic tumor growth suppression and enhanced anti-PD-1 efficacy. Mol Ther 2024; 32:3145-3162. [PMID: 39097773 PMCID: PMC11403213 DOI: 10.1016/j.ymthe.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a survival rate of 12%, and multiple clinical trials testing anti-PD-1 therapies against PDAC have failed, suggesting a need for a novel therapeutic strategy. In this study, we evaluated the potential of milbemycin oxime (MBO), an antiparasitic compound, as an immunomodulatory agent in PDAC. Our results show that MBO inhibited the growth of multiple PDAC cell lines by inducing apoptosis. In vivo studies showed that the oral administration of 5 mg/kg MBO inhibited PDAC tumor growth in both subcutaneous and orthotopic models by 49% and 56%, respectively. Additionally, MBO treatment significantly increased the survival of tumor-bearing mice by 27 days as compared to the control group. Interestingly, tumors from MBO-treated mice had increased infiltration of CD8+ T cells. Notably, depletion of CD8+ T cells significantly reduced the anti-tumor efficacy of MBO in mice. Furthermore, MBO significantly augmented the efficacy of anti-PD-1 therapy, and the combination treatment resulted in a greater proportion of active cytotoxic T cells within the tumor microenvironment. MBO was safe and well tolerated in all our preclinical toxicological studies. Overall, our study provides a new direction for the use of MBO against PDAC and highlights the potential of repurposing MBO for enhancing anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Jerry H. Hodge School of Pharmacy, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Center for Tumor Immunology and Targeted Cancer Therapy, Jerry H. Hodge School of Pharmacy, Abilene, TX 79601, USA.
| |
Collapse
|
6
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
7
|
Ouyang Y, Shen R, Chu L, Fu C, Hu W, Huang H, Zhang Z, Jiang M, Chen X. Combining single-cell and bulk RNA sequencing, NK cell marker genes reveal a prognostic and immune status in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:15037. [PMID: 38951569 PMCID: PMC11217423 DOI: 10.1038/s41598-024-65917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.
Collapse
Affiliation(s)
- Yonghao Ouyang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, 305 Zhong Shan East Road, Nanjing, 210002, China.
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China.
| | - Rongxi Shen
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, 305 Zhong Shan East Road, Nanjing, 210002, China.
| | - Lihua Chu
- Jinggangshan University, Ji'an, 334000, China
| | - Chengchao Fu
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Wang Hu
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Haoxuan Huang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Ming Jiang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Xin Chen
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| |
Collapse
|
8
|
Zheng Y, Xiong Q, Yang Y, Ma Y, Zhu Q. Identified γ-glutamyl cyclotransferase (GGCT) as a novel regulator in the progression and immunotherapy of pancreatic ductal adenocarcinoma through multi-omics analysis and experiments. J Cancer Res Clin Oncol 2024; 150:318. [PMID: 38914714 PMCID: PMC11196309 DOI: 10.1007/s00432-024-05789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is renowned for its formidable and lethal nature, earning it a notorious reputation among malignant tumors. Due to its challenging early diagnosis, high malignancy, and resistance to chemotherapy drugs, the treatment of pancreatic cancer has long been exceedingly difficult in the realm of oncology. γ-Glutamyl cyclotransferase (GGCT), a vital enzyme in glutathione metabolism, has been implicated in the proliferation and progression of several tumor types, while the biological function of GGCT in pancreatic ductal adenocarcinoma remains unknown. METHODS The expression profile of GGCT was validated through western blotting, immunohistochemistry, and RT-qPCR in both pancreatic cancer tissue samples and cell lines. Functional enrichment analyses including GSVA, ssGSEA, GO, and KEGG were conducted to explore the biological role of GGCT. Additionally, CCK8, Edu, colony formation, migration, and invasion assays were employed to evaluate the impact of GGCT on the proliferation and migration abilities of pancreatic cancer cells. Furthermore, the LASSO machine learning algorithm was utilized to develop a prognostic model associated with GGCT. RESULTS Our study revealed heightened expression of GGCT in pancreatic cancer tissues and cells, suggesting an association with poorer patient prognosis. Additionally, we explored the immunomodulatory effects of GGCT in both pan-cancer and pancreatic cancer contexts, found that GGCT may be associated with immunosuppressive regulation in various types of tumors. Specifically, in patients with high expression of GGCT in pancreatic cancer, there is a reduction in the infiltration of various immune cells, leading to poorer responsiveness to immunotherapy and worse survival rates. In vivo and in vitro assays indicate that downregulation of GGCT markedly suppresses the proliferation and metastasis of pancreatic cancer cells. Moreover, this inhibitory effect appears to be linked to the regulation of GGCT on c-Myc. A prognostic model was constructed based on genes derived from GGCT, demonstrating robust predictive ability for favorable survival prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Chen X, Yu S, Chen J, Chen X. Analysis of PD-L1 promoter methylation combined with immunogenic context in pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2024; 73:149. [PMID: 38833018 PMCID: PMC11150339 DOI: 10.1007/s00262-024-03745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Despite the successful application of programmed cell death ligand 1 (PD-L1)-blocking strategies in some types of cancers and well-established prognostic indicators in pancreatic ductal adenocarcinoma (PDAC), the biological and clinical implications of the methylation status of PD-L1/PD-L2 in PDAC remain largely unknown. Therefore, this study aimed to explore the biological role of PD-L1/PD-L2 methylation and its association with clinicopathological features, clinical outcomes, and the immune microenvironment by analyzing the data on PD-L1/PD-L2 methylation and mRNA expression in PDAC cohorts obtained from the Cancer Genome Atlas and International Cancer Genome Consortium. The correlation between PD-L1 promoter methylation and PD-L1 expression and survival was further validated in an independent validation cohort (Peking Union Medical College Hospital [PUMCH] cohort) using pyrosequencing and immunohistochemistry. These results demonstrated that hypomethylation of the PD-L1 promoter was strongly associated with upregulated PD-L1 expression and shorter overall survival in PDAC. Multivariate Cox regression analyses revealed that the PD-L1 promoter methylation was an independent prognostic factor. PD-L1 promoter hypomethylation and high expression were related to aggressive clinical phenotypes. Moreover, both PD-L1 and PD-L2 methylation correlated with immune cell infiltration and the expression of immune checkpoint genes. PD-L1 promoter methylation status was further validated as an independent prognostic biomarker in patients with PDAC using the PUMCH cohort. The prognostic significance of PD-L1 promoter methylation was more discriminative in tumors with perineural/lymphovascular invasion and distant metastasis than in those without perineural/lymphovascular invasion and distant metastasis. In summary, the methylation status of the PD-L1 promoter is a promising biomarker for survival outcomes, immune infiltration, and the potential immune benefits of immunotherapy in PDAC.
Collapse
Affiliation(s)
- Xinyuan Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Xianlong Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Fan M, Ma Y, Deng G, Si H, Jia R, Wang Z, Dai G. A real-world analysis of second-line treatment option, gemcitabine plus anlotinib and anti-PD1, in advanced pancreatic cancer. Pancreatology 2024; 24:579-583. [PMID: 38553260 DOI: 10.1016/j.pan.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND In the second-line treatment of advanced pancreatic cancer (APC), there is only one approved regimen based on the phase III NAPOLI-1 trial. However, for patients progressing after Nab-paclitaxel and Gemcitabine (Nab-P/Gem) or Nab-P combinations, second-line treatment were very limited. METHODS This is a retrospective single-center analysis of patients. Our aim was to determine the effectiveness and tolerability of a novel regimen, gemcitabine plus Anlotinib and anti-PD1, in APC patients and to compare it with oxaliplatin, irinotecan, leucovorin, and fluorouracil (FOLFIRINOX) in the second-line setting who have failed on the first-line Nab-P combinations. RESULTS In total, twenty-three patients received Gemcitabine plus Anlotinib and anti-PD1 in the second-line, 28 patients were treated with FOLFORINOX. There was no significant difference in overall survival (OS) or progression free survival (PFS) for either of the two sequences (p > 0.05). Patients who received Gemcitabine plus Anlotinib and anti-PD1 had a median PFS of 4.0 months (95% CI: 1.1-6.9) versus 3.5 months (95% CI 1.8-5.2) in FOLFORINOX group (p = 0.953). The median OS of Gemcitabine plus Anlotinib and anti-PD1 was 9.0 months (95% CI: 4.0-13.7) and 8.0 months (95% CI: 5.5-10.5) in FOLFORINOX group (p = 0.373). Grade ≥3 treatment-emergent adverse events (AEs) occurred for 13% of patients with Gemcitabine plus Anlotinib and anti-PD1 and 40% for FOLFORINOX. CONCLUSION Our data confirms the effectiveness of Gemcitabine plus Anlotinib and anti-PD1 as a well-tolerated regimen in the second-line treatment of APC and extends available data on its use as a second-line treatment option when compared with FOLFIRINOX.
Collapse
Affiliation(s)
- Mengjiao Fan
- Medical School of Chinese People's Liberation Army, Beijing, China; Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China; Medical Oncology Department, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Yue Ma
- Medical School of Chinese People's Liberation Army, Beijing, China; Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China; Medical Oncology Department, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Guochao Deng
- Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Haiyan Si
- Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Ru Jia
- Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Zhikuan Wang
- Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Guanghai Dai
- Medical Oncology Department, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China; Medical Oncology Department, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
11
|
Ren C, Wang Y, Yang X, Tuo Y, Li Y, Gong J. Kikuchi disease: A case report about Sintilimab-induced Kikuchi histiocytic necrotizing lymphadenitis and literature review. Heliyon 2024; 10:e30608. [PMID: 38742085 PMCID: PMC11089371 DOI: 10.1016/j.heliyon.2024.e30608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Immune checkpoint inhibitors have become one of the effective means of solid tumor treatment, among which anti-programmed death-1 (PD-1) antibodies are more maturely applied and can effectively inhibit tumor immune escape, thus enhancing the anti-tumor effect, but it can also lead to a series of immune-related adverse events (irAEs) in the process of clinical use. Here, we report a Patient with pancreatic solid pseudopapilloma treated with Sintilimab for the fifteenth cycles who developed chills, fever, and lymph node enlargement. Considering that the patient did not have infection, without history of autoimmune disease, we diagnosed the patient with Sintilimab-induced histiocytic necrotizing lymphadenitis (Kikuchi disease). The symptoms are alleviated after rapid use of glucocorticoids. Histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis) with anti-programmed death-1 (PD-1) antibody is a rare immune-related adverse events (irAEs).
Collapse
Affiliation(s)
- Chunxiao Ren
- Department of Hematology, Dazhou Central Hospital, Tongchuan District, 56 Nanyue Temple Street Sichuan, Dazhou, 635000, China
| | - Yuqun Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261042, China
| | - Xin Yang
- Department of Hematology, Dazhou Central Hospital, Tongchuan District, 56 Nanyue Temple Street Sichuan, Dazhou, 635000, China
| | - Yinglan Tuo
- Pathology Department, Dazhou Central Hospital, Tongchuan District, 56 Nanyue Temple Street Sichuan, Dazhou, 635000, China
| | - Yaqiong Li
- Department of Hematology, Dazhou Central Hospital, Tongchuan District, 56 Nanyue Temple Street Sichuan, Dazhou, 635000, China
| | - Jichang Gong
- Department of Hematology, Dazhou Central Hospital, Tongchuan District, 56 Nanyue Temple Street Sichuan, Dazhou, 635000, China
| |
Collapse
|
12
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
13
|
Endo Y, Kitago M, Kitagawa Y. Evidence and Future Perspectives for Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer: A Scoping Review. Cancers (Basel) 2024; 16:1632. [PMID: 38730584 PMCID: PMC11083108 DOI: 10.3390/cancers16091632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal disease that requires innovative therapeutic approaches to enhance the survival outcomes. Neoadjuvant treatment (NAT) has gained attention for resectable and borderline resectable PC, offering improved resection rates and enabling early intervention and patient selection. Several retrospective studies have validated its efficacy. However, previous studies have lacked intention-to-treat analyses and appropriate resectability classifications. Randomized comparative trials may help to enhance the clinical applicability of evidence. Therefore, after searching the MEDLINE database, this scoping review presents a comprehensive summary of the evidence from published (n = 14) and ongoing (n = 12) randomized Phase II and III trials. Diverse regimens and their outcomes were explored for both resectable and borderline resectable PC. While some trials have supported the efficacy of NAT, others have demonstrated no clear survival benefits for patients with resectable PC. The utility of NAT has been confirmed in patients with borderline resectable PC, but the optimal regimens remain debatable. Ongoing trials are investigating novel regimens, including immunotherapy, thereby highlighting the dynamic landscape of PC treatment. Studies should focus on biomarker identification, which may enable precision in oncology. Future endeavors aim to refine treatment strategies, guided by precision oncology.
Collapse
Affiliation(s)
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo 160-8582, Japan; (Y.E.); (Y.K.)
| | | |
Collapse
|
14
|
Kulkarni T, Robinson OM, Dutta A, Mukhopadhyay D, Bhattacharya S. Machine learning-based approach for automated classification of cell and extracellular matrix using nanomechanical properties. Mater Today Bio 2024; 25:100970. [PMID: 38312803 PMCID: PMC10835007 DOI: 10.1016/j.mtbio.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Fibrosis characterized by excess accumulation of extracellular matrix (ECM) due to complex cell-ECM interactions plays a pivotal role in pathogenesis. Herein, we employ the pancreatic ductal adenocarcinoma (PDAC) model to investigate dynamic alterations in nanomechanical attributes arising from the cell-ECM interactions to study the fibrosis paradigm. Several segregated studies performed on cellular and ECM components fail to recapitulate their complex collaboration. We utilized collagen and fibronectin, the two most abundant PDAC ECM components, and studied their nanomechanical attributes. We demonstrate alteration in morphology and nanomechanical attributes of collagen with varying thicknesses of collagen gel. Furthermore, by mixing collagen and fibronectin in various stoichiometry, their nanomechanical attributes were observed to vary. To demonstrate the dynamicity and complexity of cell-ECM, we utilized Panc-1 and AsPC-1 cells with or without collagen. We observed that Panc-1 and AsPC-1 cells interact differently with collagen and vice versa, evident from their alteration in nanomechanical properties. Further, using nanomechanics data, we demonstrate that ML-based techniques were able to classify between ECM as well as cell, and cell subtypes in the presence/absence of collagen with higher accuracy. This work demonstrates a promising avenue to explore other ECM components facilitating deeper insights into tumor microenvironment and fibrosis paradigm.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olivia-Marie Robinson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ayan Dutta
- School of Computing, University of North Florida, Jacksonville, FL, 32224 USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| |
Collapse
|
15
|
Hussain Z, Bertran T, Finetti P, Lohmann E, Mamessier E, Bidaut G, Bertucci F, Rego M, Tomasini R. Macrophages reprogramming driven by cancer-associated fibroblasts under FOLFIRINOX treatment correlates with shorter survival in pancreatic cancer. Cell Commun Signal 2024; 22:1. [PMID: 38167013 PMCID: PMC10759487 DOI: 10.1186/s12964-023-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a clinically challenging cancer, mainly due to limited therapeutic options and the presence of a highly prominent tumor microenvironment (TME), facilitating tumor progression. The TME is predominated by heterogeneous populations of cancer-associated fibroblasts (CAFs) and tumor associated macrophages (TAMs), in constant communication with each other and with tumor cells, influencing many tumoral abilities such as therapeutic resistance. However how the crosstalk between CAFs and macrophages evolves following chemotherapeutic treatment remains poorly understood, limiting our capacity to halt therapeutic resistance. METHODS We combined biological characterization of macrophages indirectly cocultured with human PDAC CAFs, under FOLFIRINOX treatment, with mRNAseq analyses of such macrophages and evaluated the relevance of the specific gene expression signature in a large series of primary PDAC patients to search for correlation with overall survival (OS) after FOLFIRINOX chemotherapy. RESULTS Firstly, we demonstrated that CAFs polarize naïve and M1 macrophages towards an M2-like phenotype with a specific increase of CD200R and CD209 M2 markers. Then, we demonstrated that CAFs counteract the pro-inflammatory phenotype induced by the FOLFIRINOX on Macrophages. Indeed, we highlighted that, under FOLFIRINOX, CAFs limit the FOLFIRINOX-induced cell death of macrophages and further reinforce their M2 phenotype as well as their immunosuppressive impact through specific chemokines production. Finally, we revealed that under FOLFIRINOX CAFs drive a specific macrophage gene expression signature involving SELENOP and GOS2 that correlates with shortened OS in FOLFIRINOX-treated PDAC patients. CONCLUSION Our study provides insight into the complex interactions between TME cells under FOLFIRINOX treatment. It suggests potential novel candidates that could be used as therapeutic targets in combination with FOLFIRINOX to prevent and alleviate TME influx on therapeutic resistance as well as biomarkers to predict FOLFIRINOX response in PDAC patients. Video Abstract.
Collapse
Affiliation(s)
- Zainab Hussain
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Thomas Bertran
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Eugenie Lohmann
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Emilie Mamessier
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - Ghislain Bidaut
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
| | - François Bertucci
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Moacyr Rego
- Therapeutic Innovation Center, Federal University of Pernambuco, Recife, Brazil
| | - Richard Tomasini
- Cancer Research Center of Marseille, Aix-Marseille University, INSERM U1068, CNRS UMR7258, Institute Paoli-Calmettes, Marseille, France.
| |
Collapse
|
16
|
Ma B, Zhang DJ, Hu Y, Chen X, Gong R, Lei K, Yu Q, Ren H. HCST Expression Distinguishes Immune-hot and Immune-cold Subtypes in Pancreatic Ductal Adenocarcinoma. Curr Gene Ther 2024; 25:62-71. [PMID: 37475556 DOI: 10.2174/1566523223666230720101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent malignancy of the pancreas, and the incidence of this disease is approximately equivalent to the mortality rate. Immunotherapy has made a remarkable breakthrough in numerous cancers, while its efficacy in PDAC remains limited due to the immunosuppressive microenvironment. Immunotherapy efficacy is highly correlated with the abundance of immune cells, particularly cytotoxic T cells. Therefore, molecular classifier is needed to identify relatively hot tumors that may benefit from immunotherapy. Method In this study, we carried out a transcriptome analysis of 145 pancreatic tumors to define the underlying immune regulatory mechanism driving the PDAC immunosuppressive microenvironment. The immune subtype was identified by consensus clustering, and the underlying PDAC immune activation mechanism was thoroughly examined using single sample gene set enrichment analysis (ssGSEA). Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to assess the accuracy of the molecular classifier in differentiating immunological subgroups of PDAC.5. Result The protein level of molecular classifier was verified by immunohistochemistry in human PDAC tissue. Immune-hot tumors displayed higher levels of immune cell infiltration and immune checkpoint, in line with enriched immune escape pathways. Hematopoietic cell signal transducer (HCST), a molecular classifier used to differentiate immunological subtypes of PDAC, has shown a substantial link with the expression levels of cytotoxic markers, such as CD8A and CD8B. At the single cell level, we found that HCST was predominantly expressed in CD8T cells. By immunohistochemistry and survival analysis, we further demonstrated the prognostic value of HCST in PDAC. Conclusion We identified HCST as a molecular classifier to distinguish PDAC immune subtypes, which may be useful for early diagnosis and targeted therapy of PDAC.
Collapse
Affiliation(s)
- Boyi Ma
- Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dai-Jun Zhang
- Qingdao Medical College, Qingdao University, Qingdao 266000, China
| | - Yabin Hu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xianghan Chen
- Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ruining Gong
- Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qian Yu
- Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - He Ren
- Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
17
|
Li M, Schwab M. A journey to excellence: Disseminating groundbreaking discoveries in oncology research. Cancer Lett 2023; 577:216446. [PMID: 37839626 DOI: 10.1016/j.canlet.2023.216446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Manfred Schwab
- Cancer Center, Ruprecht-Karls-University Heidelberg, Germany.
| |
Collapse
|
18
|
Luo W, Wang J, Chen H, Qiu J, Wang R, Liu Y, Su D, Tao J, Weng G, Ma H, Zhang T. Novel strategies optimize immunotherapy by improving the cytotoxic function of T cells for pancreatic cancer treatment. Cancer Lett 2023; 576:216423. [PMID: 37778682 DOI: 10.1016/j.canlet.2023.216423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Pancreatic cancer (PC) is considered highly malignant due to its unsatisfying prognosis and limited response to therapies. Immunotherapy has therefore been developed to harness the antigen-specific properties and cytotoxicity of the immune system, aiming to induce a robust anti-tumor immune response that specifically demolishes PC cells while minimizing lethality in healthy tissue. The activation and augmentation of cytotoxic T cells play a critical role in the initiation and final success of immunotherapy. PC, however, is often immunotherapy resistant due to its intrinsic immunosuppressive tumor microenvironment that consequently hampers effective T cell priming. Emerging therapeutic approaches are orientated to modulate the tumor microenvironment in PC to enhance immune system involvement and heighten T cell efficacy. These novel strategies have shown promising therapeutic effects in the treatment of PC either as standalone approaches or combinatorial with other therapeutic schemes. The objective of this article is to explore innovative approaches to optimize immunotherapy for PC patients through T cell cytotoxic function augmentation.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jun Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haowei Ma
- Clinical Medicine, Capital Medical University, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
Mu K, Fu J, Gai J, Ravichandran H, Zheng L, Sun WC. Genetic alterations in the neuronal development genes are associated with changes of the tumor immune microenvironment in pancreatic cancer. ANNALS OF PANCREATIC CANCER 2023; 6:10.21037/apc-23-13. [PMID: 38495381 PMCID: PMC10942730 DOI: 10.21037/apc-23-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis and is highly metastatic. Our prior studies have demonstrated the critical role of axon guidance pathway genes in PDAC and the connection between neuronal development and the tumor microenvironment. A recent study newly identified 20 neuronal development genes [disks large homolog 2 (DLG2), neuron-glial-related cell adhesion molecule (NRCAM), neurexin3 (NRXN3), mitogen-activated protein kinase 10 (MAPK10), platelet-derived growth factor D (PDGFD), protein kinase C epsilon (PRKCE), potassium calcium-activated channel subfamily M alpha 1 (KCNMA1), polycystic kidney and hepatic disease 1 (PKHD1), neural cell adhesion molecule 1 (NCAM1), neuregulin-1 (NRG1), zinc finger protein 667 (ZNF667), cystic fibrosis transmembrane conductance regulator (CFTR), acyl-CoA medium-chain synthetase-3 (ACSM3), complement 6 (C6), protein tyrosine phosphatase receptor type M (PTPRM), hypoxia-inducible factor 1 alpha (HIF1A), adenylyl cyclase 5 (ADCY5), adherens junctions-associated protein 1 (AJAP1), neurobeachin (NBEA), sodium voltage-gated channel alpha subunit 9 (SCN9A)] that are associated with perineural invasion and poor prognosis of PDAC. The relationship between genetic alterations in these 20 genes and tumor immune microenvironment (TME) has not previously been investigated. Methods We hence applied the sequential multiplex immunohistochemistry results of biopsy specimens from 63 PDAC patients to investigate this relationship. Results We found that, except for PTPRM and NBEA, genetic alterations involving these 20 genes are associated with significant changes in the densities of major immune cell subtypes. Except for AJAP1, the copy number loss involving this panel of neuronal development genes is significantly associated with changes in immune cell infiltrates. In contrast, the copy number gain in fewer genes, including NRXN3, ZNF667, ACSM3, C6, ADCY5, SCN9A, and PRKCE, is significantly associated with changes in immune cell infiltrates. Conclusions Our study suggested that neuronal development genes play a role in modulating TME in a pancreatic cancer setting.
Collapse
Affiliation(s)
- Kaiyi Mu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harshitha Ravichandran
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
21
|
Xia X, Zhao S, Song X, Zhang M, Zhu X, Li C, Chen W, Zhao D. The potential use and experimental validation of genomic instability-related lncRNA in pancreatic carcinoma. Medicine (Baltimore) 2023; 102:e35300. [PMID: 37713870 PMCID: PMC10508516 DOI: 10.1097/md.0000000000035300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
This study explored the potential role of long noncoding RNA (lncRNAs) associated with genomic instability in the diagnosis and treatment of pancreatic adenocarcinoma (PAAD). Transcriptome and single-nucleotide variation data of PAAD samples were downloaded from the cancer genome atlas database to explore genomic instability-associated lncRNAs. We constructed a genomic instability-associated lncRNA prognostic signature. Then gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were used to explore the physiological role of lncRNAs involved in genomic instability. Tumor microenvironments, immunotherapy response, immune cell infiltration, immune checkpoint, and drug sensitivity were compared between high-risk and low-risk groups. In vitro experiments were performed for external validation. Six lncRNAs associated with genomic instability were identified, capable of predicting the prognosis of PAAD. Patients were assigned to low-risk or high-risk groups using these biomarkers, with better or worse prognosis, respectively. The tumor immune score, immune cell infiltration, and efficacy of immunotherapy were worse in the high-risk group. A drug sensitivity analysis revealed the high- and low-risk groups had different half-maximal inhibitory concentrations. The expression of cancer susceptibility candidate 8 was significantly higher in tumor tissues than in normal tissues, while the expression of LYPLAL1-AS1 exhibited an opposite pattern. They may be potential diagnostic or prognostic biomarkers for patients with pancreatic cancer. Genomic instability-associated lncRNAs were explored in this study and predicted the prognosis of PAAD and stratified patients risk in PAAD. These lncRNAs also predicted the efficacy of immunotherapy and potential therapeutic targets in PAAD.
Collapse
Affiliation(s)
- Xiuli Xia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Shushan Zhao
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Xiaoming Song
- Department of Gastroenterology, Handan Central Hospital, Handan, China
| | - Mengyue Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinying Zhu
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changjuan Li
- Department of Gastroenterology, The First Hospital of Handan, Handan, China
| | - Wenting Chen
- Digestive Endoscopy Center, The First Affiliated Hospital of Hebei North. University, Zhangjiakou, China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
22
|
Underwood PW, Herremans KM, Neal D, Riner AN, Nassour I, Hughes SJ, Trevino JG. Changing Practice Patterns and Improving Survival for Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4464. [PMID: 37760433 PMCID: PMC10526129 DOI: 10.3390/cancers15184464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Over the last two decades, there have been many reported advances in the clinical management of pancreatic ductal adenocarcinoma (PDAC). We sought to evaluate changes in survival for patients diagnosed with PDAC between 2004 and 2017. The National Cancer Database was queried for patients diagnosed with PDAC between 2004 and 2017. There were 55,401 patients who underwent surgery and 109,477 patients who underwent non-surgical treatment for PDAC between 2004 and 2017. Patients were categorized into four groups by year of diagnosis. Median survival improved from 15.5 months to 25.3 months for patients treated with surgery between the years 2016 and 2017 compared with between 2004 and 2007 (p < 0.001). Median survival improved from 7.2 months to 10.1 months for patients treated without surgery during the same years (p < 0.001). On multivariable analysis, the hazard ratio for death was estimated to multiply by 0.975 per year for patients treated with surgery and 0.959 per year for patients treated without surgery (p < 0.001). This increase in survival in the setting of evolving care validates continued efforts aimed at improving survival for patients with this devastating disease.
Collapse
Affiliation(s)
- Patrick W. Underwood
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (P.W.U.); (K.M.H.); (D.N.); (A.N.R.); (I.N.); (S.J.H.)
| | - Kelly M. Herremans
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (P.W.U.); (K.M.H.); (D.N.); (A.N.R.); (I.N.); (S.J.H.)
| | - Dan Neal
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (P.W.U.); (K.M.H.); (D.N.); (A.N.R.); (I.N.); (S.J.H.)
| | - Andrea N. Riner
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (P.W.U.); (K.M.H.); (D.N.); (A.N.R.); (I.N.); (S.J.H.)
| | - Ibrahim Nassour
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (P.W.U.); (K.M.H.); (D.N.); (A.N.R.); (I.N.); (S.J.H.)
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (P.W.U.); (K.M.H.); (D.N.); (A.N.R.); (I.N.); (S.J.H.)
| | - Jose G. Trevino
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
23
|
Chick RC, Gunderson AJ, Rahman S, Cloyd JM. Neoadjuvant Immunotherapy for Localized Pancreatic Cancer: Challenges and Early Results. Cancers (Basel) 2023; 15:3967. [PMID: 37568782 PMCID: PMC10416846 DOI: 10.3390/cancers15153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease due to its late presentation and tendency to recur early even after optimal surgical resection. Currently, there are limited options for effective systemic therapy. In addition, PDAC typically generates an immune-suppressive tumor microenvironment; trials of immunotherapy in metastatic PDAC have yielded disappointing results. There is considerable interest in using immunotherapy approaches in the neoadjuvant setting in order to prime the immune system to detect and prevent micrometastatic disease and recurrence. A scoping review was conducted to identify published and ongoing trials utilizing preoperative immunotherapy. In total, 9 published trials and 27 ongoing trials were identified. The published trials included neoadjuvant immune checkpoint inhibitors, cancer vaccines, and other immune-modulating agents that target mechanisms distinct from that of immune checkpoint inhibition. Most of these are early phase trials which suggest improvements in disease-free and overall survival when combined with standard neoadjuvant therapy. Ongoing trials are exploring various combinations of these agents with each other and with chemotherapy and/or radiation. Rational combination immunotherapy in addition to standard neoadjuvant therapy has the potential to improve outcomes in PDAC, but further clinical trials are needed, particularly those which utilize an adaptive trial design.
Collapse
Affiliation(s)
- Robert Connor Chick
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Andrew J. Gunderson
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan M. Cloyd
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
25
|
Wang Q, Šabanović B, Awada A, Reina C, Aicher A, Tang J, Heeschen C. Single-cell omics: a new perspective for early detection of pancreatic cancer? Eur J Cancer 2023; 190:112940. [PMID: 37413845 DOI: 10.1016/j.ejca.2023.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
Pancreatic cancer is one of the most lethal cancers, mostly due to late diagnosis and limited treatment options. Early detection of pancreatic cancer in high-risk populations bears the potential to greatly improve outcomes, but current screening approaches remain of limited value despite recent technological advances. This review explores the possible advantages of liquid biopsies for this application, particularly focusing on circulating tumour cells (CTCs) and their subsequent single-cell omics analysis. Originating from both primary and metastatic tumour sites, CTCs provide important information for diagnosis, prognosis and tailoring of treatment strategies. Notably, CTCs have even been detected in the blood of subjects with pancreatic precursor lesions, suggesting their suitability as a non-invasive tool for the early detection of malignant transformation in the pancreas. As intact cells, CTCs offer comprehensive genomic, transcriptomic, epigenetic and proteomic information that can be explored using rapidly developing techniques for analysing individual cells at the molecular level. Studying CTCs during serial sampling and at single-cell resolution will help to dissect tumour heterogeneity for individual patients and among different patients, providing new insights into cancer evolution during disease progression and in response to treatment. Using CTCs for non-invasive tracking of cancer features, including stemness, metastatic potential and expression of immune targets, provides important and readily accessible molecular insights. Finally, the emerging technology of ex vivo culturing of CTCs could create new opportunities to study the functionality of individual cancers at any stage and develop personalised and more effective treatment approaches for this lethal disease.
Collapse
Affiliation(s)
- Qi Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Azhar Awada
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; Molecular Biotechnology Center, University of Turin (UniTO), Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; South Chongqing Road 227, Shanghai, China.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; South Chongqing Road 227, Shanghai, China.
| |
Collapse
|
26
|
Zheng X, Du Y, Liu M, Wang C. ITGA3 acts as a purity-independent biomarker of both immunotherapy and chemotherapy resistance in pancreatic cancer: bioinformatics and experimental analysis. Funct Integr Genomics 2023; 23:196. [PMID: 37270717 PMCID: PMC10239741 DOI: 10.1007/s10142-023-01122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Contribution of integrin superfamily genes to treatment resistance remains uncertain. Genome patterns of thirty integrin superfamily genes were analyzed of using bulk and single-cell RNA sequencing, mutation, copy number, methylation, clinical information, immune cell infiltration, and drug sensitivity data. To select the integrins that are most strongly associated with treatment resistance in pancreatic cancer, a purity-independent RNA regulation network including integrins were constructed using machine learning. The integrin superfamily genes exhibit extensive dysregulated expression, genome alterations, epigenetic modifications, immune cell infiltration, and drug sensitivity, as evidenced by multi-omics data. However, their heterogeneity varies among different cancers. After constructing a three-gene (TMEM80, EIF4EBP1, and ITGA3) purity-independent Cox regression model using machine learning, ITGA3 was identified as a critical integrin subunit gene in pancreatic cancer. ITGA3 is involved in the molecular transformation from the classical to the basal subtype in pancreatic cancer. Elevated ITGA3 expression correlated with a malignant phenotype characterized by higher PD-L1 expression and reduced CD8+ T cell infiltration, resulting in unfavorable outcomes in patients receiving either chemotherapy or immunotherapy. Our findings suggest that ITGA3 is an important integrin in pancreatic cancer, contributing to chemotherapy resistance and immune checkpoint blockade therapy resistance.
Collapse
Affiliation(s)
- Xiaohao Zheng
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingyang Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of General Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
27
|
Matsubara E, Yano H, Pan C, Komohara Y, Fujiwara Y, Zhao S, Shinchi Y, Kurotaki D, Suzuki M. The Significance of SPP1 in Lung Cancers and Its Impact as a Marker for Protumor Tumor-Associated Macrophages. Cancers (Basel) 2023; 15:cancers15082250. [PMID: 37190178 DOI: 10.3390/cancers15082250] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Macrophages are a representative cell type in the tumor microenvironment. Macrophages that infiltrate the cancer microenvironment are referred to as tumor-associated macrophages (TAMs). TAMs exhibit protumor functions related to invasion, metastasis, and immunosuppression, and an increased density of TAMs is associated with a poor clinical course in many cancers. Phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunctional secreted phosphorylated glycoprotein. Although SPP1 is produced in a variety of organs, at the cellular level, it is expressed on only a few cell types, such as osteoblasts, fibroblasts, macrophages, dendritic cells, lymphoid cells, and mononuclear cells. SPP1 is also expressed by cancer cells, and previous studies have demonstrated correlations between levels of circulating SPP1 and/or increased SPP1 expression on tumor cells and poor prognosis in many types of cancer. We recently revealed that SPP1 expression on TAMs is correlated with poor prognosis and chemoresistance in lung adenocarcinoma. In this review, we summarize the significance of TAMs in lung cancers and discuss the importance of SPP1 as a new marker for the protumor subpopulation of monocyte-derived TAMs in lung adenocarcinoma. Several studies have shown that the SPP1/CD44 axis contribute to cancer chemoresistance in solid cancers, so the SPP1/CD44 axis may represent one of the most critical mechanisms for cell-to-cell communication between cancer cells and TAMs.
Collapse
Affiliation(s)
- Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shukang Zhao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yusuke Shinchi
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery and Breast Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
28
|
Chen Y, Shen X, Tang Y, Weng Y, Yang W, Liu M, Xu D, Shi J, Yang X, Yu F, Xu J, Zhang Z, Lu P, Sun Y, Xue J, Niu N. The diverse pancreatic tumor cell-intrinsic response to IFNγ is determined by epigenetic heterogeneity. Cancer Lett 2023; 562:216153. [PMID: 37023939 DOI: 10.1016/j.canlet.2023.216153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
IFNγ signaling is mainly mediated through the activation of the canonical JAK-STAT signaling pathway, transcription factors, and epigenetic modifications. The activation of IFNγ signaling pathway may provide a novel option for tumor immunotherapy, but the outcomes remain controversial. In fact, recent studies suggest that the resistance to IFNγ-dependent immunotherapies is commonly derived from the tumor cell-intrinsic heterogeneity, the molecular mechanism of which remains elusive. Therefore, elucidating the tumor cell-intrinsic heterogeneity in response to IFNγ would be beneficial to improve the efficacy of immunotherapy. Here, we first delineated the epigenetic redistribution and transcriptome alteration in response to IFNγ stimulation, and demonstrated that ectopic gain of H3K4me3 and H3K27Ac at the promoter region mainly contributed to the enhancement of IFNγ-mediated transcriptional activity of interferon-stimulated genes (ISGs). Furthermore, we found that the cellular heterogeneity of PD-L1 expression in response to IFNγ was mainly attributed to cell-intrinsic H3K27me3 levels. Enhancement of H3K27me3 by GSK-J4 limited PD-L1hi tumor growth by salvaging the intratumoral cytotoxicity of CD8+ T cells, which may provide therapeutic strategies to overcome immune escape and resistance to IFNγ-based immunotherapies in pancreatic cancer.
Collapse
|
29
|
Zheng H, Li Y, Zhao Y, Jiang A. Single-cell and bulk RNA sequencing identifies T cell marker genes score to predict the prognosis of pancreatic ductal adenocarcinoma. Sci Rep 2023; 13:3684. [PMID: 36878969 PMCID: PMC9988929 DOI: 10.1038/s41598-023-30972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies, with limited biomarkers identified to predict its prognosis and treatment response of immune checkpoint blockade (ICB). This study aimed to explore the predictive ability of T cell marker genes score (TMGS) to predict their overall survival (OS) and treatment response to ICB by integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Multi-omics data of PDAC were applied in this study. The uniform manifold approximation and projection (UMAP) was utilized for dimensionality reduction and cluster identification. The non-negative matrix factorization (NMF) algorithm was applied to molecular subtypes clustering. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was adopted for TMGS construction. The prognosis, biological characteristics, mutation profile, and immune function status between different groups were compared. Two molecular subtypes were identified via NMF: proliferative PDAC (C1) and immune PDAC (C2). Distinct prognoses and biological characteristics were observed between them. TMGS was developed based on 10 T cell marker genes (TMGs) through LASSO-Cox regression. TMGS is an independent prognostic factor of OS in PDAC. Enrichment analysis indicated that cell cycle and cell proliferation-related pathways are significantly enriched in the high-TMGS group. Besides, high-TMGS is related to more frequent KRAS, TP53, and CDKN2A germline mutations than the low-TMGS group. Furthermore, high-TMGS is significantly associated with attenuated antitumor immunity and reduced immune cell infiltration compared to the low-TMGS group. However, high TMGS is correlated to higher tumor mutation burden (TMB), a low expression level of inhibitory immune checkpoint molecules, and a low immune dysfunction score, thus having a higher ICB response rate. On the contrary, low TMGS is related to a favorable response rate to chemotherapeutic agents and targeted therapy. By combining scRNA-seq and bulk RNA-seq data, we identified a novel biomarker, TMGS, which has remarkable performance in predicting the prognosis and guiding the treatment pattern for patients with PDAC.
Collapse
Affiliation(s)
- Haoran Zheng
- Department of Medical Oncology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 711018, Shaanxi, People's Republic of China.
| | - Yimeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yujia Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
30
|
Xu PL, Cheng CS, Wang T, Dong S, Li P. Immune landscape and prognostic index for pancreatic cancer based on TCGA database and in vivo validation. BMC Cancer 2023; 23:139. [PMID: 36765322 PMCID: PMC9912589 DOI: 10.1186/s12885-023-10597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
The immunotherapy efficacy on pancreatic cancer remains unsatisfactory. Therefore, it is still necessary to further clarify the pancreatic immune cell infiltration and search for immune-related prognostic indicators. We analyzed the 135 pancreatic cancer patients' data retrieved from the TCGA database for the immune cell infiltration, tumor microenvironment score and the correlation of the immune cells, followed by identification of prognostic immune clusters and genes clusters. The R language was used for the immune score calculation, and immune cells proportion related survival differences identification. The function of immune cells was verified through datasets in the GEO database and in vivo experiments. The results showed that M0 Macrophages had negative relations to CD8 + T cells and immune scores. There were differences in median survival in ICI clusters, gene clusters, and immune score groups (p < 0.05). M0 macrophages accounted for more than 9.8%, indicating a poor prognosis, while T cells accounted for more than 9.2%, indicating a good prognosis. In vivo results showed that M0 macrophages promote pancreatic cancer growth. Elimination of M0 macrophages may be a hopeful strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Pan-ling Xu
- grid.412679.f0000 0004 1771 3402Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui China
| | - Chien-shan Cheng
- grid.452404.30000 0004 1808 0942Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Ting Wang
- grid.412679.f0000 0004 1771 3402Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China.
| |
Collapse
|
31
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
32
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
33
|
Mansouri S, Daniel L, Amhis N, Leveille M, Boudreau JE, Alkayyal AA, Collin Y, Tai LH. Perioperative oncolytic virotherapy to counteract surgery-induced immunosuppression and improve outcomes in pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1071751. [PMID: 36874130 PMCID: PMC9978493 DOI: 10.3389/fonc.2023.1071751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a high fatality cancer with one of the worst prognoses in solid tumors. Most patients present with late stage, metastatic disease and are not eligible for potentially curative surgery. Despite complete resection, the majority of surgical patients will recur within the first two years following surgery. Postoperative immunosuppression has been described in different digestive cancers. While the underlying mechanism is not fully understood, there is compelling evidence to link surgery with disease progression and cancer metastasis in the postoperative period. However, the idea of surgery-induced immunosuppression as a facilitator of recurrence and metastatic spread has not been explored in the context of pancreatic cancer. By surveying the existing literature on surgical stress in mostly digestive cancers, we propose a novel practice-changing paradigm: alleviate surgery-induced immunosuppression and improve oncological outcome in PDAC surgical patients by administering oncolytic virotherapy in the perioperative period.
Collapse
Affiliation(s)
- Sarah Mansouri
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Leveille
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Yves Collin
- Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Mullen NJ, Thakur R, Shukla SK, Chaika NV, Kollala SS, Wang D, He C, Fujii Y, Sharma S, Mulder SE, Sykes DB, Singh PK. ENT1 blockade by CNX-774 overcomes resistance to DHODH inhibition in pancreatic cancer. Cancer Lett 2023; 552:215981. [PMID: 36341997 PMCID: PMC10305837 DOI: 10.1016/j.canlet.2022.215981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Surendra K Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chunbo He
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Shikhar Sharma
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Scott E Mulder
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, 02114, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA; OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
35
|
Zhu Z, Li W, Gong M, Wang L, Yue Y, Qian W, Zhou C, Duan W, Han L, Li L, Wu Z, Ma Q, Lin M, Wang S, Wang Z. Piezo1 act as a potential oncogene in pancreatic cancer progression. Life Sci 2022; 310:121035. [DOI: 10.1016/j.lfs.2022.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
36
|
Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022; 9:948898. [PMID: 36106025 PMCID: PMC9465485 DOI: 10.3389/fmolb.2022.948898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) has a complex and unique tumor microenvironment (TME). Due to the physical barrier formed by the desmoplastic stroma, the delivery of drugs to the tumor tissue is limited. The TME also contributes to resistance to various immunotherapies such as cancer vaccines, chimeric antigen receptor T cell therapy and immune checkpoint inhibitors. Overcoming and/or modulating the TME is therefore one of the greatest challenges in developing new therapeutic strategies for PC. Nanoparticles have been successfully used as drug carriers and delivery systems in cancer therapy. Recent experimental and engineering developments in nanotechnology have resulted in increased drug delivery and improved immunotherapy for PC. In this review we discuss and analyze the current nanoparticle-based immunotherapy approaches that are at the verge of clinical application. Particularly, we focus on nanoparticle-based delivery systems that improve the effectiveness of PC immunotherapy. We also highlight current clinical research that will help to develop new therapeutic strategies for PC and especially targeted immunotherapies based on immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| | - Bernhard F. Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Achim Troja
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| |
Collapse
|
37
|
ITGA2 overexpression inhibits DNA repair and confers sensitivity to radiotherapies in pancreatic cancer. Cancer Lett 2022; 547:215855. [PMID: 35998796 DOI: 10.1016/j.canlet.2022.215855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate of less than 10%, despite the recent advances in chemoradiotherapy. The sensitivity of the PDAC patients to chemoradiotherapy varies widely, especially to radiotherapy, suggesting the need for more elucidation of the underlying mechanisms. In this study, a novel function of the nuclear ITGA2, the alpha subunit of transmembrane collagen receptor integrin alpha-2/beta-1, regulating the DNA damage response (DDR), was identified. First, analyzing The Cancer Genome Atlas (TCGA) PDAC data set indicated that the expression status of ITGA2 was negatively correlated with the genome stability parameters. The study further demonstrated that ITGA2 specially inhibited the activity of the non-homologous end joining (NHEJ) pathway and conferred the sensitivity to radiotherapy in PDAC by restraining the recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to Ku70/80 heterodimer during DDR. Considering the overexpression of ITGA2 and its associated with the poor prognosis of PDAC patients, this study suggested that the ITGA2 expression status could be used as an indicator for radiotherapy and DNA damage reagents, and the radiotherapy in combination with the overexpression of ITGA2 might be a viable treatment strategy for the PDAC patients.
Collapse
|
38
|
Principe DR, Kamath SD, Korc M, Munshi HG. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther 2022; 236:108111. [PMID: 35016920 PMCID: PMC9271143 DOI: 10.1016/j.pharmthera.2022.108111] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic agents modulate various immune cell processes, most notably the cross-presentation of tumor antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs and cytotoxic chemotherapy are beginning to show promise in many cancers that have long been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, mechanisms through which select chemotherapies modify tumor immunogenicity, as well as important considerations when designing such approaches to maximize efficacy and improve therapeutic response rates.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
39
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
40
|
Dong C, Reiter JL, Dong E, Wang Y, Lee KP, Lu X, Liu Y. Intron-Retention Neoantigen Load Predicts Favorable Prognosis in Pancreatic Cancer. JCO Clin Cancer Inform 2022; 6:e2100124. [PMID: 35148169 PMCID: PMC8846286 DOI: 10.1200/cci.21.00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE High tumor mutation burden (TMB) in many cancer types is associated with the production of tumor-specific neoantigens, a favorable outcome and response to immune checkpoint blockade (ICB) therapy. Besides mutation-derived neoantigens, aberrant intron retention also produces tumor neopeptides that could trigger an immune response. The relationship between intron-retention-derived tumor neoantigens (IR-neoAg) and clinical outcomes in pancreatic cancer remains uncertain. Here, we quantify IR-neoAg in pancreatic cancer and evaluate whether IR-neoAg load might serve as a biomarker for selecting patients who may benefit from ICB therapy. METHODS We developed a computational approach to estimate patient-specific IR-neoAg load from transcriptome data available in The Cancer Genome Atlas pancreatic cancer cohort. Associations between IR-neoAg load and patient overall survival were evaluated using Kaplan-Meier estimates and Cox regression. Differential expression of immune checkpoint and HLA-I genes was evaluated in tumors with high IR-neoAg load. RESULTS High IR-neoAg load predicted better overall survival in pancreatic cancer, although no association was found for TMB. IR-neoAg load remained a significant prognostic factor after adjusting for patient age, sex, tumor stage and grade, and TMB. Moreover, pancreatic tumors with both high IR-neoAg load and high HLA-I gene expression had similar gene expression profiles as other tumor types that showed response to anti-programmed cell death protein 1 therapy. CONCLUSION IR-neoAg load is associated with favorable survival in pancreatic cancer. These findings provide strong evidence for considering IR-neoAgs when selecting patients who might benefit from ICB therapy.
Collapse
Affiliation(s)
- Chuanpeng Dong
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN
| | - Jill L. Reiter
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Edward Dong
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Kelvin P. Lee
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Xiongbin Lu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
41
|
Principe DR, Underwood PW, Kumar S, Timbers KE, Koch RM, Trevino JG, Munshi HG, Rana A. Loss of SMAD4 Is Associated With Poor Tumor Immunogenicity and Reduced PD-L1 Expression in Pancreatic Cancer. Front Oncol 2022; 12:806963. [PMID: 35155243 PMCID: PMC8832494 DOI: 10.3389/fonc.2022.806963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Transforming Growth Factor β (TGFβ) is a key mediator of immune evasion in pancreatic ductal adenocarcinoma (PDAC), and the addition of TGFβ inhibitors in select immunotherapy regimens shows early promise. Though the TGFβ target SMAD4 is deleted in approximately 55% of PDAC tumors, the effects of SMAD4 loss on tumor immunity have yet to be fully explored. Using a combination of genomic databases and PDAC specimens, we found that tumors with loss of SMAD4 have a comparatively poor T-cell infiltrate. SMAD4 loss was also associated with a reduction in several chemokines with known roles in T-cell recruitment, which was recapitulated using knockdown of SMAD4 in PDAC cell lines. Accordingly, JURKAT T-cells were poorly attracted to conditioned media from PDAC cells with knockdown of SMAD4 and lost their ability to produce IFNγ. However, while exogenous TGFβ modestly reduced PD-L1 expression in SMAD4-intact cell lines, SMAD4 and PD-L1 positively correlated in human PDAC samples. PD-L1 status was closely related to tumor-infiltrating lymphocytes, particularly IFNγ-producing T-cells, which were more abundant in SMAD4-expressing tumors. Low concentrations of IFNγ upregulated PD-L1 in tumor cells in vitro, even when administered alongside high concentrations of TGFβ. Hence, while SMAD4 may have a modest inhibitory effect on PD-L1 in tumor cells, SMAD4 indirectly promotes PD-L1 expression in the pancreatic tumor microenvironment by enhancing T-cell infiltration and IFNγ biosynthesis. These data suggest that pancreatic cancers with loss of SMAD4 represent a poorly immunogenic disease subtype, and SMAD4 status warrants further exploration as a predictive biomarker for cancer immunotherapy.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Ajay Rana, ; Daniel R. Principe,
| | - Patrick W. Underwood
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sandeep Kumar
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
- *Correspondence: Ajay Rana, ; Daniel R. Principe,
| |
Collapse
|
42
|
XP-524 is a dual-BET/EP300 inhibitor that represses oncogenic KRAS and potentiates immune checkpoint inhibition in pancreatic cancer. Proc Natl Acad Sci U S A 2022; 119:2116764119. [PMID: 35064087 PMCID: PMC8795568 DOI: 10.1073/pnas.2116764119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
There are currently no effective treatments for pancreatic ductal adenocarcinoma (PDAC), which displays widespread resistance to chemotherapy, radiation therapy, and immunotherapy. Here, we demonstrate that the multispecificity BET/EP300 inhibitor XP-524 has pronounced single-agent efficacy in vitro, in vivo, and in ex vivo human PDAC slice cultures, functioning in part by attenuating oncogenic KRAS signaling. In vivo XP-524 led to extensive reprogramming of the pancreatic tumor microenvironment, sensitizing murine carcinoma to immune checkpoint inhibition and further extending survival. Given the urgent need for therapeutic approaches in PDAC, the combination of XP-524 and immune checkpoint inhibition warrants additional exploration. Pancreatic ductal adenocarcinoma (PDAC) is associated with extensive dysregulation of the epigenome and epigenetic regulators, such as bromodomain and extraterminal motif (BET) proteins, have been suggested as potential targets for therapy. However, single-agent BET inhibition has shown poor efficacy in clinical trials, and no epigenetic approaches are currently used in PDAC. To circumvent the limitations of the current generation of BET inhibitors, we developed the compound XP-524 as an inhibitor of the BET protein BRD4 and the histone acetyltransferase EP300/CBP, both of which are ubiquitously expressed in PDAC tissues and cooperate to enhance tumorigenesis. XP-524 showed increased potency and superior tumoricidal activity than the benchmark BET inhibitor JQ-1 in vitro, with comparable efficacy to higher-dose JQ-1 combined with the EP300/CBP inhibitor SGC-CBP30. We determined that this is in part due to the epigenetic silencing of KRAS in vitro, with similar results observed using ex vivo slice cultures of human PDAC tumors. Accordingly, XP-524 prevented KRAS-induced, neoplastic transformation in vivo and extended survival in two transgenic mouse models of aggressive PDAC. In addition to the inhibition of KRAS/MAPK signaling, XP-524 also enhanced the presentation of self-peptide and tumor recruitment of cytotoxic T lymphocytes, though these lymphocytes remained refractory from full activation. We, therefore, combined XP-524 with an anti–PD-1 antibody in vivo, which reactivated the cytotoxic immune program and extended survival well beyond XP-524 in monotherapy. Pending a comprehensive safety evaluation, these results suggest that XP-524 may benefit PDAC patients and warrant further exploration, particularly in combination with immune checkpoint inhibition.
Collapse
|
43
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
44
|
Digiacomo G, Volta F, Garajova I, Balsano R, Cavazzoni A. Biological Hallmarks and New Therapeutic Approaches for the Treatment of PDAC. Life (Basel) 2021; 11:life11080843. [PMID: 34440587 PMCID: PMC8400856 DOI: 10.3390/life11080843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest solid tumors and is estimated to become a leading cause of cancer-related death in coming years. Despite advances in surgical approaches and the emergence of new chemotherapy options, its poor prognosis has not improved in the last decades. The current treatment for PDAC is the combination of cytotoxic chemotherapy agents. However, PDAC shows resistance to many antineoplastic therapies with rapid progression. Although PDAC represents a heterogeneous disease, there are common alterations including oncogenic mutations of KRAS, and the frequent inactivation of different cell cycle regulators including the CDKN2A tumor suppressor gene. An emerging field of investigation focuses on inhibiting the function of proteins that suppress the immune checkpoint PD-1/PD-L1, with activation of the endogenous immune response. To date, all conventional immunotherapies have been less successful in patients with PDAC compared to other tumors. The need for new targets, associated with an extended molecular analysis of tumor samples could give new pharmacological options for the treatment of PDAC. It is, therefore, important to push for a broader molecular approach in PDAC research. Here, we provide a selected summary of emerging strategy options for targeting PDAC using CDK4/6 inhibitors, RAS inhibitors, and new drug combinations with immune checkpoint agents.
Collapse
Affiliation(s)
- Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.V.); (A.C.)
- Correspondence: ; Tel.: +39-0521-903965
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.V.); (A.C.)
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy; (I.G.); (R.B.)
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy; (I.G.); (R.B.)
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.V.); (A.C.)
| |
Collapse
|
45
|
Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front Oncol 2021; 11:688377. [PMID: 34336673 PMCID: PMC8319847 DOI: 10.3389/fonc.2021.688377] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival time of 10-12 months. Clinically, these poor outcomes are attributed to several factors, including late stage at the time of diagnosis impeding resectability, as well as multi-drug resistance. Despite the high prevalence of drug-resistant phenotypes, nearly all patients are offered chemotherapy leading to modest improvements in postoperative survival. However, chemotherapy is all too often associated with toxicity, and many patients elect for palliative care. In cases of inoperable disease, cytotoxic therapies are less efficacious but still carry the same risk of serious adverse effects, and clinical outcomes remain particularly poor. Here we discuss the current state of pancreatic cancer therapy, both surgical and medical, and emerging factors limiting the efficacy of both. Combined, this review highlights an unmet clinical need to improve our understanding of the mechanisms underlying the poor therapeutic responses seen in patients with PDAC, in hopes of increasing drug efficacy, extending patient survival, and improving quality of life.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
46
|
Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D, Albers T, Waller JL, Shi H, Liu K. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer 2021; 9:e002624. [PMID: 34326167 PMCID: PMC8323468 DOI: 10.1136/jitc-2021-002624] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite PD-L1 (Programmed death receptor ligand-1) expression on tumor cells and cytotoxic T lymphocytes tumor infiltration in the tumor microenvironment, human pancreatic cancer stands out as one of the human cancers that does not respond to immune checkpoint inhibitor (ICI) immunotherapy. Epigenome dysregulation has emerged as a major mechanism in T cell exhaustion and non-response to ICI immunotherapy, we, therefore, aimed at testing the hypothesis that an epigenetic mechanism compensates PD-L1 function to render pancreatic cancer non-response to ICI immunotherapy. METHODS Two orthotopic pancreatic tumor mouse models were used for chromatin immunoprecipitation-Seq and RNA-Seq to identify genome-wide dysregulation of H3K4me3 and gene expression. Human pancreatic tumor and serum were analyzed for osteopontin (OPN) protein level and for correlation with patient prognosis. OPN and PD-L1 cellular location were determined in the tumors using flow cytometry. The function of WDR5-H3K4me3 axis in OPN expression were determined by Western blotting. The function of H3K4me3-OPN axis in pancreatic cancer immune escape and response to ICI immunotherapy was determined in an orthotopic pancreatic tumor mouse model. RESULTS Mouse pancreatic tumors have a genome-wide increase in H3K4me3 deposition as compared with normal pancreas. OPN and its receptor CD44 were identified being upregulated in pancreatic tumors by their promoter H3K4me3 deposition. OPN protein is increased in both tumor cells and tumor-infiltrating immune cells in human pancreatic carcinoma and is inversely correlated with pancreatic cancer patient survival. OPN is primarily expressed in tumor cells and monocytic myeloid-derived suppressor cells (M-MDSCs), whereas PD-L1 is expressed in tumor cells, M-MDSCs, polymorphonuclear MDSCs and tumor-associated macrophages. WDR5 is essential for H3K4me3-specific histone methyltransferase activity that regulates OPN expression in tumor cells and MDSCs. Inhibition of WDR5 significantly decreased OPN protein level. Inhibition of WDR5 or knocking out of OPN suppressed orthotopic mouse pancreatic tumor growth. Inhibition of WDR5 also significantly increased efficacy of anti-PD-1 immunotherapy in suppression of mouse pancreatic tumor growth in vivo. CONCLUSIONS OPN compensates PD-L1 function to promote pancreatic cancer immune escape. Pharmacological inhibition of the WDR5-H3K4me3 epigenetic axis is effective in suppressing pancreatic tumor immune escape and in improving efficacy of anti-PD-1 immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, Nanchang University, Nanchang, China
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Dakota Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Thomas Albers
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
| | - Jennifer L Waller
- Department of Population Health Science, Medical College of Georgia, Augusta, Georgia, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia, USA
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
47
|
Principe DR, Schulte BC, Kamath SD, Munshi HG. Glandular metastases from renal cell carcinoma show poor clinical responses to immune checkpoint inhibition but durable responses to angiogenesis inhibitors. BMJ Case Rep 2021; 14:14/6/e243259. [PMID: 34158333 DOI: 10.1136/bcr-2021-243259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
While half of the metastatic clear cell renal cell carcinomas (ccRCCs) involve the lungs, metastatic lesions have been described in various other organs, including glandular tissues such as the pancreas. Recent evidence suggests that ccRCC lesions affecting the pancreas are poorly responsive to immune checkpoint inhibition (ICI) but show superior responses to tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor (VEGF) signalling pathway. However, this has yet to be explored in ccRCC spreading to other glandular tissues. Here we present two cases of ccRCC with glandular metastases, the first to the pancreas and the second to the parotid gland. In both patients, ICI-based immunotherapy offered minimal clinical benefit, but both had durable responses to angiogenesis inhibitors. Given the anatomic similarity between the pancreas and parotid glands, ccRCC with involvement of the parotid gland may also benefit from VEGF-targeting TKIs as opposed to ICIs.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Brian C Schulte
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Suneel D Kamath
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hidayatullah G Munshi
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|