1
|
Nakamura H, Okamura T, Tajima M, Kawano R, Yamaji M, Ohsaki S, Watano S. Enhancement of cell membrane permeability by using charged nanoparticles and a weak external electric field. Phys Chem Chem Phys 2023; 25:32356-32363. [PMID: 37975520 DOI: 10.1039/d3cp03281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Because the cell membrane is the main barrier of intracellular delivery, it is important to facilitate and control the translocation of extracellular compounds across it. Our earlier molecular dynamics simulations suggested that charged nanoparticles under a weak external electric field can enhance the permeability of the cell membrane without disrupting it. However, this membrane permeabilization approach has not been tested experimentally. This study investigated the membrane crossing of a model compound (dextran with a Mw of 3000-5000) using charged nanoparticles and a weak external electric field. A model bilayer lipid membrane was prepared by using a droplet contact method. The permeability of the membrane was evaluated using the electrophysiological technique. Even when the applied electric field was below the critical strength for membrane breakdown, dextran was able to cross the membrane without causing membrane breakdown. These results indicate that adding nanomaterials under a weak electric field may enhance the translocation of delivery compounds across the cell membrane with less damage, suggesting a new strategy for intracellular delivery systems.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Takumi Okamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masaya Tajima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
2
|
Shatursky OY, Demchenko AP, Panas I, Krisanova N, Pozdnyakova N, Borisova T. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183817. [PMID: 34767780 DOI: 10.1016/j.bbamem.2021.183817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Here, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Alexander P Demchenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Ihor Panas
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| |
Collapse
|
3
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
4
|
Islam M, Lantada AD, Mager D, Korvink JG. Carbon-Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. Adv Healthc Mater 2022; 11:e2101834. [PMID: 34601815 PMCID: PMC11469261 DOI: 10.1002/adhm.202101834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Carbon materials constitute a growing family of high-performance materials immersed in ongoing scientific technological revolutions. Their biochemical properties are interesting for a wide set of healthcare applications and their biomechanical performance, which can be modulated to mimic most human tissues, make them remarkable candidates for tissue repair and regeneration, especially for articular problems and osteochondral defects involving diverse tissues with very different morphologies and properties. However, more systematic approaches to the engineering design of carbon-based cell niches and scaffolds are needed and relevant challenges should still be overcome through extensive and collaborative research. In consequence, this study presents a comprehensive description of carbon materials and an explanation of their benefits for regenerative medicine, focusing on their rising impact in the area of osteochondral and articular repair and regeneration. Once the state-of-the-art is illustrated, innovative design and fabrication strategies for artificially recreating the cellular microenvironment within complex articular structures are discussed. Together with these modern design and fabrication approaches, current challenges, and research trends for reaching patients and creating social and economic impacts are examined. In a closing perspective, the engineering of living carbon materials is also presented for the first time and the related fundamental breakthroughs ahead are clarified.
Collapse
Affiliation(s)
- Monsur Islam
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Andrés Díaz Lantada
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Dario Mager
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jan G. Korvink
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
5
|
Feng Y, Zhang Y, Liu G, Liu X, Gao S. Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption. Colloids Surf B Biointerfaces 2021; 202:111685. [PMID: 33721805 DOI: 10.1016/j.colsurfb.2021.111685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022]
Abstract
A mechanistic understanding of the interaction of graphene oxide (GO) with cell membranes is critical for predicting the biological effects of GO following accidental exposure and biomedical applications. We herein used a quartz crystal microbalance with dissipation monitoring (QCM-D) to probe the interaction of GO with model cell membranes modified with anionic lipids or cholesterol under biologically relevant conditions. The attachment efficiency of GO on supported lipid bilayers (SLBs) decreased with increasing anionic lipid content and was unchanged with varying cholesterol content. In addition, the incorporation of anionic lipids to the SLBs rendered the attachment of GO partially reversible upon a decrease in solution ionic strength. These results demonstrate the critical role of lipid bilayer surface charge in controlling GO attachment and release. We also employed the fluorescent dye leakage technique to quantify the role of anionic lipids and cholesterol in vesicle disruption caused by GO. Notably, we observed a linear correlation between the amount of dye leakage from the vesicles and the attachment efficiencies of GO on the SLBs, confirming that membrane disruption is preceded by GO attachment. This study highlights the non-negligible role of lipid bilayer composition in controlling the physicochemical interactions between cell membranes and GO.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yijian Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Liu L, Zhang M, Zhang Q, Jiang W. Graphene nanosheets damage the lysosomal and mitochondrial membranes and induce the apoptosis of RBL-2H3 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139229. [PMID: 32450398 DOI: 10.1016/j.scitotenv.2020.139229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
The induced membrane damage is a key mechanism for the cytotoxicity of graphene nanosheets (GNSs). In this research, the physical interaction of GNSs on model membranes was investigated using artificial membranes and plasma membrane vesicles. The effects of the GNSs on plasma membrane, lysosomal and mitochondrial membranes were investigated using rat basophilic leukemia (RBL2H3) cells via lactate dehydrogenase (LDH) assay, acridine orange staining and JC-1 probe, respectively. The physical interaction with model membranes was dominated by electrostatic forces, and the adhered GNSs disrupted the membrane. The degree of physical membrane disruption was quantified by the quartz crystal microbalance with dissipation (QCM-D), confirming the serious membrane disruption. The internalized GNSs were mainly distributed in the lysosomes. They caused plasma membrane leakage, increased the lysosomal membrane permeability (LMP), and depolarized the mitochondrial membrane potential (MMP). The increased cellular levels of reactive oxygen species (ROS) were also detected after GNS exposure. The combination of physical interaction and the excess ROS production damaged the plasma and organelle membranes in living RBL-2H3 cells. The lysosomal and mitochondrial dysfunction, and the oxidative stress further induced cell apoptosis. Specially, the exposure to 25 mg/L GNSs caused severest cell mortality, plasma membrane damage, ROS generation, MMP depolarization and apoptosis. The research findings provide more comprehensive information on the graphene-induced plasma and organelle membrane damage, which is important to understand and predict the cytotoxicity of carbon-based nanomaterials.
Collapse
Affiliation(s)
- Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mengmeng Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qiu Zhang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, China.
| |
Collapse
|
7
|
Uehara TM, Cancino-Bernardi J, Miranda PB, Zucolotto V. Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation. SOFT MATTER 2020; 16:5711-5717. [PMID: 32525195 DOI: 10.1039/d0sm00256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of the interactions between biomolecules and nanomaterials is of great importance in many areas of nanomedicine and bioapplications. Numerous studies in this area have been performed. However, toxicological aspects involving the interaction between phospholipids and carbon nanotubes (CNTs) remain undefined, especially for those cases in which a protein corona is not formed around the nanomaterial (corona-free nanomaterials). This study focuses on the interaction of Langmuir films of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC) with corona-free, single-walled CNTs. Surface pressure-area isotherms and sum-frequency generation (SFG) vibrational spectroscopy, a non-linear optical technique used to study surfaces and interfaces, were used to investigate the lipid tail orientation and conformation, aiming to understand the interactions between phospholipids and single walled carbon nanotubes functionalized by carboxylic acid (SWCNTs-COOH) at the air-water interface under low ionic strength conditions. Data from isotherms and SFG spectra revealed that the SWCNT adsorption at the air-water interface is induced by the presence of both lipids, although at a lesser extent for DPPG due to its anionic head group, which could result in repulsion of SWCNTs-COOH that also bear a negative charge. Furthermore, lipid monolayers remained conformationally ordered, indicating insertion of SWCNTs into the lipid monolayer. Our results corroborate previous works and simulations in the literature, but made it possible to perform an in-depth investigation of the interaction of these nanomaterials with components of phospholipid membranes.
Collapse
Affiliation(s)
- Thiers Massami Uehara
- Nanomedicine and Nanotoxicology Group, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
| | - Paulo Barbeitas Miranda
- Polymer Group "Prof. Bernhard Gross", Physics Institute of São Carlos, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
| |
Collapse
|
8
|
Kang KH, Kim J, Jeon H, Byun I. Energy efficient sludge solubilization by microwave irradiation under carbon nanotube (CNT)-coated condition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110089. [PMID: 31929033 DOI: 10.1016/j.jenvman.2020.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/27/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Microwaves (MW) have great potential for sludge solubilization, and carbon materials can act as good microwave absorbers and heat transfer media because of their high dielectric loss tangent and thermal conductivity. In this study, carbon nanotube-coated MW vessels were developed by preparing a silane-CNT mixture and spray coating. In addition, sludge solubilization by microwave irradiation was performed to evaluate the effects of the CNT-coating at different initial total suspended solid (TSS) concentrations, target temperatures, and MW irradiation times in the uncoated and CNT-coated MW vessels. The sludge solubilization efficiency increased with increasing MW irradiation time and temperature and followed a first-order reaction in both vessels. However, the energy requirement to maintain the temperature was reduced in the CNT-coated MW vessel compared to the uncoated vessel. In addition, the Arrhenius equation revealed the catalytic site in the CNT-coated MW vessel to have a temperature of around 130 °C at an average sludge temperature of 100 °C. The maximum chemical oxygen demand (COD) solubilization and soluble COD (sCOD) increase per MW energy used were 1.64 and 1.67 times higher in the CNT-coated MW vessel than in the uncoated vessel, respectively. The increase in soluble total nitrogen and phosphorus in the CNT-coated MW vessel was attributed to cell wall destruction and intracellular protoplast dissolution, because of the acceleration of the MW thermal effect and high conductivity of CNTs, as well as the MW-induced cell wall and membrane disruption by hot spots on the CNT surface. This suggests that CNTs can be applied to increase the energy efficiency in MW-based pretreatment methods.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Institute for Environment and Energy, Pusan National University, Busan, 46241, South Korea.
| | - Junghyeon Kim
- Department of Environmental Engineering, Pusan National University, Busan, 46241, South Korea.
| | - Hyeonjin Jeon
- Department of Environmental Engineering, Pusan National University, Busan, 46241, South Korea.
| | - Imgyu Byun
- Institute for Environment and Energy, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
9
|
Kidd J, Bi Y, Hanigan D, Herckes P, Westerhoff P. Yttrium Residues in MWCNT Enable Assessment of MWCNT Removal during Wastewater Treatment. NANOMATERIALS 2019; 9:nano9050670. [PMID: 31052363 PMCID: PMC6566316 DOI: 10.3390/nano9050670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Many analytical techniques have limited sensitivity to quantify multi-walled carbon nanotubes (MWCNTs) at environmentally relevant exposure concentrations in wastewaters. We found that trace metals (e.g., Y, Co, Fe) used in MWCNT synthesis correlated with MWCNT concentrations. Because of low background yttrium (Y) concentrations in wastewater, Y was used to track MWCNT removal by wastewater biomass. Transmission electron microscopy (TEM) imaging and dissolution studies indicated that the residual trace metals were strongly embedded within the MWCNTs. For our specific MWCNT, Y concentration in MWCNTs was 76 µg g−1, and single particle mode inductively coupled plasma mass spectrometry (spICP-MS) was shown viable to detect Y-associated MWCNTs. The detection limit of the specific MWCNTs was 0.82 µg L−1 using Y as a surrogate, compared with >100 µg L−1 for other techniques applied for MWCNT quantification in wastewater biomass. MWCNT removal at wastewater treatment plants (WWTPs) was assessed by dosing MWCNTs (100 µg L−1) in water containing a range of biomass concentrations obtained from wastewater return activated sludge (RAS) collected from a local WWTP. Using high volume to surface area reactors (to limit artifacts of MWCNT loss due to adsorption to vessel walls) and adding 5 g L−1 of total suspended solids (TSS) of RAS (3-h mixing) reduced the MWCNT concentrations from 100 µg L−1 to 2 µg L−1. The results provide an environmentally relevant insight into the fate of MWCNTs across their end of life cycle and aid in regulatory permits that require estimates of engineered nanomaterial removal at WWTPs upon accidental release into sewers from manufacturing facilities.
Collapse
Affiliation(s)
- Justin Kidd
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA.
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA.
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557-0258, USA.
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA.
| |
Collapse
|
10
|
Nakamura H, Sezawa K, Hata M, Ohsaki S, Watano S. Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential. Phys Chem Chem Phys 2019; 21:18830-18838. [DOI: 10.1039/c9cp02935d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Kyohei Sezawa
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Masataka Hata
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Satoru Watano
- Department of Chemical Engineering
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| |
Collapse
|
11
|
Jiang Z, Zhang D, Zhou L, Deng D, Duan M, Liu Y. Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Anal Chim Acta 2018; 1035:51-59. [DOI: 10.1016/j.aca.2018.06.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
|
12
|
Munk M, Brandão HM, Yéprémian C, Couté A, Ladeira LO, Raposo NRB, Brayner R. Effect of Multi-walled Carbon Nanotubes on Metabolism and Morphology of Filamentous Green Microalgae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:649-658. [PMID: 28687867 DOI: 10.1007/s00244-017-0429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum. Appropriate concentrations of MWCNT (1, 50, and 100 μg mL-1) were added to a microalgal culture in the exponential growth phase and incubated for 24, 48, 72, and 96 h. Exposure to MWCNT led to reductions in algal growth after 48 h and decreased on cell viability for all experimental endpoints except for 1 µg mL-1 at 24 h and 100 µg mL-1 after 72 h. At 100 µg mL-1, MWCNTs induced reactive oxygen species (ROS) production and had an effect on intracellular adenosine triphosphate (ATP) content depending on concentration and time. No photosynthetic activity variation was observed. Observations by scanning transmission electron microscopy showed cell damage. In conclusion, we have demonstrated that exposure to MWCNTs affects cell metabolism and microalgal cell morphology. To our best knowledge, this is the first case in which MWCNTs exhibit adverse effects on filamentous green microalgae K. flaccidum. These results contribute to elucidate the mechanism of MWCNT nanotoxicity in the bioindicator organism of terrestrial and freshwater habitats.
Collapse
Affiliation(s)
- Michele Munk
- Department of Biology, Federal University of Juiz de Fora, José Lourenço Kelmer, Campus Universitário, Juiz De Fora, 36036-900, Brazil.
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz De Fora, 36038-330, Brazil
| | - Claude Yéprémian
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Alain Couté
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Luiz O Ladeira
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Nádia R B Raposo
- Nucleus of Analytical Identification and Quantification (NIQUA), Federal University of Juiz de Fora, Juiz De Fora, 36036-900, Brazil
| | - Roberta Brayner
- University of Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, Paris, France
| |
Collapse
|
13
|
Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv Colloid Interface Sci 2017; 248:105-128. [PMID: 28807368 DOI: 10.1016/j.cis.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
14
|
Diez-Pascual AM. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate). Polymers (Basel) 2017; 9:E260. [PMID: 30970938 PMCID: PMC6432123 DOI: 10.3390/polym9070260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), graphene oxide nanoribbons (GONR), graphite oxide nanoplatelets (GONP), polyethylene glycol-functionalized graphene oxide (PEG-GO), polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs) and hydroxyapatite (HA) nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ana M Diez-Pascual
- Analytical Chemistry, Physical Chemistry and Chemical Engineering Department, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, 28871 Madrid, Spain.
| |
Collapse
|
15
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
16
|
Mosleh A, Heintz A, Lim KT, Kim JW, Beitle R. Permeability enhancement of Escherichia coli by single-walled carbon nanotube treatment. Biotechnol Prog 2017; 33:654-657. [PMID: 28263434 DOI: 10.1002/btpr.2443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/18/2017] [Indexed: 11/10/2022]
Abstract
This research investigated the use of single-walled carbon nanotubes (SWNTs) as an additive to increase the permeability of a bacterial cell wall. Recombinant Escherichia coli BL21 (DE3) that expressed β-lactamase were exposed to SWNTs under various levels of concentration and agitation. Activity of β-lactamase in the culture fluid and transmission electron microscopy (TEM) were used to determine the amount of released protein, and visually examine the permeability enhancement of the cells. It was found that β-lactamase release in the culture fluid occurred in a dose-dependent manner with treatment by SWNTs and was also dependent on agitation rate. Based on TEM, this treatment successfully caused an increase in permeability without significant damage to the cell wall. Consequently, SWNTs can be used as an enhancement agent to cause the release of intracellular proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:654-657, 2017.
Collapse
Affiliation(s)
- Abdollah Mosleh
- Ralph E. Martin Dept. of Chemical Engineering, University of Arkansas, Fayetteville, AR.,MicroElectronics-Photonics Program, University of Arkansas, Fayetteville, AR
| | - Anna Heintz
- Ralph E. Martin Dept. of Chemical Engineering, University of Arkansas, Fayetteville, AR
| | - Ki-Taek Lim
- Biosystems Engineering, Kangwon National University, Chuncheon, Korea
| | - Jin-Woo Kim
- Biological and Agricultural Engineering and Inst. for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR
| | - Robert Beitle
- Ralph E. Martin Dept. of Chemical Engineering, University of Arkansas, Fayetteville, AR
| |
Collapse
|
17
|
McGeachy AC, Olenick LL, Troiano JM, Lankone RS, Melby ES, Kuech TR, Ehimiaghe E, Fairbrother DH, Pedersen JA, Geiger FM. Resonantly Enhanced Nonlinear Optical Probes of Oxidized Multiwalled Carbon Nanotubes at Supported Lipid Bilayers. J Phys Chem B 2017; 121:1321-1329. [DOI: 10.1021/acs.jpcb.6b10141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Alicia C. McGeachy
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Laura L. Olenick
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M. Troiano
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ronald S. Lankone
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eric S. Melby
- Environmental
Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Thomas R. Kuech
- Environmental
Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Eseohi Ehimiaghe
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - D. Howard Fairbrother
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joel A. Pedersen
- Environmental
Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Jiang W, Wang Q, Qu X, Wang L, Wei X, Zhu D, Yang K. Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:771-780. [PMID: 27664764 DOI: 10.1016/j.scitotenv.2016.09.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
The direct contact between multi-walled carbon nanotubes (MWCNTs) and cell membranes causes membrane disruption, potentially leading to cytotoxicity. However, the role of electrostatic forces and MWCNT properties is still open to debate. In this study, the influences of charge and MWCNT surface defects on membrane disruption were investigated by microscopy and a quartz crystal microbalance with dissipation monitoring (QCM-D). Positively/negatively charged giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) were made as model cell membranes. Negatively charged MWCNTs disrupted the GUVs containing positively charged lipids, which confirmed the electrostatically mediated interaction. However, the mass loss was detected from the negatively charged SLBs after MWCNT exposure, which suggests the extraction of phospholipids. The defect degree of MWCNTs correlated with their adhesion amount on the membranes. Both the oxygenated functional groups and unoxidized dangling carbon bonds were active sites for MWCNT-membrane interactions. The MWCNTs were observed to be engulfed inside the GUVs. The results clearly demonstrate that phospholipid extraction by MWCNTs could occur in electrostatically repulsive conditions, and MWCNT defects were active binding sites whether or not they were oxygenated. Our findings should be helpful in the design and safe applications of carbon nanomaterials.
Collapse
Affiliation(s)
- Wei Jiang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Qi Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Lixin Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Xiaoran Wei
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Dongqiang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Edson JA, Kwon YJ. Design, challenge, and promise of stimuli-responsive nanoantibiotics. NANO CONVERGENCE 2016; 3:26. [PMID: 28191436 PMCID: PMC5271158 DOI: 10.1186/s40580-016-0085-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 05/18/2023]
Abstract
Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.Graphical abstractA graphic detailing how the current paradigm of antibiotic discovery can be circumvented by the use of nanoantibiotics.
Collapse
Affiliation(s)
- Julius A. Edson
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
| | - Young Jik Kwon
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
- 132 Sprague Hall, Irvine, CA USA
| |
Collapse
|
20
|
Cartwright MM, Schmuck SC, Corredor C, Wang B, Scoville DK, Chisholm CR, Wilkerson HW, Afsharinejad Z, Bammler TK, Posner JD, Shutthanandan V, Baer DR, Mitra S, Altemeier WA, Kavanagh TJ. The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis. Redox Biol 2016; 9:264-275. [PMID: 27596734 PMCID: PMC5013253 DOI: 10.1016/j.redox.2016.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Inhalation of multiwalled carbon nanotubes (MWCNTs) during their manufacture or incorporation into various commercial products may cause lung inflammation, fibrosis, and oxidative stress in exposed workers. Some workers may be more susceptible to these effects because of differences in their ability to synthesize the major antioxidant and immune system modulator glutathione (GSH). Accordingly, in this study we examined the influence of GSH synthesis and gender on MWCNT-induced lung inflammation in C57BL/6 mice. GSH synthesis was impaired through genetic manipulation of Gclm, the modifier subunit of glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis. Twenty-four hours after aspirating 25µg of MWCNTs, all male mice developed neutrophilia in their lungs, regardless of Gclm genotype. However, female mice with moderate (Gclm heterozygous) and severe (Gclm null) GSH deficiencies developed significantly less neutrophilia. We found no indications of MWCNT-induced oxidative stress as reflected in the GSH content of lung tissue and epithelial lining fluid, 3-nitrotyrosine formation, or altered mRNA or protein expression of several redox-responsive enzymes. Our results indicate that GSH-deficient female mice are rendered uniquely susceptible to an attenuated neutrophil response. If the same effects occur in humans, GSH-deficient women manufacturing MWCNTs may be at greater risk for impaired neutrophil-dependent clearance of MWCNTs from the lung. In contrast, men may have effective neutrophil-dependent clearance, but may be at risk for lung neutrophilia regardless of their GSH levels.
Collapse
Affiliation(s)
- Megan M Cartwright
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Charlie Corredor
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bingbing Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claire R Chisholm
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Hui-Wen Wilkerson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jonathan D Posner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Liu D, Ding L, Sun J, Boussetta N, Vorobiev E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, Elimelech M, Pfefferle LD, Zimmerman JB. Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3975-3984. [PMID: 26943499 DOI: 10.1021/acs.est.5b05734] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure-property-function (SPF) and structure-property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs.
Collapse
Affiliation(s)
- Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
23
|
Chen J, Wang C, Wei N, Wan R, Gao Y. 3D flexible water channel: stretchability of nanoscale water bridge. NANOSCALE 2016; 8:5676-5681. [PMID: 26900012 DOI: 10.1039/c5nr08072j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly dependent upon the polarization strength. More interestingly, we show the possibility of establishing complex water networks, e.g., triangle, rectangle, hexagon, and tetrahedron-tetrahedron water networks. Our results may help realize structurally flexible and environmentally friendly water channels for lab-on-a-chip applications in nanofluidics.
Collapse
Affiliation(s)
- Jige Chen
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | |
Collapse
|
24
|
Rascol E, Devoisselle JM, Chopineau J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. NANOSCALE 2016; 8:4780-98. [PMID: 26868717 DOI: 10.1039/c5nr07954c] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.
Collapse
Affiliation(s)
- Estelle Rascol
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Joël Chopineau
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France and Université de Nimes Rue Georges Salan, 30000 Nimes, France.
| |
Collapse
|
25
|
Díez-Pascual AM, Díez-Vicente AL. PEGylated boron nitride nanotube-reinforced poly(propylene fumarate) nanocomposite biomaterials. RSC Adv 2016. [DOI: 10.1039/c6ra09884c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel PPF/PEG-g-BNNTs nanocomposites were synthesized and characterized. These antibacterial and non-toxic biomaterials are suitable for bone tissue engineering.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Analytical Chemistry
- Physical Chemistry and Chemical Engineering Department
- Faculty of Biology
- Environmental Sciences and Chemistry
- Alcalá University
| | | |
Collapse
|
26
|
Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes. Anal Bioanal Chem 2015; 408:2743-58. [PMID: 26603178 DOI: 10.1007/s00216-015-9157-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
With the boom of nanotechnology, nanomaterials (NMs) have been widely utilized in diverse applications, especially in biological and biomedical fields. Understanding how NMs interact with biomolecules, including proteins, DNA, and lipids, is of great importance for revealing the limitations posed and opportunities offered. Model lipid membrane, as a simplified cell membrane model, has been widely used to study the nanomaterial-lipid membrane interactions. In this article, current and emerging techniques, both experimental and theoretical, to investigate the interactions between NMs and model lipid membrane are summarized with each tool's capacities and limitations, along with future directions and challenges in this exciting area. This critical information will provide methodological guidance for researchers in this field.
Collapse
|
27
|
Arayachukiat S, Seemork J, Pan-In P, Amornwachirabodee K, Sangphech N, Sansureerungsikul T, Sathornsantikun K, Vilaivan C, Shigyou K, Pienpinijtham P, Vilaivan T, Palaga T, Banlunara W, Hamada T, Wanichwecharungruang S. Bringing macromolecules into cells and evading endosomes by oxidized carbon nanoparticles. NANO LETTERS 2015; 15:3370-6. [PMID: 25849219 DOI: 10.1021/acs.nanolett.5b00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A great challenge exists in finding safe, simple, and effective delivery strategies to bring matters across cell membrane. Popular methods such as viral vectors, positively charged particles and cell penetrating peptides possess some of the following drawbacks: safety issues, lysosome trapping, limited loading capacity, and toxicity, whereas electroporation produces severe damages on both cargoes and cells. Here, we show that a serendipitously discovered, relatively nontoxic, water dispersible, stable, negatively charged, oxidized carbon nanoparticle, prepared from graphite, could deliver macromolecules into cells, without getting trapped in a lysosome. The ability of the particles to induce transient pores on lipid bilayer membranes of cell-sized liposomes was demonstrated. Delivering 12-base-long pyrrolidinyl peptide nucleic acids with d-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) complementary to the antisense strand of the NF-κB binding site in the promoter region of the Il6 gene into the macrophage cell line, RAW 264.7, by our particles resulted in an obvious accumulation of the acpcPNAs in the nucleus and decreased Il6 mRNA and IL-6 protein levels upon stimulation. We anticipate this work to be a starting point in a new drug delivery strategy, which involves the nanoparticle that can induce a transient pore on the lipid bilayer membrane.
Collapse
Affiliation(s)
- Sunatda Arayachukiat
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraporn Seemork
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Porntip Pan-In
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittima Amornwachirabodee
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naunpun Sangphech
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Titiporn Sansureerungsikul
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamonluck Sathornsantikun
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotima Vilaivan
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kazuki Shigyou
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prompong Pienpinijtham
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wijit Banlunara
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tsutomu Hamada
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supason Wanichwecharungruang
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
28
|
Lu B, Smith T, Schmidt JJ. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays. NANOSCALE 2015; 7:7858-66. [PMID: 25853986 DOI: 10.1039/c4nr06892k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.
Collapse
Affiliation(s)
- Bin Lu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
29
|
Goodwin DG, Marsh KM, Sosa IB, Payne JB, Gorham JM, Bouwer EJ, Fairbrother DH. Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5484-5492. [PMID: 25811739 DOI: 10.1021/acs.est.5b00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In many environmental scenarios, the fate and impact of polymer nanocomposites (PNCs) that contain carbon nanotubes (CNT/PNCs) will be influenced by their interactions with microorganisms, with implications for antimicrobial properties and the long-term persistence of PNCs. Using oxidized single-wall (O-SWCNTs) and multi-wall CNTs (O-MWCNTs), we explored the influence that CNT loading (mass fraction≤0.1%-10%) and type have on the initial interactions of Pseudomonas aeruginosa with O-CNT/poly(vinyl alcohol) (PVOH) nanocomposites containing well-dispersed O-CNTs. LIVE/DEAD staining revealed that, despite oxidation, the inclusion of O-SWCNTs or O-MWCNTs caused PNC surfaces to exhibit antimicrobial properties. The fraction of living cells deposited on both O-SWCNT and O-MWCNT/PNC surfaces decreased exponentially with increasing CNT loading, with O-SWCNTs being approximately three times more cytotoxic on a % w/w basis. Although not every contact event between attached microorganisms and CNTs led to cell death, the cytotoxicity of the CNT/PNC surfaces scaled with the total contact area that existed between the microorganisms and CNTs. However, because the antimicrobial properties of CNT/PNC surfaces require direct CNT-microbe contact, dead cells were able to shield living cells from the cytotoxic effects of CNTs, allowing biofilm formation to occur on CNT/PNCs exposed to Pseudomonas aeruginosa for longer time periods.
Collapse
Affiliation(s)
- David G Goodwin
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - K M Marsh
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - I B Sosa
- ‡Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Altos de Pipe, Caracas 1020-A, Miranda, Venezuela
| | - J B Payne
- §Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - J M Gorham
- ∥Materials Measurement Science Division, NIST, Gaithersburg, Maryland 20899, United States
| | - E J Bouwer
- §Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - D H Fairbrother
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
30
|
Thomas M, Enciso M, Hilder TA. Insertion Mechanism and Stability of Boron Nitride Nanotubes in Lipid Bilayers. J Phys Chem B 2015; 119:4929-36. [DOI: 10.1021/acs.jpcb.5b00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Thomas
- Computational
Biophysics Group, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Molecular Modelling Group, Faculty of Science,
Technology and Engineering, School of Molecular Sciences, Department
of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Life Science Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, VIC 3010, Australia
| | - Marta Enciso
- Molecular Modelling Group, Faculty of Science,
Technology and Engineering, School of Molecular Sciences, Department
of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tamsyn A. Hilder
- Computational
Biophysics Group, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
31
|
Corredor C, Borysiak MD, Wolfer J, Westerhoff P, Posner JD. Colorimetric detection of catalytic reactivity of nanoparticles in complex matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3611-3618. [PMID: 25635807 DOI: 10.1021/es504350j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is a need for new methodologies to quickly assess the presence and reactivity of nanoparticles (NPs) in commercial, environmental, and biological samples since current detection techniques require expensive and complex analytical instrumentation. Here, we investigate a simple and portable colorimetric detection assay that assesses the surface reactivity of NPs, which can be used to detect the presence of NPs, in complex matrices (e.g., environmental waters, serum, urine, and in dissolved organic matter) at as low as part per billion (ppb) or ng/mL concentration levels. Surface redox reactivity is a key emerging property related to potential toxicity of NPs with living cells, and is used in our assays as a key surrogate for the presence of NPs and a first tier analytical strategy toward assessing NP exposures. We detect a wide range of metal (e.g., Ag and Au) and oxide (e.g., CeO2, SiO2, VO2) NPs with a diameter range of 5 to 400 nm and multiple capping agents (tannic acid (TA), polyvinylpyrrolidone (PVP), branched polyethylenimine (BPEI), polyethylene glycol (PEG)). This method is sufficiently sensitive (ppb levels) to measure concentrations typically used in toxicological studies, and uses inexpensive, commercially available reagents.
Collapse
Affiliation(s)
- Charlie Corredor
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mark D Borysiak
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jay Wolfer
- ‡Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Paul Westerhoff
- §School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jonathan D Posner
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- ‡Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Cid A, Picado A, Correia JB, Chaves R, Silva H, Caldeira J, de Matos APA, Diniz MS. Oxidative stress and histological changes following exposure to diamond nanoparticles in the freshwater Asian clam Corbicula fluminea (Müller, 1774). JOURNAL OF HAZARDOUS MATERIALS 2015; 284:27-34. [PMID: 25463214 DOI: 10.1016/j.jhazmat.2014.10.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Recently, the scientific community became aware of the potential ability of nanoparticles to cause toxicity in living organisms. Therefore, many of the implications for aquatic ecosystems and its effects on living organisms are still to be evaluated and fully understood. In this study, the toxicity of nanodiamonds (NDs) was assessed in the freshwater bivalve (Corbicula fluminea) following exposure to different nominal concentrations of NDs (0.01, 0.1, 1, and 10 mg l(-1)) throughout 14 days. The NDs were characterized (gravimetry, pH, zeta potential, electron microscopy, and atomic force microscopy) confirming manufacturer information and showing NDs with a size of 4-6 nm. Oxidative stress enzymes activities (glutathione-S-transferase, catalase) and lipid peroxidation were determined. The results show a trend to increase in GST activities after seven days of exposure in bivalves exposed to NDs concentrations (>0.1 mg l(-1)), while for catalase a significant increase was found in bivalves exposed from 0.01 to 1.0 mg l(-1) following an exposure of 14 days. The histological analysis revealed alterations in digestive gland cells, such as vacuolization and thickening. The lipid peroxidation showed a trend to increase for the different tested NDs concentrations which is compatible with the observed cellular damage.
Collapse
Affiliation(s)
- Antonio Cid
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, Centro de Química Fina e Biotecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Picado
- LNEG-Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - José Brito Correia
- LNEG-Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Rúben Chaves
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal
| | - Héber Silva
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal
| | - Jorge Caldeira
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, Centro de Química Fina e Biotecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM/FCUL)-Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, Centro de Química Fina e Biotecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
33
|
Alkhammash HI, Li N, Berthier R, de Planque MRR. Native silica nanoparticles are powerful membrane disruptors. Phys Chem Chem Phys 2015; 17:15547-60. [DOI: 10.1039/c4cp05882h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica nanoparticles permeabilize liposomal membranes as a function of nanoparticle size, surface chemistry and biocoating as well as membrane charge.
Collapse
Affiliation(s)
- Hend I. Alkhammash
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
- Department of Physics
| | - Nan Li
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| | - Rémy Berthier
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| | - Maurits R. R. de Planque
- Electronics and Computer Science & Institute for Life Sciences
- University of Southampton
- Southampton
- UK
| |
Collapse
|
34
|
RNAi for silencing drug resistance in microbes toward development of nanoantibiotics. J Control Release 2014; 189:150-7. [DOI: 10.1016/j.jconrel.2014.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023]
|
35
|
Zhu B, Xia X, Xia N, Zhang S, Guo X. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4086-4095. [PMID: 24579825 DOI: 10.1021/es404359v] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We explored whether bacteria could respond adaptively to the presence of carbon nanotubes (CNTs) by investigating the influence of CNTs on the viability, composition of fatty acids, and cytoplasmic membrane fluidity of bacteria in aqueous medium for 24 h exposure. The CNTs included long single-walled carbon nanotubes (L-SWCNTs), short single-walled carbon nanotubes (S-SWCNTs), short carboxyl single-walled carbon nanotubes (S-SWCNT-COOH), and aligned multiwalled carbon nanotubes (A-MWCNTs). The bacteria included three common model bacteria, Staphyloccocus aureus (Gram-positive), Bacillus subtilis (Gram-positive), and Escherichia coli (Gram-negative), and one polybrominated diphenyl ether degrading strain, Ochrobactrum sp. (Gram-negative). Generally, L-SWCNTs were the most toxic to bacteria, whereas S-SWCNT-COOH showed the mildest bacterial toxicity. Ochrobactrum sp. was more susceptible to the toxic effect of CNTs than E. coli. Compared to the control in the absence of CNTs, the viability of Ochrobactrum sp. decreased from 71.6-81.4% to 41.8-70.2%, and E. coli from 93.7-104.0% to 67.7-91.0% when CNT concentration increased from 10 to 50 mg L(-1). The cytoplasmic membrane fluidity of bacteria increased with CNT concentration, and a significant negative correlation existed between the bacterial viabilities and membrane fluidity for E. coli and Ochrobactrum sp. (p < 0.05), indicating that the increase in membrane fluidity induced by CNTs was an important factor causing the inactivation of bacteria. In the presence of CNTs, E. coli and Ochrobactrum sp. showed elevation in the level of saturated fatty acids accompanied with reduction in unsaturated fatty acids, compensating for the fluidizing effect of CNTs. This demonstrated that bacteria could modify their composition of fatty acids to adapt to the toxicity of CNTs. In contrast, S. aureus and B. subtilis exposed to CNTs increased the proportion of branched-chain fatty acids and decreased the level of straight-chain fatty acids, which was also favorable to counteract the toxic effect of CNTs. This study suggests that the bacterial tolerances to CNTs are associated with both the adaptive modification of fatty acids in the membrane and the physicochemical properties of CNTs. This is the first report about the physiologically adaptive response of bacteria to CNTs, and may help to further understand the ecotoxicological effects of CNTs.
Collapse
Affiliation(s)
- Baotong Zhu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation/Key Laboratory of Water and Sediment Sciences of Ministry of Education , Beijing 100875, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Chen KL, Bothun GD. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:873-80. [PMID: 24341906 DOI: 10.1021/es403864v] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanotoxicity studies have shown that both carbon-based and inorganic engineered nanoparticles can be toxic to microorganisms. Although the pathways for cytotoxicity are diverse and dependent upon the nature of the engineered nanoparticle and the chemical environment, numerous studies have provided evidence that direct contact between nanoparticles and bacterial cell membranes is necessary for cell inactivation or damage, and may in fact be a primary mechanism for cytotoxicity. The propensities for nanoparticles to attach to and disrupt cell membranes are still not well understood due to the heterogeneous and dynamic nature of biological membranes. Model biological membranes can be employed for systematic investigations of nanoparticle-membrane interactions. In this article, current and emerging experimental approaches to identify the key parameters that control the attachment of ENPs on model membranes and the disruption of membranes by ENPs will be discussed. This critical information will help enable the "safe-by-design" production of engineered nanoparticles that are nontoxic or biocompatible, and also allow for the design of antimicrobial nanoparticles for environmental and biomedical applications.
Collapse
Affiliation(s)
- Kai Loon Chen
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686
| | | |
Collapse
|