1
|
Ma M, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of hydrocolloids on starch digestion: A review. Food Chem 2024; 444:138636. [PMID: 38310781 DOI: 10.1016/j.foodchem.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Rapidly digestible starch can increase postprandial blood sugar rapidly, which can be overcome by hydrocolloids. The paper aims to review the effect of hydrocolloids on starch digestion. Hydrocolloids used to reduce starch digestibility are mostly polysaccharides like xanthan gum, pectin, β-glucan, and konjac glucomannan. Their effectiveness is related to their source and structure, mixing mode of hydrocolloid/starch, physical treatment, and starch processing. The mechanisms of hydrocolloid action include increased system viscosity, inhibition of enzymatic activity, and reduced starch accessibility to enzymes. Reduced starch accessibility to enzymes involves physical barrier and structural orderliness. In the future, physical treatments and intensity used for stabilizing hydrocolloid/starch complex, risks associated with different doses of hydrocolloids, and the development of related clinical trials should be focused on. Besides, investigating the effect of hydrocolloids on starch should be conducted in the context of practical commercial applications rather than limited to the laboratory level.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
2
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
4
|
Zavadinack M, Cantu-Jungles TM, Abreu H, Ozturk OK, Cordeiro LMC, de Freitas RA, Hamaker BR, Iacomini M. (1 → 3),(1 → 6) and (1 → 3)-β-D-glucan physico-chemical features drive their fermentation profile by the human gut microbiota. Carbohydr Polym 2024; 327:121678. [PMID: 38171663 DOI: 10.1016/j.carbpol.2023.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Mushroom polysaccharides consist of a unique set of polymers that arrive intact in the human large intestine becoming available for fermentation by resident gut bacteria with potential benefits to the host. Here we have obtained four glucans from two mushrooms (Pholiota nameko and Pleurotus pulmonarius) under different extraction conditions and their fermentation profile by human gut bacteria in vitro was evaluated. These glucans were isolated and characterized as (1 → 3),(1 → 6)-β-D-glucans varying in branching pattern and water-solubility. An aliquot of each (1 → 3),(1 → 6)-β-D-glucan was subjected to controlled smith degradation process in order to obtain a linear (1 → 3)-β-D-glucan from each fraction. The four β-D-glucans demonstrated different water solubilities and molar mass ranging from 2.2 × 105 g.mol-1 to 1.9 × 106 g.mol-1. In vitro fermentation of the glucans by human gut microbiota showed they induced different short chain fatty acid production (52.0-97.0 mM/50 mg carbohydrates), but an overall consistent high propionate amount (28.5-30.3 % of total short chain fatty acids produced). All glucans promoted Bacteroides uniformis, whereas Anaerostipes sp. and Bacteroides ovatus promotion was strongly driven by the β-D-glucans solubility and/or branching pattern, highlighting the importance of β-D-glucan discrete structures to their fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Thaisa M Cantu-Jungles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Oguz K Ozturk
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Rilton A de Freitas
- Department of Pharmacy Federal University of Paraná, Curitiba, PR CEP 80210-170, Brazil
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil.
| |
Collapse
|
5
|
Sujithra S, Arthanareeswaran G, Ismail AF, Taweepreda W. Isolation, purification and characterization of β-glucan from cereals - A review. Int J Biol Macromol 2024; 256:128255. [PMID: 37984576 DOI: 10.1016/j.ijbiomac.2023.128255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
β-glucans are soluble fibers found in cereal compounds, including barley, oats etc., as an active component. They are used as a dietary fiber to treat cholesterol, diabetes and cardiovascular diseases. These polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in human like inhibiting tumour growth, anti-inflammatory action, etc. All these activities were usually attached to their molecular weight, structure and degree of branching. The present manuscript reviews the background of β-glucan, its characterization techniques, the possible ways to extract β-glucan and mainly focuses on membrane-based purification techniques. The β-glucan separation methods using polymeric membranes, their operational characteristics, purification methods which may yield pure or crude β-glucan and structural analysis methods were also discussed. Future direction in research and development related to β-glucan recovery from cereal were also offered.
Collapse
Affiliation(s)
- S Sujithra
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India.
| | - A F Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Wirach Taweepreda
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand.
| |
Collapse
|
6
|
Cui Y, Han X, Hu X, Li T, Li S. Distinctions in structure, rheology, antioxidation, and α-glucosidase inhibitory activity of β-glucans from different species. Int J Biol Macromol 2023; 253:127684. [PMID: 37890753 DOI: 10.1016/j.ijbiomac.2023.127684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
To investigate the distinctions between β-glucans from different species, Lentinula edodes β-glucan (LG), yeast β-glucan (YG), and oat β-glucan (OG) were extracted with hot water and determined as β-d-glucopyranose form by HPLC and FT-IR analysis. The molecular weight (Mw) of LG, YG, and OG was 670 kDa, 341 kDa, and 66 kDa, respectively. Scanning electron microscopy exhibited different micro surfaces of three β-glucans and the relative crystallinity of YG was the highest (29.8 %), followed by that of LG (23.2 %) and OG (20.3 %) determined by X-ray diffraction. Congo red analysis and atomic force microscopy showed that LG and YG have triple helical structures. The apparent viscosity, storage modulus (G'), and loss modulus (G") of β-glucans were increased with the increase of Mw. DPPH·, ABTS+·, HO·, and reducing power assays showed that β-glucans from different species exhibited different antioxidant activities, and the DPPH· scavenging rate of 2 mg/mL LG reached >80 % higher than that of YG and OG. The α-glucosidase inhibitory activity of OG was better than YG and LG. In summary, β-glucans from different species have different structures, physicochemical properties, and physiological functions, which provides theoretical evidence for the precise processing and utilization of β-glucan.
Collapse
Affiliation(s)
- Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xuedong Han
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
7
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Chen SN, Nan FH, Liu MW, Yang MF, Chang YC, Chen S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods 2023; 12:659. [PMID: 36766186 PMCID: PMC9914031 DOI: 10.3390/foods12030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fungi-derived β-glucan, a type of glucopolysaccharide, has been shown to possess immune-modulatory properties in clinical settings. Studies have indicated that β-glucan derived from Ganoderma lucidum (commonly known as Reishi) holds particular promise in this regard, both in laboratory and in vivo settings. To further investigate the efficacy and safety of Reishi β-glucan in human subjects, a randomized, double-blinded, placebo-controlled clinical trial was conducted among healthy adult volunteers aged 18 to 55. Participants were instructed to self-administer the interventions or placebos on a daily basis for 84 days, with bloodwork assessments conducted at the beginning and end of the study. The results of the trial showed that subjects in the intervention group, who received Reishi β-glucan, exhibited a significant enhancement in various immune cell populations, including CD3+, CD4+, CD8+ T-lymphocytes, as well as an improvement in the CD4/CD8 ratio and natural killer cell counts when compared to the placebo group. Additionally, a statistically significant difference was observed in serum immunoglobulin A levels and natural killer cell cytotoxicity between the intervention and placebo groups. Notably, the intervention was found to be safe and well tolerated, with no statistically significant changes observed in markers of kidney or liver function in either group. Overall, the study provides evidence for the ability of Reishi β-glucan to modulate immune responses in healthy adults, thereby potentially bolstering their defense against opportunistic infections.
Collapse
Affiliation(s)
- Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Fan-Hua Nan
- College of Life Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Wei Liu
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242062, Taiwan
| | - Min-Feng Yang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chih Chang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Effects of different sources of β-glucan on pasting, gelation, and digestive properties of pea starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
An Alkali-extracted Polysaccharide from Poria cocos Activates RAW264.7 Macrophages via NF-κB Signaling Pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
An arabinogalactan isolated from Pollen Typhae induces the apoptosis of RKO cells by promoting macrophage polarization. Carbohydr Polym 2023; 299:120216. [PMID: 36876818 DOI: 10.1016/j.carbpol.2022.120216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
An arabinogalactan (PTPS-1-2) was isolated and characterized from Pollen Typhae, and its potential antitumor effects on activating macrophages to produce immunomodulatory factors and promoting apoptosis in colorectal cancer cells were investigated. Structural characterization showed that PTPS-1-2 had a molecular weight of 59 kDa and was composed of rhamnose, arabinose, glucuronic acid, galactose, and galacturonic acid with a molar ratio of 7.6: 17.1: 6.5: 61.4: 7.4. Its backbone was predominantly composed of T-β-D-Galp, 1,3-β-D-Galp, 1,6-β-D-Galp, 1,3,6-β-D-Galp, 1,4-α-D-GalpA, 1,2-α-L-Rhap, additionally, branches contained 1,5-α-L-Araf, T-α-L-Araf, T-β-D-4-OMe-GlcpA, T-β-D-GlcpA and T-α-L-Rhap. PTPS-1-2 activated RAW264.7 cell by triggering the NF-kB signaling pathway and M1 macrophage polarization. Furthermore, the conditioned medium (CM) of Mφ pretreated with PTPS-1-2 exerted marked antitumor effects by inhibiting RKO cell proliferation and suppressing cell colony formation. Collectively, our findings suggested that PTPS-1-2 might be a therapeutic option for the prevention and treatment of tumors.
Collapse
|
12
|
Han X, Luo R, Ye N, Hu Y, Fu C, Gao R, Fu S, Gao F. Research progress on natural β-glucan in intestinal diseases. Int J Biol Macromol 2022; 219:1244-1260. [PMID: 36063888 DOI: 10.1016/j.ijbiomac.2022.08.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022]
Abstract
β-Glucan, an essential natural polysaccharide widely distributed in cereals and microorganisms, exhibits extensive biological activities, including immunoregulation, anti-inflammatory, antioxidant, antitumor properties, and flora regulation. Recently, increasing evidence has shown that β-glucan has activities that may be useful for treating intestinal diseases, such as inflammatory bowel disease (IBD), and colorectal cancer. The advantages of β-glucan, which include its multiple roles, safety, abundant sources, good encapsulation capacity, economic development costs, and clinical evidence, indicate that β-glucan is a promising polysaccharide that could be developed as a health product or medicine for the treatment of intestinal disease. Unfortunately, few reports have summarized the progress of studies investigating natural β-glucan in intestinal diseases. This review comprehensively summarizes the structure-activity relationship of β-glucan, its pharmacological mechanism in IBD and colorectal cancer, its absorption and transportation mechanisms, and its application in food, medicine, and drug delivery, which will be beneficial to further understand the role of β-glucan in intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ru Gao
- Department of Nursing, Chengdu Wenjiang People's Hospital, Chengdu, Sichuan 611100, China.
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
13
|
Silva NA, Pereira BG, Santos JA, Guarnier FA, Barbosa-Dekker AM, Dekker RFH, Kassuya CAL, Bernardes SS. Oral administration of botryosphaeran [(1 → 3)(1 → 6)-β-d-glucan] reduces inflammation through modulation of leukocytes and has limited effect on inflammatory nociception. Cell Biochem Funct 2022; 40:578-588. [PMID: 35788958 DOI: 10.1002/cbf.3727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Several biological activities of the fungal exopolysaccharide (1 → 3)(1 → 6)-β-d-glucan (botryosphaeran) have been described in the literature, but its effects on inflammation have not been evaluated. This study aimed to investigate the action of botryosphaeran on experimental mice models of carrageenan-induced acute pleurisy and acute paw edema, and complete Freund's adjuvant-induced persistent paw edema. All botryosphaeran doses tested (1.0, 2.5, 5.0, and 10.0 mg/kg birth weight [b.w.], orally administered) reduced leukocyte recruitment, nitric oxide (NO) levels, and protein extravasation in the pleural cavity. Botryosphaeran (5 mg/kg b.w.) did not diminish edema and mechanical hyperalgesia in the paw within 4 h; however, cold allodynia was alleviated within the first 2 h. In the persistent paw inflammation model, the effects of daily oral administration of botryosphaeran (5 mg/kg b.w.) were evaluated over 3 and 7 days. The fungal β-glucan significantly reduced the levels of the cytokines, tumor necrosis factor(TNF)-α, interleukin (IL)-6), and IL-10, in the paw homogenates in both protocols, while paw edema and the levels of advanced oxidation protein products (AOPP) only diminished on Day 7. No effect in mechanical hyperalgesia was observed. Oral treatment for 3 or 7 days also decreased the plasma levels of NO, AOPP, TNF-α, and IL-10. On Day 7, the number of leukocytes in the blood was also reduced by this treatment. Importantly, botryosphaeran did not induce inflammation in mice when administered alone over 7 days. This study demonstrated the anti-inflammatory and antinociceptive potential of botryosphaeran in these experimental models, making this fungal β-glucan a new possibility for complementary treating acute and chronic inflammation.
Collapse
Affiliation(s)
- Nubia A Silva
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Bianca G Pereira
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Joyce A Santos
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Flávia A Guarnier
- Departamento de Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Londrina, Paraná, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Londrina, Paraná, Brazil
| | - Cândida A L Kassuya
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Sara S Bernardes
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
14
|
Ishara J, Buzera A, Mushagalusa GN, Hammam ARA, Munga J, Karanja P, Kinyuru J. Nutraceutical potential of mushroom bioactive metabolites and their food functionality. J Food Biochem 2021; 46:e14025. [PMID: 34888869 DOI: 10.1111/jfbc.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.
Collapse
Affiliation(s)
- Jackson Ishara
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ariel Buzera
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Gustave N Mushagalusa
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo
| | - Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Judith Munga
- Department Food Nutrition and Dietetics, Kenyatta University, Nairobi, Kenya
| | - Paul Karanja
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - John Kinyuru
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
15
|
Liu X, Ju Y, Liu M, Huang L, Luo Y, Qi L, Ye J, Zhang S, Yan Y, Li Y. Effect of dietary Auricularia cornea culture supplementation on growth performance, serum biochemistry profile and meat quality in growing-finishing pigs. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/143105/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Zavadinack M, de Lima Bellan D, da Rocha Bertage JL, da Silva Milhorini S, da Silva Trindade E, Simas FF, Sassaki GL, Cordeiro LMC, Iacomini M. An α-D-galactan and a β-D-glucan from the mushroom Amanita muscaria: Structural characterization and antitumor activity against melanoma. Carbohydr Polym 2021; 274:118647. [PMID: 34702466 DOI: 10.1016/j.carbpol.2021.118647] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Polysaccharides α-D-galactan (GAL-Am) and β-D-glucan (GLC-Am) were obtained from Amanita muscaria fruiting bodies. They were purified using different methodologies, such as Fehling precipitation (for both fractions), freeze-thawing process and ultrafiltration (for GLC-Am). Results showed that the GAL-Am has (1 → 6)-linked Galp main chain branched at O-2 by terminal Galp units and has not been previously reported. Besides, GLC-Am has (1 → 3)-linked Glcp in the main chain, substituted at O-6 by (1 → 6)-linked β-Glcp units. Both are water-soluble, with 9.0 × 103 g/moL and 1.3 × 105 g/moL, respectively. GAL-Am and GLC-Am presented a selective proliferation reduction against B16-F10 melanoma cell line, not affecting non tumoral BALB/3T3 fibroblast cell line. Furthermore, both fractions reduced clonogenic capacity of melanoma cell line over an extended period of time. These results were obtained without modulations in B16-F10 cell adhesion, reinforcing the biological activities towards cell proliferation impairment and eliciting these polysaccharides as promising compounds to further exploration of their antimelanoma properties.
Collapse
Affiliation(s)
- Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR CEP 81531-980, Brazil
| | - Daniel de Lima Bellan
- Department of Cell Biology, Federal University of Paraná, Curitiba, PR CEP 81531-980, Brazil
| | | | - Shayane da Silva Milhorini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR CEP 81531-980, Brazil
| | | | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR CEP 81531-980, Brazil
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR CEP 81531-980, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR CEP 81531-980, Brazil.
| |
Collapse
|
17
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
18
|
Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, Han T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol 2021; 184:946-954. [PMID: 34182000 DOI: 10.1016/j.ijbiomac.2021.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Polysaccharides are macromolecules obtained from a wide range of sources and are known to have diverse biological activities. The biological activities of polysaccharides depend on their structure and physicochemical properties, including water solubility, monosaccharide composition, degree of branching, molecular structure, and molecular weight. Phosphorylation is a commonly used chemical modification method that improves the physicochemical properties of native polysaccharides, thus enhancing their biological activity, or even imparting novel biological activity. Therefore, phosphorylated polysaccharides have attracted increasing attention owing to their antioxidant, antitumor, antiviral, immunomodulatory, and hepatoprotective effects. In this review, we have discussed recent advances in the phosphorylation of polysaccharides, and the methods used for phosphorylation, structural characterization, and determination of biological activities, to provide a theoretical basis for the use of polysaccharides. The structure-activity relationship of phosphorylated polysaccharides and their use in the food and pharmaceutical industries needs to be further studied.
Collapse
Affiliation(s)
- Shunli Xia
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Yongcong Zhai
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xue Wang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Qirui Fan
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xiaoyi Dong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Mei Chen
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Tao Han
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China; Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
19
|
Ruthes AC, Cantu-Jungles TM, Cordeiro LMC, Iacomini M. Prebiotic potential of mushroom d-glucans: implications of physicochemical properties and structural features. Carbohydr Polym 2021; 262:117940. [PMID: 33838817 DOI: 10.1016/j.carbpol.2021.117940] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Mushroom d-glucans are recognized as dietary fibers and as biologically active natural polysaccharides, with the advantages of being quite inexpensive for production, tolerable, and having a range of possible structures and physicochemical properties. The prebiotic potential of mushroom d-glucans has been explored in recent years, but the relationship between their various structural features and activity is poorly understood. This review focuses on comprehensively evaluating the prebiotic potential of mushroom d-glucans in face of their structural variations. Overall, mushroom d-glucans provide a unique set of different structures and physicochemical properties with prebiotic potential, where linkage type and solubility degree seem to be associated with prebiotic activity outcomes. The understanding of the effects of distinct structures and physicochemical properties in mushroom d-glucans on the gut microbiota contributes to the design and selection of new prebiotics in a more predictable way.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Thaísa Moro Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
20
|
Desamero MJM, Chung SH, Kakuta S. Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models. Int J Mol Sci 2021; 22:4778. [PMID: 33946381 PMCID: PMC8125483 DOI: 10.3390/ijms22094778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been greatly augmented through the utility of various beta-glucan cognate receptor-deficient mouse models. Analysis of dectin-1 knockout mice has clarified the downstream signaling pathways and adaptive effector responses triggered by beta-glucan in anti-fungal immunity. On the other hand, assessment of CR3-deficient mice has elucidated the compelling action of beta-glucans in neutrophil-mediated fungal clearance, and the investigation of EphA2-deficient mice has highlighted its novel involvement in host sensing and defense to oral mucosal fungal infection. Based on these accounts, this review focuses on the recent discoveries made by these gene-targeted mice in beta-glucan research with particular emphasis on the multifaceted aspects of fungal immunity.
Collapse
Affiliation(s)
- Mark Joseph Maranan Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Soo-Hyun Chung
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan;
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| |
Collapse
|
21
|
Evaluation of Polish wild Mushrooms as Beta-Glucan Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197299. [PMID: 33036263 PMCID: PMC7579588 DOI: 10.3390/ijerph17197299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022]
Abstract
Mushroom beta-glucans show immunomodulatory, anticancer and antioxidant features. Numerous papers have been published in the last years on fungal polysaccharides, especially beta-glucans, demonstrating their various biological activities. However substantial data about beta-glucan contents in many mushroom species, especially wild mushrooms, are still missing. Therefore, the main objective of the study was to evaluate β-glucans in 18 species of wild mushrooms and three species of commercial mushrooms for comparison purposes. The contents of β-glucans were determined by the Megazyme method and with the Congo red method, which differ in analytical procedure. Among wild mushrooms, the highest mean β-glucan content assessed with the Megazyme method was found in Tricholoma portentosum (34.97 g/100 g DM), whereas with the Congo red method in Lactarius deliciosus (17.11 g/100 g DM) and Suillus grevillei (16.97 g/100 g DM). The β-glucans in wild mushrooms assessed with the Megazyme method were comparable to commercial mushrooms, whereas β-glucans assessed with the Congo red method were generally higher in wild mushrooms, especially in Russula vinosa, L. deliciosus and S. grevillei. This study indicates wild mushrooms as interesting material for β-glucan extraction for food industry and medicinal purposes.
Collapse
|
22
|
Rotrekl D, Devriendt B, Cox E, Kavanová L, Faldyna M, Šalamúnová P, Baďo Z, Prokopec V, Štěpánek F, Hanuš J, Hošek J. Glucan particles as suitable carriers for the natural anti-inflammatory compounds curcumin and diplacone - Evaluation in an ex vivo model. Int J Pharm 2020; 582:119318. [PMID: 32320720 DOI: 10.1016/j.ijpharm.2020.119318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Natural compounds offer a wide spectrum of potential active substances, but often they have a poor bioavailability. To increase the bioavailability and bioactivity of the natural anti-inflammatory molecules curcumin and diplacone, we used glucan particles (GPs), hollow shells from Saccharomyces cerevisiae composed mainly of β-1,3-d-glucan. Their indigestibility and relative stability in the gut combined with their immunomodulatory effects makes them promising carriers for such compounds. This study aimed to determine how curcumin and diplacone, either alone or incorporated in GPs, affect the immunomodulatory activity of the latter by assessing the respiratory burst response and the secretion of pro-inflammatory cytokines by primary porcine innate immune cells. Incorporating curcumin and diplacone into GPs by controlled evaporation of the organic solvent substantially reduced the respiratory burst response mediated by GPs. Incorporated curcumin in GPs also reduced GPs mediated secretion of IL-1β and TNF-α by innate immune cells. The obtained results indicate a potentially beneficial effect of the incorporation of curcumin or diplacone into GPs against inflammation.
Collapse
Affiliation(s)
- Dominik Rotrekl
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Lenka Kavanová
- Department of Immunology, Veterinary Research Institute Brno, Czech Republic
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute Brno, Czech Republic
| | - Petra Šalamúnová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Zuzana Baďo
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Vadym Prokopec
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Jaroslav Hanuš
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Czech Republic.
| |
Collapse
|
23
|
Purification and structural characterization of polysaccharides isolated from Auricularia cornea var. Li. Carbohydr Polym 2020; 230:115680. [DOI: 10.1016/j.carbpol.2019.115680] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
|
24
|
In-depth spectral characterization of antioxidative (1,3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Protective effects of β-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Kono H, Kondo N, Isono T, Ogata M, Hirabayashi K. Characterization of the secondary structure and order-disorder transition of a β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. Int J Biol Macromol 2019; 154:1382-1391. [PMID: 31733241 DOI: 10.1016/j.ijbiomac.2019.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
This study revealed the secondary structures of the water-soluble Aureobasidium pullulans β-(1 → 3, 1 → 6)-d-glucan (APG) whose primary structural unit is a β-(1 → 3)-d-glucan backbone with four β-(1 → 6)-d-glucosyl branching units every six residues. Solid-state NMR spectroscopy, X-ray diffractometry (XRD), and small-angle X-ray scattering (SAXS) experiments involving samples prepared from lyophilized APG showed that APG forms a triple helix in H2O and a random structure in DMSO. In addition, it was revealed that the transformation from the triple helix of APG to the random structure occurs reversibly, and that the triple helix is recovered from the random structure in DMSO/H2O mixtures containing more than 30% H2O. Solid-state NMR and diffraction studies revealed that the triple helix of APG is more stable than that of schizophyllan (SPG) whose structure comprises a β-(1 → 3)-d-glucan backbone with one β-(1 → 6)-d-branching unit every three residues. The APG helical pitch is 1.82 nm, which is about 10% longer than that of the triple helix of SPG. These findings show that the β-(1 → 6) side-chain frequency strongly affects the stability and helical pitch of a β-(1 → 3, 1 → 6)-d-glucan.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan.
| | - Nobuhiro Kondo
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan
| | - Takuya Isono
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Chemical Sciences and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060 8628, Japan
| | - Makoto Ogata
- Department of Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Nagao 30, Iwaki, Fukushima 970 8034, Japan
| | | |
Collapse
|
27
|
Morales D, Rutckeviski R, Villalva M, Abreu H, Soler-Rivas C, Santoyo S, Iacomini M, Smiderle FR. Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr Polym 2019; 229:115521. [PMID: 31826486 DOI: 10.1016/j.carbpol.2019.115521] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
A polysaccharide-enriched extract obtained from Lentinula edodes was submitted to several purification steps to separate three different D-glucans with β-(1→6), β-(1→3),(1→6) and α-(1→3) linkages, being characterized through GC-MS, FT-IR, NMR, SEC and colorimetric/fluorimetric determinations. Moreover, in vitro hypocholesterolemic, antitumoral, anti-inflammatory and antioxidant activities were also tested. Isolated glucans exerted HMGCR inhibitory activity, but only β-(1→6) and β-(1→3),(1→6) fractions showed DPPH scavenging capacity. Glucans were also able to lower IL-1β and IL-6 secretion by LPS-activated THP-1/M cells and showed cytotoxic effect on a breast cancer cell line that was not observed on normal breast cells. These in vitro results pointed important directions for further in vivo studies, showing different effects of each chemical structure of the isolated glucans from shiitake mushrooms.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Renata Rutckeviski
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| | - Marisol Villalva
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| | - Fhernanda Ribeiro Smiderle
- Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-020, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil.
| |
Collapse
|
28
|
|
29
|
Seedevi P, Ramu Ganesan A, Mohan K, Raguraman V, Sivakumar M, Sivasankar P, Loganathan S, Rajamalar P, Vairamani S, Shanmugam A. Chemical structure and biological properties of a polysaccharide isolated from Pleurotus sajor-caju. RSC Adv 2019; 9:20472-20482. [PMID: 35514737 PMCID: PMC9065548 DOI: 10.1039/c9ra02977j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, a polysaccharide obtained from Pleurotus sajor-caju was fractionated via anion-exchange column chromatography and purified using gel permeation column chromatography. The chemical characterization of the polysaccharide indicated that it contained 90.16% total carbohydrate, 0% protein, 12.7% ash and 5.2% moisture; on the other hand, the carbon, hydrogen and nitrogen contents were found to be 31.53, 4.28 and 3.01%, respectively. The polysaccharide has the molecular weight of 79 kDa; the chemical structure of the polysaccharide is →6)α-d-Glciv(1→6)α-d-Glciii(1→6)β-d-Glcii(1→6)α-d-Glci(1→units. The polysaccharide exhibited the DPPH radical scavenging activity of 21.67-68.35% at 10-160 μg ml-1, ABTS radical scavenging activity of 16.01-70.09% at 25-125 μg ml-1, superoxide radical scavenging activity of 24.31-73.64% at 50-250 μg ml-1, hydroxyl radical scavenging activity of 16.64-63.51% at 25-125 μg ml-1 and reducing power of 0.366-1.678% at 10-120 μg ml; further evaluation of the polysaccharide revealed its anticancer activity of 18.61-63.21% at 100-500 μg ml-1 concentration against the AGS human gastric carcinoma cell line. The active principle of the polysaccharide may be used in the food and pharmacological industry in the future.
Collapse
Affiliation(s)
- Palaniappan Seedevi
- Department of Environmental Science, Periyar University Salem 636011 Tamil Nadu India +91 9629201002
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University Parangipettai 608 502 Tamil Nadu India
| | - Abirami Ramu Ganesan
- Department of Food Science and Home Economics, School of Applied Sciences, College of Engineering, Science and Technology, Fiji National University Fiji-7222
| | | | - Vasantharaja Raguraman
- Centre for Ocean Research, Sathyabama Institute of Science & Technology Chennai 600 119 Tamil Nadu India
| | - Murugesan Sivakumar
- Department of Environmental Science, Periyar University Salem 636011 Tamil Nadu India +91 9629201002
| | - Palaniappan Sivasankar
- Department of Environmental Science, Periyar University Salem 636011 Tamil Nadu India +91 9629201002
| | - Sivakumar Loganathan
- Department of Environmental Science, Periyar University Salem 636011 Tamil Nadu India +91 9629201002
| | - Palasundaram Rajamalar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University Parangipettai 608 502 Tamil Nadu India
| | - Shanmugam Vairamani
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University Parangipettai 608 502 Tamil Nadu India
| | - Annaian Shanmugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University Parangipettai 608 502 Tamil Nadu India
| |
Collapse
|
30
|
Minato KI, Laan LC, van Die I, Mizuno M. Pleurotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation. Int J Biol Macromol 2019; 122:705-712. [DOI: 10.1016/j.ijbiomac.2018.10.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023]
|
31
|
Abreu H, Simas FF, Smiderle FR, Sovrani V, Dallazen JL, Maria-Ferreira D, Werner MF, Cordeiro LM, Iacomini M. Gelling functional property, anti-inflammatory and antinociceptive bioactivities of β-D-glucan from the edible mushroom Pholiota nameko. Int J Biol Macromol 2019; 122:1128-1135. [DOI: 10.1016/j.ijbiomac.2018.09.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/07/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
|
32
|
Simple and effective purification approach to dissociate mixed water-insoluble α- and β-D-glucans and its application on the medicinal mushroom Fomitopsis betulina. Carbohydr Polym 2018; 200:353-360. [DOI: 10.1016/j.carbpol.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022]
|
33
|
Khan AA, Gani A, Khanday FA, Masoodi F. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed Pharmacother 2018; 105:377-394. [DOI: 10.1016/j.biopha.2018.05.138] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
|
35
|
Desamero MJ, Kakuta S, Chambers JK, Uchida K, Hachimura S, Takamoto M, Nakayama J, Nakayama H, Kyuwa S. Orally administered brown seaweed-derived β-glucan effectively restrained development of gastric dysplasia in A4gnt KO mice that spontaneously develop gastric adenocarcinoma. Int Immunopharmacol 2018; 60:211-220. [PMID: 29763881 DOI: 10.1016/j.intimp.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
β-Glucan refers to a heterogeneous group of chemically defined storage polysaccharides containing β-(1,3)-d-linked glucose polymers with branches connected by either β-(1,4) or β-(1,6) glycosidic linkage. To date, an extensive amount of scientific evidence supports their multifunctional biological activities, but their potential involvement in the progression of premalignant lesions remains to be clarified. A4gnt KO mice that lack α1,4-N-acetylglucosamine-capped O-glycans in gastric gland mucin are a unique animal model for gastric cancer because the mutant mice spontaneously develop gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence. In particular, A4gnt KO mice show gastric dysplasia during 10-20 weeks of age. Here we investigated the putative gastro-protective activity of brown seaweed-derived β-glucan (Laminaran) against development of gastric dysplasia, precancerous lesion for gastric cancer in A4gnt KO mice. The mutant mice at 12 weeks of age were randomly assigned into three treatment groups namely, wildtype control + distilled water (normal control), A4gnt KO mice + distilled water (untreated control), and A4gnt KO mice + 100 mg/kg Laminaran. After 3 weeks, the stomach was removed and examined for morphology and gene expression patterns. In contrast to the untreated control group, administration of Laminaran substantially attenuated gastric dysplasia development and counterbalanced the increased induction in cell proliferation and angiogenesis. Furthermore, Laminaran treatment effectively overcame the A4gnt KO-induced alteration in the gene expression profile of selected cytokines as revealed by real-time PCR analysis. Collectively, our present findings indicate that β-glucan can potentially restrain the development of gastric dysplasia to mediate their tissue-preserving activity.
Collapse
Affiliation(s)
- Mark Joseph Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
36
|
Yang Y, Zhao X, Li J, Jiang H, Shan X, Wang Y, Ma W, Hao J, Yu G. A β-glucan from Durvillaea Antarctica has immunomodulatory effects on RAW264.7 macrophages via toll-like receptor 4. Carbohydr Polym 2018; 191:255-265. [PMID: 29661317 DOI: 10.1016/j.carbpol.2018.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/15/2022]
Abstract
We studied the mechanisms underlying the immunostimulatory effects of aβ-1,3/1,6-glucan (BG136) from Durvillaea Antarctica. Our data showed that BG136 promoted the activation of MAPKs and NF-κB signaling pathways and cytokines production. BG136 did not increase MCP-1 or NO production or phosphorylation of NF-κB and MAPK in TLR4 siRNA knockdown cells, indicating that BG136 activates macrophages through TLR4. Flow cytometry analysis and confocal experiment showed that BG136 bound to TLR4 expressed on RAW264.7 macrophage cells surface. The affinity of BG136 for TLR4 was determined using Surface Plasmon Resonance (SPR) (KD: 4.51 × 10-6M). Altogether, our results showed that BG136 activates RAW264.7 cells by binding to TLR4 and then triggering TLR4-mediated signaling pathways to promote cytokines secretion.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaoliang Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xindi Shan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ya Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenbang Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
37
|
Immunostimulant effects and potential application of β-glucans derived from marine yeast Debaryomyces hansenii in goat peripheral blood leucocytes. Int J Biol Macromol 2018; 116:599-606. [PMID: 29763702 DOI: 10.1016/j.ijbiomac.2018.05.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
Abstract
Debaryomyces hansenii has been described to be effective probiotic and immunostimulatory marine yeast in fish. Nonetheless, to the best of our knowledge, it has been not assayed in ruminants. This study attempts to describe the immunostimulatory effects of its β-glucan content through in vitro assays using goat peripheral blood leukocytes at 24 h of stimulation. The structural characterization of yeast glucans by proton nuclear magnetic resonance indicated structures containing (1-6)-branched (1-3)-β-D-glucan. In vitro assays using peripheral blood leukocytes stimulated with β-glucans derived from three D. hansenii strains and zymosan revealed that β-glucans significantly increased cell immune parameters, such as phagocytic ability, reactive oxygen species production (respiratory burst), peroxidase activity and nitric oxide production. Antioxidant enzymes revealed an increase in superoxide dismutase and catalase activities in leukocytes stimulated with yeast β-glucans. This study revealed that yeast β-glucans were able to activate dectin-1 mRNA gene expression in leukocytes. The TLR4 gene expression was up-regulated in leukocytes after stimulation with yeast β-glucans. In conclusion, β-glucans were able to modulate the immune system by promoting cell viability, phagocytic activity, antioxidant immune response and immune-related gene expression in leukocytes. Therefore, β-glucans derived from Debaryomyces hansenii should be considered a potential immunostimulant for goat production systems.
Collapse
|
38
|
In vitro fermentation of Cookeina speciosa glucans stimulates the growth of the butyrogenic Clostridium cluster XIVa in a targeted way. Carbohydr Polym 2018; 183:219-229. [DOI: 10.1016/j.carbpol.2017.12.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022]
|
39
|
Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr Polym 2018; 181:19-26. [DOI: 10.1016/j.carbpol.2017.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023]
|
40
|
Mushrooms: Isolation and Purification of Exopolysaccharides. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
de Jesus LI, Smiderle FR, Ruthes AC, Vilaplana F, Dal'Lin FT, Maria-Ferreira D, Werner MF, Van Griensven LJLD, Iacomini M. Chemical characterization and wound healing property of a β-D-glucan from edible mushroom Piptoporus betulinus. Int J Biol Macromol 2017; 117:1361-1366. [PMID: 29274425 DOI: 10.1016/j.ijbiomac.2017.12.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
A water-soluble β-D-glucan was obtained from fruiting bodies of Piptoporus betulinus, by hot aqueous extraction followed by freeze-thawing procedure and dialysis. Its molar mass distribution and conformational behavior in solution was assessed by size-exclusion chromatography coupled with multiangle laser light scattering, showing a polysaccharide with an average molecular weight of 2.5 × 105 Da with a random coil conformation for molecular weights below 1 × 106 Da. Typical signals of β-(1 → 3)-linkages were observed in NMR spectrum (δ 102.7/4.76; 102.8/4.74; 102.9/4.52; and δ 85.1/3.78; 85.0/3.77) and also signals of O-6 substitution at δ 69.2/4.22 and 69.2/3.87. The analysis of partially O-methylated alditol acetates corroborates the NMR results, indicating the presence of a β-D-glucan with a main chain (1 → 3)-linked, substituted at O-6 by single-units of glucose. The β-D-glucan showed no toxicity on human colon carcinoma cell line (Caco-2) up to 1000 μg mL-1 and promoted cell migration on in vitro scratch assay, demonstrating a potential wound healing capacity.
Collapse
Affiliation(s)
- Liana Inara de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Fhernanda R Smiderle
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Andrea C Ruthes
- Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology, 106 91 Stockholm, Sweden
| | | | - Daniele Maria-Ferreira
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Maria Fernanda Werner
- Department of Pharmacology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Leo J L D Van Griensven
- Plant Research International, Wageningen University and Research, Bornsesteeg 1, 6708 PD Wageningen, The Netherlands
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| |
Collapse
|
42
|
Cárdenas-Reyna T, Angulo C, Guluarte C, Hori-Oshima S, Reyes-Becerril M. In vitro immunostimulatory potential of fungal β-glucans in pacific red snapper (Lutjanus peru) cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:350-358. [PMID: 28888536 DOI: 10.1016/j.dci.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
This study attempts to describe the immunostimulatory effects of three fungal glucans on innate immunity responses in an in vitro assays using Pacific red snapper leukocytes. First, the yield glucans obtained was higher in Aspergillus niger, follow by Aspergillus ochraceus and Alternaria botrytis (40, 20 and 10%, respectively). Structural characterization of these fungal glucans by proton nuclear magnetic resonance (NMR) indicated structures containing (1-6)-branched (1-3)-β-D-glucan. The immunostimulatory activity of fungal glucans were assessed in head-kidney leukocytes at 24 h using colorimetric assays and molecular gene expression. In addition, the response against bacterial infection using Aeromonas hydrophila was evaluated by flow cytometry with annexin V/propidium iodide. Leukocytes responded positively to fungal glucans where the viability was higher than 80%. Interestingly, A. niger β-glucans enhanced the phagocytic ability and capacity in head-kidney leukocytes. Immunological assays reveled an increased in nitric oxide production, myeloperoxidase, superoxide dismutase and catalase activities, in fish stimulated with A. niger β-glucans. Induction of cytokines (IL-1β, TNF-α, IL-6, IL-8 and IL-12) were more pronounced in A. niger β-glucans leukocytes stimulated compared to other group. Finally, flow cytometry assay showed that A. botrytis and A. niger β-glucans were able to inhibit apoptosis caused by Aeromonas hydrophila in the Pacific red snapper leukocytes indicating an immunostimulant potent response by fungi derived-glucans. These results strongly support the idea that fungal β-glucans can stimulate the immune mechanism in head-kidney leukocytes and that Aspergillus niger β-glucan possess immunostimulatory properties cell increasing viability, and reducing necrotic cell death caused by Aeromonas hydrophila.
Collapse
Affiliation(s)
- Tomás Cárdenas-Reyna
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico
| | - Sawako Hori-Oshima
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Carretera San Felipe Km. 3.5, Fraccionamiento Laguna Campestre, Mexicali, Baja California 21386, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS 23090, Mexico.
| |
Collapse
|
43
|
Chen Q, Tang H, Zha Z, Yin H, Wang Y, Wang Y, Li H, Yue L. β-d-glucan from Antrodia Camphorata ameliorates LPS-induced inflammation and ROS production in human hepatocytes. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.05.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Sovrani V, de Jesus LI, Simas-Tosin FF, Smiderle FR, Iacomini M. Structural characterization and rheological properties of a gel-like β-d-glucan from Pholiota nameko. Carbohydr Polym 2017; 169:1-8. [DOI: 10.1016/j.carbpol.2017.03.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
|
45
|
Tang H, Wei W, Wang W, Zha Z, Li T, Zhang Z, Luo C, Yin H, Huang F, Wang Y. Effects of cultured Cordyceps mycelia polysaccharide A on tumor neurosis factor-α induced hepatocyte injury with mitochondrial abnormality. Carbohydr Polym 2017; 163:43-53. [DOI: 10.1016/j.carbpol.2017.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/30/2023]
|
46
|
Maity P, Nandi AK, Manna DK, Pattanayak M, Sen IK, Bhanja SK, Samanta S, Panda BC, Paloi S, Acharya K, Islam SS. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohydr Polym 2017; 157:1237-1245. [DOI: 10.1016/j.carbpol.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
|
47
|
Hirabayashi K, Kondo N, Hayashi S. Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3–1,6-glucan from Aureobasidium pullulans. World J Microbiol Biotechnol 2016; 32:206. [DOI: 10.1007/s11274-016-2167-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
48
|
Szwengiel A, Stachowiak B. Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydr Polym 2016; 146:310-9. [DOI: 10.1016/j.carbpol.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 01/02/2023]
|
49
|
Structure and antinociceptive effects of β- d -glucans from Cookeina tricholoma. Carbohydr Polym 2016; 141:220-8. [DOI: 10.1016/j.carbpol.2016.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 11/24/2022]
|
50
|
|