1
|
Serizawa R, Milotskyi R, Iwata S, Fujie T, Wada N, Takahashi K. Synthesis and characterization of thermoplastic resin from sugar beet polysaccharides via one-step transesterification. Carbohydr Polym 2025; 352:123224. [PMID: 39843119 DOI: 10.1016/j.carbpol.2025.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution. The thermal and mechanical properties of SBP esters were analyzed without fractionating polysaccharides. SBP esters exhibited excellent melt flow properties, making them suitable for injection molding applications. The presence of pectin influenced the thermal behavior of the materials; the removal of pectin increased the flow temperature from 155.7 to 204.6 °C. These findings highlight the potential of SBP esters as sustainable plastics, offering a pathway to convert agricultural by-products into high-value materials, thus contributing to a circular economy.
Collapse
Affiliation(s)
- Ryo Serizawa
- Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan; Kusano Sakko Inc., Nishi-machi 16, Kami-ebetsu, Ebetsu, Hokkaido 067-0063, Japan.
| | - Romain Milotskyi
- Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan.
| | - Shogo Iwata
- Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan.
| | - Tetsuo Fujie
- Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan.
| | - Naoki Wada
- Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan.
| | - Kenji Takahashi
- Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan.
| |
Collapse
|
2
|
Zhou S, Xu J, Zhang Z, Zhu S, Li J, Zhang W, Zhang F, Chen K. Controlled preparation of cellulose acetate by deep eutectic solvent homogeneous catalysis. Carbohydr Polym 2025; 349:122964. [PMID: 39638515 DOI: 10.1016/j.carbpol.2024.122964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
This work proposed a homogeneous preparation strategy of cellulose acetate by using a deep eutectic solvent consisting of zinc chloride/phosphoric acid/water (ZnCl2/PA/H2O). The results showed that the DES (the molar ratio of ZnCl2: PA: H2O = 1:1:3) had good solubility for bamboo pulp with high degree of polymerization. The dynamic dissolution behavior of cellulose in DES was also studied. Cellulose was first moistened and swollen and then dissolved. The crystalline state of cellulose changed from type I to type II after regeneration. Under the synergistic effect of acetic anhydride (Ac2O), the dissolved cellulose in DES could be uniformly acetylated. The effects of temperature, reaction time and molar ratio of Ac2O/anhydrous glucose on degree of substitution (DS) were investigated in their respective ranges (30-50 °C, 2-10 h and 4-24). Cellulose acetate with DS of 0.42-1.81 was successfully prepared. The substituent distribution of the sample was analyzed as C-6 > C-2 > C-3. Moreover, the entire process required no additional catalysts or activation steps, reducing the difficulty of solvent recovery. The insight from this study provides a new idea for the development of greener methods for the homogeneous preparation of cellulose acetate.
Collapse
Affiliation(s)
- Shengtao Zhou
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Shandong Sun Paper Industry Joint Stock, Jining 272100, China.
| | - Zhaohui Zhang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyun Zhu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhang
- Shandong Sun Paper Industry Joint Stock, Jining 272100, China
| | - Fengshan Zhang
- Shandong Huatai Paper Industry Joint Stock, Dongying 257335, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wongphan P, Nerín C, Harnkarnsujarit N. Tailoring the morphology and antibacterial activity of PBAT and thermoplastic cassava starch blown films with phosphate derivatives. Int J Biol Macromol 2024; 283:137906. [PMID: 39571868 DOI: 10.1016/j.ijbiomac.2024.137906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Phosphate derivatives contain a high number of reactive groups that interact functionally with various polymers. Tetrasodium pyrophosphate (Na₄P₂O₇), sodium tripolyphosphate (Na₅P₃O₁₀), and sodium hexametaphosphate (Na₆(PO₃)₆) were incorporated into bioplastic polybutylene-adipate-terephthalate (PBAT) blended with thermoplastic cassava starch (TPS) in blown films. Their physicochemical, morphological, thermal, and antimicrobial properties were investigated. PBAT/TPS blended films were compounded via blown film extrusion to produce functional packaging. Infrared spectra indicated starch modification through the disruption of anhydroglucose monomer units, analyzed by ATR-FTIR, providing a more amorphous fraction and altering the properties of the films. PBAT/TPS films containing phosphate compounds exhibited non-homogeneous structures, with dispersed clumps within the film matrices that decreased tensile strength. The incorporation of phosphate compounds modified the storage modulus and relaxation temperature of PBAT/TPS films, influencing molecular mobility, decreasing heat transfer efficiency in seal strength, and enhancing stiffness due to starch disruption and interaction between the phosphate compound and the PBAT/TPS matrix. Wettability and permeability of PBAT/TPS films were modified by changes in polymer structure.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Li C, He Y, Zhang J, Mu J, Wang J, Cao M, Nawaz H, Chen S, Xu F. Cellulose-based colorimetric/ratiometric fluorescence sensor for visual detecting amines and anti-counterfeiting. Carbohydr Polym 2024; 345:122548. [PMID: 39227092 DOI: 10.1016/j.carbpol.2024.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Many amines with high toxicity always cause a serious threat to the ecological environment and human health; thus, their detection is important. Herein, a dual-mode colorimetric and ratiometric fluorescent sensor based on cellulose for detecting amines has been constructed by a new strategy. This sensor is made of a "negative response" indicator (Lum-MDI-CA) and a "positive response" indicator (perylene tetracarboxylic acid, PTCA). Lum-MDI-CA was obtained by attaching luminol onto cellulose chains, which emitted blue fluorescence and was quenched upon contact with amines. A possible mechanism of fluorescence quenching phenomenon is proposed by the intramolecular charge transfer (ICT) of Lum-MDI-CA. Subsequently, by simply mixing Lum-MDI-CA with PTCA, a dual-mode fluorescence sensor was designed for visual detection and classification of amines. When adding ammonia (NH3), morpholine (MOR), benzylamine (BNZ), diethylamine (DEA), and triethylamine (TEA), respectively, the dual-mode sensor showed visible different color changes under both UV light and daylight. In addition, owing to the excellent processibility and formability of cellulose acetate backbone, the prepared sensor can be easily processed into different material forms, including inks, coatings, films, and fibers, which still exhibit excellent fluorescence emission. Such sensors based on cellulose fluorescent materials are of great value in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Cuihuan Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yuan He
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jiankang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jiahui Mu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Junya Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Mengyao Cao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Haq Nawaz
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China.
| | - Sheng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Feng Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Antunes BDF, Santana LR, Oliveira RM, Valério Filho A, Carreno NLV, Wolke SI, da Silva R, Fajardo AR, Dias ARG, Zavareze EDR. Cellulose, cellulose nanofibers, and cellulose acetate from Butia fruits (Butia odorata): Chemical, morphological, structural, and thermal properties. Int J Biol Macromol 2024; 281:136151. [PMID: 39362424 DOI: 10.1016/j.ijbiomac.2024.136151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Cellulose possesses numerous advantageous properties and is a precursor to compounds and derivatives. The objective of this study was to isolate and characterize cellulose from Butia fruits and simultaneously produce cellulose nanofibers and cellulose acetate from the isolated cellulose. Cellulose extraction was performed using a combination of alkaline and bleaching treatments, while the production of cellulose nanofibers and cellulose acetate was achieved through acid hydrolysis and acetylation, respectively. The materials were characterized by their chemical composition, size distribution, zeta potential, morphology, relative crystallinity (XRD), functional groups (FTIR), molecular structure (NMR), and thermal stability (TGA). The Butia crude fibers presented 49.4 % cellulose, 4.5 % hemicellulose, 25.4 % lignin, and 1.3 % ash. The cellulose nanofibers presented an average diameter ranging from 13.7 to 93.1 nm and exhibited a high degree of crystallinity (63.3 %). FTIR, XRD, 13C, and 1H NMR analyses confirmed that the isolation processes effectively removed amorphous regions from the cellulose nanofibers and confirmed the cellulose acetylation process. As demonstrated, cellulosic materials derived from Butia fruit exhibit promise for various applications, including their potential use as reinforcing agents in polymer matrices, due to their high extraction yield, thermal properties, and crystallinity.
Collapse
Affiliation(s)
- Bruna da Fonseca Antunes
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Luiza Ribeiro Santana
- Laboratory of Nanotechnology (Novonano), Graduate Program in Science and Materials Engineering, Center for Technological Development, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil
| | - Raquel Moreira Oliveira
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alaor Valério Filho
- Laboratory of Nanotechnology (Novonano), Graduate Program in Science and Materials Engineering, Center for Technological Development, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil
| | - Neftali Lenin Villarreal Carreno
- Laboratory of Nanotechnology (Novonano), Graduate Program in Science and Materials Engineering, Center for Technological Development, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil
| | - Silvana Ines Wolke
- Department of Inorganic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Renata da Silva
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - André Ricardo Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
6
|
Meng Z, Li X, Ye Q, Sun L, Xu X, Yang Y, Wang Z, Wang S. Rational design of a highly effective cellulose-based macromolecular fluorescent probe for real-time recognition of palladium ion in environmental samples and its applications in plant and zebrafish. Int J Biol Macromol 2024; 276:133936. [PMID: 39032908 DOI: 10.1016/j.ijbiomac.2024.133936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Palladium ion (Pd2+) plays an important role in our daily life, but poses a great threat to the environment and human health. Thus, it is desirable to exploit a rapid and sensitive approach to realize the detection of Pd2+. In this study, a cellulose acetate-based macromolecular fluorescent probe CA-NA-PA was successfully prepared for tracking amounts of Pd2+. CA-NA-PA showed an obvious "on-off" fluorescence response to Pd2+, accompanied by the fluorescence color changed from bright yellow to colorless. CA-NA-PA had some outstanding detection performances such as low detection limit (26 nM), extremely short response time (1 min), good selectivity and anti-interference ability. Based on the advantages of probe mentioned above, CA-NA-PA could realize recognition of Pd2+ concentration in environmental water and soil samples. What's more, the probe CA-NA-PA was applied to image Pd2+ in zebrafish as well as in live onion tissue due to the good biocompatibility and cell membrane permeability of cellulose, suggesting its wide application prospect in biosystems.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyan Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Ye
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Linfeng Sun
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Dryś M, Koso TV, Kilpeläinen PO, Rinne-Garmston KT, Todorov AR, Wiedmer SK, Iashin V, King AWT. Structural Characterization of 6-Halo-6-Deoxycelluloses by Direct-Dissolution Solution-State NMR Spectroscopy. Macromol Rapid Commun 2024; 45:e2300698. [PMID: 38563886 DOI: 10.1002/marc.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Regioselective modifications of cellulose using activated cellulose derivatives such as 6-halo-6-deoxycelluloses provide a convenient approach for developing sustainable products with properties tailored to specific applications. However, maintaining precise regiochemical control of substituent distribution in 6-halo-6-deoxycelluloses is challenging due to their insolubility in most common solvents and the resulting difficulties in precise structure elucidation by modern instrumental analytical techniques. Herein, an accessible NMR-based approach toward detailed characterization of 6-halo-6-deoxycelluloses, including the determination of the degrees of substitution at carbon 6 (DS6), is presented. It is shown that the direct-dissolution cellulose solvent, tetrabutylphosphonium acetate:DMSO-d6, converts 6-halo-6-deoxycelluloses to 6-monoacetylcellulose, enabling in situ solution-state NMR measurements. A range of 1D and 2D NMR experiments is used to demonstrate the quantitivity of the conversion and provide optimum dissolution conditions. In comparison with other NMR-based derivatization protocols for elucidating the structure of 6-halo-6-deoxycelluloses, the presented approach offers major advantages in terms of accuracy, speed, and simplicity of analysis, and minimal requirements for reagents or NMR instrumentation.
Collapse
Affiliation(s)
- Magdalena Dryś
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, Helsinki, 00560, Finland
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Tetyana V Koso
- VTT Technical Research Centre of Finland Ltd, Tietotie 4e, Espoo, 02150, Finland
| | - Petri O Kilpeläinen
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Katja T Rinne-Garmston
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Aleksandar R Todorov
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, Helsinki, 00560, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, Helsinki, 00560, Finland
| | - Vladimir Iashin
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
- VTT Technical Research Centre of Finland Ltd, Tietotie 4e, Espoo, 02150, Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd, Tietotie 4e, Espoo, 02150, Finland
| |
Collapse
|
8
|
Yang X, Ma H, Chen Y, Venkateswaran S, Hsiao BS. Functionalization of cellulose acetate nanofibrous membranes for removal of particulate matters and dyes. Int J Biol Macromol 2024; 269:131852. [PMID: 38679253 DOI: 10.1016/j.ijbiomac.2024.131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Particulates and organic toxins, such as microplastics and dye molecules, are contaminants in industrial wastewater that must be purified due to environmental and sustainability concerns. Carboxylated cellulose acetate (CTA-COOH) nanofibrous membranes were fabricated using electrospinning followed by an innovative one-step surface hydrolysis/oxidation replacing the conventional two-step reactions. This approach offers a new pathway for the modification strategy of cellulose-based membranes. The CTA-COOH membrane was utilized for the removal of particulates and cationic dyes through filtration and adsorption, respectively. The filtration performance of the CTA-COOH nanofibrous membrane was carried out; high separation efficiency and low pressure drop were achieved, in addition to the high filtration selectivity against 0.6-μm and 0.8-μm nanoparticles. A cationic Bismarck Brown Y, was employed to challenge the adsorption capability of the CTA-COOH nanofibrous membrane, where the maximum adsorption capacity of the membrane for BBY was 158.73 mg/g. The self-standing CTA-COOH membrane could be used to conduct adsorption-desorption for 17 cycles with the regeneration rate as high as 97.0 %. The CTA-COOH nanofibrous membrane has excellent mechanical properties and was employed to manufacture a spiral wound adsorption cartridge, which exhibited remarkable separation efficiency in terms of treated water volume, which was 5.96 L, and retention rate, which was 100 %.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| | - Yi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
9
|
Rothammer M, Zollfrank C. Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures. Polymers (Basel) 2023; 16:9. [PMID: 38201673 PMCID: PMC10781059 DOI: 10.3390/polym16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Replacing petroleum-based polymers with biopolymers such as polysaccharides is essential for protecting our environment by saving fossil resources. A research field that can benefit from the application of more sustainable and renewable materials is photochemistry. Therefore, cellulose-based photoresists that could be photocrosslinked via UV irradiation (λ = 254 nm and λ = 365 nm) were developed. These biogenic polymers enable the manufacturing of sustainable coatings, even with imprinted microstructures, and cellulose-based bulk materials. Thus, herein, cellulose was functionalized with organic compounds containing carbon double bonds to introduce photocrosslinkable side groups directly onto the cellulose backbone. Therefore, unsaturated anhydrides such as methacrylic acid anhydride and unsaturated and polyunsaturated carboxylic acids such as linoleic acid were utilized. Additionally, these cellulose derivatives were modified with acetate or tosylate groups to generate cellulose-based polymers, which are soluble in organic solvents, making them suitable for multiple processing methods, such as casting, printing and coating. The photocurable resist was basically composed of the UV-crosslinkable biopolymer, an appropriate solvent and, if necessary, a photoinitiator. Moreover, these bio-based photoresists were UV-crosslinkable in the liquid and solid states after the removal of the solvent. Further, the manufactured cellulose-based architectures, even the bulk structures, could be entirely regenerated into pure cellulose devices via a sodium methoxide treatment.
Collapse
Affiliation(s)
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany;
| |
Collapse
|
10
|
Kono H, Hara H, Iijima K, Fujita S, Kondo N, Hirabayashi K, Isono T, Ogata M. Preparation and characterization of carboxymethylated Aureobasidium pullulans β-(1 → 3, 1 → 6)-glucan and its in vitro antioxidant activity. Carbohydr Polym 2023; 322:121357. [PMID: 37839833 DOI: 10.1016/j.carbpol.2023.121357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Aureobasidium pullulans β-(1 → 3, 1 → 6)-glucan (APG) has a high degree of β-(1 → 6)-glucosyl branching and a regular triple helical structure similar to that of schizophyllan. In this study, APG was carboxymethylated to different degrees of substitution (DS = 0.51, 1.0, and 2.0, denoted CMAPG 1-3, respectively) using a heterogeneous reaction. With increasing DS, the triple-helix structure drastically decreased and converted to a random coil structure in CMAPG 3. Further, aqueous solutions of CMAPG changed from pseudoplastic fluids to perfect Newtonian liquids with increasing DS, indicating that the intra- and intermolecular hydrogen bonds had been cleaved by the substituents to form a random coil structure. In addition, APG and CMAPG solutions exhibited scavenging ability against hydroxyl, organic, and sulfate radicals. It was also found that the carboxymethylation of APG drastically enhanced the organic radical scavenging ability. On the basis of the relationship between the DS and radical scavenging ability of the CMAPG samples, we believe hydroxyl and organic radicals were preferably scavenged by the donation of hydrogen atoms from the glucose rings and the methylene moieties of the carboxymethyl groups, respectively. Considering the obtained results, CMAPG and APG are expected to have applications in pharmaceuticals, functional foods, and cosmetics as antioxidant polysaccharides.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan.
| | - Hideyuki Hara
- Bruker Japan K. K., Moriya-cho 3-9, Kanagawa-ku, Yokohama, Kanagawa 221 0022, Japan
| | - Kokoro Iijima
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Sayaka Fujita
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Nobuhiro Kondo
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan; WELLNEO SUGAR Co., Ltd., 14-1 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103 8536, Japan
| | - Katsuki Hirabayashi
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan; WELLNEO SUGAR Co., Ltd., 14-1 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103 8536, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060 8628, Japan
| | - Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960 1296, Japan
| |
Collapse
|
11
|
Zheng Z, Su Y, Schmidt-Rohr K. Corrected solid-state 13 C nuclear magnetic resonance peak assignment and side-group quantification of hydroxypropyl methylcellulose acetyl succinate pharmaceutical excipients. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:595-605. [PMID: 37649159 DOI: 10.1002/mrc.5390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Hydroxypropyl methylcellulose acetyl succinate (HPMCAS) is widely used as a pharmaceutical excipient, making a detailed understanding of its tunable structure important for formulation design. Several recently reported peak assignments in the solid-state 13 C NMR spectrum of HPMCAS have been corrected here using peak integrals in quantitative spectra, spectral editing, empirical chemical-shift predictions based on solution NMR, and full spectrum simulation analogous to deconvolution. Unlike in cellulose, the strong peak at 84 ppm must be assigned to C2 and C3 methyl ethers, instead of regular C4 of cellulose. The proposed assignment of signals at <65 ppm to OCH sites, including C5 of cellulose, could not be confirmed. CH2 spectral editing showed two resolved OCH2 bands, a more intense one from O-CH2 ethers of C6 at >69 ppm and a smaller one from its esters and possibly residual CH2 -OH groups, near 63 ppm. The strong intensities of resolved signals of acetyl, succinoyl, and oxypropyl substituents indicated the substitution of >85% of the OH groups in HPMCAS. The side-group concentrations in three different grades of HPMCAS were quantified.
Collapse
Affiliation(s)
- Zhaoxi Zheng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
12
|
Rothammer M, Strobel P, Zollfrank C, Urmann C. Biocompatible coatings based on photo-crosslinkable cellulose derivatives. Int J Biol Macromol 2023; 250:126063. [PMID: 37524281 DOI: 10.1016/j.ijbiomac.2023.126063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator. Usability for biomedical applications was demonstrated by investigating the adhesion and viability of a fibrosarcoma cell line (HT-1080). Compared to polystyrene, the material widely used for cell culture dishes, cell adhesion to the biomaterials tested was even stronger, as assessed by a centrifugation assay. Remarkably, chemical surface modifications of cellulose acetate with methacrylate and sorbic acid allow direct attachment of HT-1080 cells without adding protein modifiers or ligands. Furthermore, cells on both biomaterials show similar cell viability, not significantly different from polystyrene, indicating no significant impairment or enhancement, allowing the use of these cellulose derivatives as support structures for scaffolds or as a self-supporting coating for cell culture solely based on renewable resources.
Collapse
Affiliation(s)
- Maximilian Rothammer
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Philipp Strobel
- TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Corinna Urmann
- TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany.
| |
Collapse
|
13
|
Katsuhara S, Sunagawa N, Igarashi K, Takeuchi Y, Takahashi K, Yamamoto T, Li F, Tajima K, Isono T, Satoh T. Effect of degree of substitution on the microphase separation and mechanical properties of cellooligosaccharide acetate-based elastomers. Carbohydr Polym 2023; 316:120976. [PMID: 37321706 DOI: 10.1016/j.carbpol.2023.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Thermoplastic elastomers (TPEs) have long been used in a wide range of industries. However, most existing TPEs are petroleum-derived polymers. To realize environmentally benign alternatives to conventional TPEs, cellulose acetate is a promising TPE hard segment because of its sufficient mechanical properties, availability from renewable sources, and biodegradability in natural environments. Because the degree of substitution (DS) of cellulose acetate governs a range of physical properties, it is a useful parameter for designing novel cellulose acetate-based TPEs. In this study, we synthesized cellulose acetate-based ABA-type triblock copolymers (AcCelx-b-PDL-b-AcCelx) containing a celloologosaccharide acetate hard A segment (AcCelx, where x is the DS; x = 3.0, 2.6, and 2.3) and a poly(δ-decanolactone) (PDL) soft B segment. Small-angle X-ray scattering showed that decreasing the DS of AcCelx-b-PDL-b-AcCelx resulted in the formation of a more ordered microphase-separated structure. Owing to the microphase separation of the hard cellulosic and soft PDL segments, all the AcCelx-b-PDL-b-AcCelx samples exhibited elastomer-like properties. Moreover, the decrease in DS improved toughness and suppressed stress relaxation. Furthermore, preliminary biodegradation tests in an aqueous environment revealed that the decrease in DS endowed AcCelx-b-PDL-b-AcCelx with greater biodegradability potential. This work demonstrates the usefulness of cellulose acetate-based TPEs as next-generation sustainable materials.
Collapse
Affiliation(s)
- Satoshi Katsuhara
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; VTT Technical Research Centre of Finland Ltd., VTT FI-02044, Finland
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Noto-cho, Ishikawa 927-0552, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
14
|
Rodrigues BVM, Polez RT, El Seoud OA, Frollini E. Cellulose acylation in homogeneous and heterogeneous media: Optimization of reactions conditions. Int J Biol Macromol 2023; 243:125256. [PMID: 37295694 DOI: 10.1016/j.ijbiomac.2023.125256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
The dependence of the DS on the acid anhydride/anhydroglucose unit ((RCO)2O/AGU) molar ratio was correlated using second-order polynomials. The regression coefficients of the (RCO)2O/AGU terms showed that increasing the length of the RCO group of the anhydride led to lower values of DS. For acylation under heterogeneous reaction conditions, the following were employed: acid anhydrides and butyryl chloride as acylating agents; iodine as a catalyst; N,N-dimethylformamide (DMF) as a solvent, pyridine, and triethylamine as solvents and catalysts. For acylation using acetic anhydride plus iodine, the values of DS correlate with reaction time by a second-order polynomial. Due to its role as a polar solvent and a nucleophilic catalyst, pyridine was the most effective base catalyst, independent of the acylating agent (butyric anhydride and butyryl chloride).
Collapse
Affiliation(s)
- Bruno Vinicius Manzolli Rodrigues
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Roberta Teixeira Polez
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Omar A El Seoud
- Polymer and Surfactant Group, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Elisabete Frollini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
15
|
Fliri L, Heise K, Koso T, Todorov AR, Del Cerro DR, Hietala S, Fiskari J, Kilpeläinen I, Hummel M, King AWT. Solution-state nuclear magnetic resonance spectroscopy of crystalline cellulosic materials using a direct dissolution ionic liquid electrolyte. Nat Protoc 2023:10.1038/s41596-023-00832-9. [PMID: 37237027 DOI: 10.1038/s41596-023-00832-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/17/2023] [Indexed: 05/28/2023]
Abstract
Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.
Collapse
Affiliation(s)
- Lukas Fliri
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Tetyana Koso
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Aleksandar R Todorov
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Daniel Rico Del Cerro
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Sami Hietala
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Juha Fiskari
- Fibre Science and Communication Network (FSCN), Mid Sweden University, Sundsvall, Sweden
| | - Ilkka Kilpeläinen
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| | - Alistair W T King
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, Helsinki, Finland.
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
| |
Collapse
|
16
|
Knotek V, Ďurovič M, Dolenský B, Hrdlička Z. Influence of Disinfection Methods on Cinematographic Film. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093493. [PMID: 37176375 PMCID: PMC10180128 DOI: 10.3390/ma16093493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Microbiological contamination of cinematographic films can cause damage and loss of image information. A large part of the films is made with the base of cellulose triacetate, which has been used from the 1940s until today. Cellulose triacetate is relatively resistant to common organic solvents, but some types of microorganisms can contribute to its faster degradation. In this work, we tested four types of disinfectants suitable for mass disinfection and sufficiently effective against various types of microorganisms. Butanol vapours, a commercial mixture of alcohols (Bacillol® AF), Septonex® (an aqueous solution of [1-(ethoxycarbonyl)pentadecyl] trimethylammonium bromide) and ethylene oxide applied as a gas mixed with carbon dioxide were tested. Samples of a commercial film made of cellulose triacetate were disinfected. The samples were aged for 56 days at 70 °C and 55% RH. Changes in optical, mechanical and chemical properties were studied. None of the disinfectants affected the change in the degree of substitution. For samples disinfected with Bacillol® AF (alcohol mixture), part of the plasticiser (triphenyl phosphate) was extracted and the intrinsic viscosity of the cellulose triacetate solution was reduced after ageing. A slight decrease in intrinsic viscosity also occurred after disinfection with ethylene oxide. Compared to the non-disinfected samples, butanol vapours and Septonex® appear to be the most gentle disinfectants for the cellulose triacetate film base, within the studied parameters.
Collapse
Affiliation(s)
- Vítězslav Knotek
- Department of Chemical Technology of Monument Conservation, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Michal Ďurovič
- Department of Chemical Technology of Monument Conservation, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Bohumil Dolenský
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zdeněk Hrdlička
- Department of Polymers, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
17
|
Chavez Lozano MV, Catelli E, Sciutto G, Prati S, Genorini E, Mazzeo R. A non-invasive diagnostic tool for cellulose acetate films using a portable miniaturized near infrared spectrometer. Talanta 2023; 255:124223. [PMID: 36608424 DOI: 10.1016/j.talanta.2022.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
This article tests the suitability of a new method to monitor the degree of substitution of cellulose acetate films, by employing a compact and inexpensive near-infrared miniaturized spectrometer (908.1-1676.2 nm) that can be easily applied in situ. The present study compares the analytical performance of the proposed method against conventional diagnostic strategies based on benchtop micro-attenuated total reflectance Fourier transform Infrared (μATR -FTIR) measurements in the mid-infrared spectral range. The novel calibration function exploits the shifts in the first overtone of the hydroxyl stretching 2νOH band of probe materials and was created using a set of analytical standards with different degrees of substitution. The robustness of the method was assessed by application on a group of sixteen historical cinematographic films. The accurate condition assessment of these films was performed in situ, in a non-invasive manner. The proposed analytical procedure is quick and easy-to-implement, and therefore it constitutes a rapid method to guide conservation strategies regarding film storage and digitalization in cultural institutions, including museums and cinematheques. Potential applications on three-dimensional objects and industrial processes are possible.
Collapse
Affiliation(s)
- Marco Valente Chavez Lozano
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42-48121, Ravenna, Italy
| | - Emilio Catelli
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42-48121, Ravenna, Italy
| | - Giorgia Sciutto
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42-48121, Ravenna, Italy
| | - Silvia Prati
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42-48121, Ravenna, Italy.
| | | | - Rocco Mazzeo
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42-48121, Ravenna, Italy
| |
Collapse
|
18
|
Heise K, Koso T, King AWT, Nypelö T, Penttilä P, Tardy BL, Beaumont M. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:23413-23432. [PMID: 36438677 PMCID: PMC9664451 DOI: 10.1039/d2ta05277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Tetyana Koso
- Materials Chemistry Division, Chemistry Department, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products 02044 Espoo Finland
| | - Tiina Nypelö
- Chalmers University of Technology 41296 Gothenburg Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering Abu Dhabi United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University Abu Dhabi United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University Abu Dhabi United Arab Emirates
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24 A-3430 Tulln Austria
| |
Collapse
|
19
|
KAWAI T, UKITA S, SHIMAMOTO S. Characterization of Chemical Heterogeneity of Cellulose Esters by Gradient Elution HPLC. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tadatomo KAWAI
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University
| | - Shizuka UKITA
- Production Management Headquarters, DAICEL Corporation
| | - Shu SHIMAMOTO
- Innovation and Business Development Headquarters, DAICEL Corporation
| |
Collapse
|
20
|
Koso T, Beaumont M, Tardy BL, Rico Del Cerro D, Eyley S, Thielemans W, Rojas OJ, Kilpeläinen I, King AWT. Highly regioselective surface acetylation of cellulose and shaped cellulose constructs in the gas-phase. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:5604-5613. [PMID: 35924208 PMCID: PMC9290444 DOI: 10.1039/d2gc01141g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 06/01/2023]
Abstract
Gas-phase acylation is an attractive and sustainable method for modifying the surface properties of cellulosics. However, little is known concerning the regioselectivity of the chemistry, i.e., which cellulose hydroxyls are preferentially acylated and if acylation can be restricted to the surface, preserving crystallinities/morphologies. Consequently, we reexplore simple gas-phase acetylation of modern-day cellulosic building blocks - cellulose nanocrystals, pulps, dry-jet wet spun (regenerated cellulose) fibres and a nanocellulose-based aerogel. Using advanced analytics, we show that the gas-phase acetylation is highly regioselective for the C6-OH, a finding also supported by DFT-based transition-state modelling on a crystalloid surface. This contrasts with acid- and base-catalysed liquid-phase acetylation methods, highlighting that gas-phase chemistry is much more controllable, yet with similar kinetics, to the uncatalyzed liquid-phase reactions. Furthermore, this method preserves both the native (or regenerated) crystalline structure of the cellulose and the supramolecular morphology of even delicate cellulosic constructs (nanocellulose aerogel exhibiting chiral cholesteric liquid crystalline phases). Due to the soft nature of this chemistry and an ability to finely control the kinetics, yielding highly regioselective low degree of substitution products, we are convinced this method will facilitate the rapid adoption of precisely tailored and biodegradable cellulosic materials.
Collapse
Affiliation(s)
- Tetyana Koso
- Department of Chemistry, University of Helsinki AI Virtasen aukio 1 00560 Helsinki Finland
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University Espoo Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University Espoo Finland
| | - Daniel Rico Del Cerro
- Department of Chemistry, University of Helsinki AI Virtasen aukio 1 00560 Helsinki Finland
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kortrijk Etienne Sabbelaan 53 8500 Kortrijk Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kortrijk Etienne Sabbelaan 53 8500 Kortrijk Belgium
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University Espoo Finland
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia Vancouver BC Canada
| | - Ilkka Kilpeläinen
- Department of Chemistry, University of Helsinki AI Virtasen aukio 1 00560 Helsinki Finland
| | - Alistair W T King
- Department of Chemistry, University of Helsinki AI Virtasen aukio 1 00560 Helsinki Finland
- VTT Technical Research Centre of Finland Ltd Tietotie 4e 02150 Espoo Finland
| |
Collapse
|
21
|
Torgbo S, Sukatta U, Kamonpatana P, Sukyai P. Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chem 2022; 382:132332. [DOI: 10.1016/j.foodchem.2022.132332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/21/2023]
|
22
|
Elucidation of substituent distribution states for carboxymethyl chitosan by detailed NMR analysis. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
23
|
Cai Z, Zhang H. The effect of carboxymethylation on the macromolecular conformation of the (1 → 3)-β -D-glucan of curdlan in water. Carbohydr Polym 2021; 272:118456. [PMID: 34420716 DOI: 10.1016/j.carbpol.2021.118456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
The chain conformational change in curdlan during carboxymethylation was investigated using nuclear magnetic resonance (NMR), circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM). The distributions of carboxymethyl substituents within anhydroglucose unit (AGU) of CMCD were found to follow the order of OH (6) > OH (4) > OH (2) for CMCD with a low DS and OH (6) > OH (2) > OH (4) for CMCD with relatively high DS. The increased carboxymethylation level induced the chain conformation transition of curdlan from triple helix to random coil in water. The DS of 0.25 was the critical value of chain conformation transition, below which CMCD chains were triple helices. For DS larger than 0.25, CMCD existed in the state of random coils. The intermolecular hydrogen bonding between C2 hydroxyls in AGU sustained the triple helical conformation and stiffness of the polymer chain, which weakened with the increase in DS.
Collapse
Affiliation(s)
- Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Elschner T, Brendler E, Fischer S. Highly Selective Mitsunobu Esterification of Cellulose with Hydroxycinnamic Acids. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thomas Elschner
- Institute of Plant and Wood Chemistry Technische Universität Dresden Pienner Str. 19 Tharandt 01737 Germany
| | - Erica Brendler
- Institute of Analytical Chemistry TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry Technische Universität Dresden Pienner Str. 19 Tharandt 01737 Germany
| |
Collapse
|
25
|
Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 2021; 595:560-564. [PMID: 34262176 DOI: 10.1038/s41586-021-03727-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
The balance between bacterial colonization and its containment in the intestine is indispensable for the symbiotic relationship between humans and their bacteria. One component to maintain homeostasis at the mucosal surfaces is immunoglobulin A (IgA), the most abundant immunoglobulin in mammals1,2. Several studies have revealed important characteristics of poly-reactive IgA3,4, which is produced naturally without commensal bacteria. Considering the dynamic changes within the gut environment, however, it remains uncertain how the commensal-reactive IgA pool is shaped and how such IgA affects the microbial community. Here we show that acetate-one of the major gut microbial metabolites-not only increases the production of IgA in the colon, but also alters the capacity of the IgA pool to bind to specific microorganisms including Enterobacterales. Induction of commensal-reactive IgA and changes in the IgA repertoire by acetate were observed in mice monocolonized with Escherichia coli, which belongs to Enterobacterales, but not with the major commensal Bacteroides thetaiotaomicron, which suggests that acetate directs selective IgA binding to certain microorganisms. Mechanistically, acetate orchestrated the interactions between epithelial and immune cells, induced microbially stimulated CD4 T cells to support T-cell-dependent IgA production and, as a consequence, altered the localization of these bacteria within the colon. Collectively, we identified a role for gut microbial metabolites in the regulation of differential IgA production to maintain mucosal homeostasis.
Collapse
|
26
|
Yadav N, Adolfsson KH, Hakkarainen M. Carbon Dot-Triggered Photocatalytic Degradation of Cellulose Acetate. Biomacromolecules 2021; 22:2211-2223. [PMID: 33905248 PMCID: PMC8382246 DOI: 10.1021/acs.biomac.1c00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Chemical modification
of biopolymers, before use in thermoplastic
applications, can reduce the susceptibility to open environment degradation.
We demonstrate carbon dots (CDs) as green photocatalytic triggers
that can render the common cellulose derivative, cellulose acetate
(CA), degradable under open environment relevant conditions. CD-modified
cellulose acetate (CA + CD) films were subjected to UV-A irradiation
in air and simulated sea water, and the degradation process was mapped
by multiple spectroscopic, chromatographic, and microscopy techniques.
The addition of CDs effectively catalyzed the deacetylation reaction,
the bottleneck preventing biodegradation of CA. The photocatalytically
activated degradation process led to significant weight loss, release
of small molecules, and regeneration of cellulose fibers. The weight
loss of CA + CD after 30 days of UV-A irradiation in air or simulated
sea water was 53 and 43%, respectively, while the corresponding values
for plain CA films were 12 and 4%. At the same time the weight average
molar mass of CA + CD decreased from 62,000 to 11,000 g/mol and 15,000
g/mol during UV-A irradiation in air and simulated sea water, respectively,
and the degree of substitution (DS) decreased from 2.2 to 1.6 both
in air and in water. The aging in water alone did not affect the weight
average molar mass, but the DS was decreased to 1.9. Control experiments
confirmed the generation of hydrogen peroxide when aqueous CD dispersion
was subjected to UV-A irradiation, indicating a free radical mechanism.
These results are promising for the development of products, such
as mulching films, with photocatalytically triggered environmental
degradation processes.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 100 44, Sweden.,Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, Teknikringen 56, Stockholm 100 44, Sweden
| | - Karin H Adolfsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 100 44, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 100 44, Sweden.,Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, Teknikringen 56, Stockholm 100 44, Sweden
| |
Collapse
|
27
|
Chen T, Liu H, Liu J, Li J, An Y, Zhu M, Chen B, Liu F, Liu R, Si C, Zhang M. Carboxymethylation of polysaccharide isolated from Alkaline Peroxide Mechanical Pulping (APMP) waste liquor and its bioactivity. Int J Biol Macromol 2021; 181:211-220. [PMID: 33771550 DOI: 10.1016/j.ijbiomac.2021.03.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023]
Abstract
In recent years, the biological activity of polysaccharides and their derivatives has been widely studied. However, in addition to the natural polysaccharides directly extracted from plants and animals, there are rich polysaccharides in the pulping waste liquor that have not been fully utilized. The extracted polysaccharide from eucalyptus Alkaline Peroxide Mechanical Pulping (APMP) waste liquor was used as a raw material. For the production of carboxymethyl polysaccharide, the effects of temperature (T), the amount of alkali (NaOH) and the amount of etherifying agent (ClCH2COOH) on the degree of substitution (DS) were investigated, the optimal preparation conditions are: reaction time 2 h, temperature 75 °C, and the molar ratio of polysaccharide, NaOH and ClCH2COOH is 1:1:2, the highest DS is 1.47; FT-IR, NMR and GPC were used to characterize the structure and Molecular weight, the results show that the polysaccharide of APMP waste liquor is rich in xylan, and it was proved that the carboxymethyl substitution was successful and the positions of the substituent group were determined. The characterization and biological activity research of xylan polysaccharide (XP) and carboxymethyl xylan polysaccharide (CMXP), such as antioxidation, moisture absorption/retention, bacteriostatic action and cytotoxicity were discussed. CMXP shows better effects compared with XP.
Collapse
Affiliation(s)
- Ting Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haitang Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongzhen An
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingqiang Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Beibei Chen
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Fufeng Liu
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chuanling Si
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
28
|
Highly Norbornylated Cellulose and Its "Click" Modification by an Inverse-Electron Demand Diels-Alder (iEDDA) Reaction. Molecules 2021; 26:molecules26051358. [PMID: 33806278 PMCID: PMC7961350 DOI: 10.3390/molecules26051358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
A facile, catalyst-free synthesis of a norbornylated cellulosic material (NC) with a high degree of substitution (2.9) is presented by direct reaction of trimethylsilyl cellulose with norbornene acid chloride. The resulting NC is highly soluble in organic solvents and its reactive double bonds were exploited for the copper-free inverse-electron demand Diels–Alder (iEDDA) “click” reaction with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine. Reaction kinetics are comparable to the well-known Huisgen type 1,3-dipolar cycloaddition of azide with alkynes, while avoiding toxic catalysts.
Collapse
|
29
|
Madub K, Goonoo N, Gimié F, Ait Arsa I, Schönherr H, Bhaw-Luximon A. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr Polym 2021; 251:117025. [DOI: 10.1016/j.carbpol.2020.117025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/23/2023]
|
30
|
Da Ros S, Aliev AE, del Gaudio I, King R, Pokorska A, Kearney M, Curran K. Characterising plasticised cellulose acetate-based historic artefacts by NMR spectroscopy: A new approach for quantifying the degree of substitution and diethyl phthalate contents. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Villanueva-Solís Luis A, Ruíz-Cuilty K, Camacho-Dávila A, Espinoza-Hicks J, González-Sánchez G, Ballinas-Casarrubias L. Lignocellulosic waste pretreatment and esterification using green solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Swartz JL, Li RL, Dichtel WR. Incorporating Functionalized Cellulose to Increase the Toughness of Covalent Adaptable Networks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44110-44116. [PMID: 32885651 DOI: 10.1021/acsami.0c09215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent adaptable networks (CANs) are cross-linked polymers that have mechanical properties similar to thermosets at operating conditions yet can be reprocessed by cross-link exchange reactions that are activated by a stimulus. Although CAN exchange dynamics have been studied for many polymer compositions, the tensile properties of these demonstration systems are often inferior compared to those of commercial thermosets. In this study, we explore toughening CANs capable of forming covalent bonds with a reactive filler to characterize the trade-off between improved toughness and longer reprocessing times. Polycarbonate (PC) and polyurethane (PU) CANs were toughened by incorporating cellulose modified with cyclic carbonate groups as a reactive filler with loadings from 1.3 to 6.6 wt %. The addition of 6.6 wt % of the cellulose derivative resulted in a 3.2-fold increase in average toughness for the PC CANs, yet it only increased the characteristic relaxation time of stress relaxation (τ*) via disulfide exchange at 180 °C from 63 to 365 s. The cellulose-containing samples also showed >80% recovery in crosslinking density and mechanical properties after reprocessing. The addition of 3.2 wt % of the functionalized cellulose into a polyethylene glycol-based PU CAN led to a 2.3-fold increase in toughness while increasing τ* at 140 °C from 106 to 157 s. These findings demonstrate the promise of functionalized cellulose as an inexpensive, renewable, and sustainable filler that toughens CANs containing hydroxyl groups.
Collapse
Affiliation(s)
- Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca L Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
Wei L, Song J, Cheng B, Yang Z. Synthesis, characterization and antibacterial properties of novel cellulose acetate sorbate. Carbohydr Polym 2020; 243:116416. [DOI: 10.1016/j.carbpol.2020.116416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022]
|
34
|
Kono H, Numata J. Substituent distribution of propyl cellulose studied by nuclear magnetic resonance. Carbohydr Res 2020; 495:108067. [PMID: 32739678 DOI: 10.1016/j.carres.2020.108067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022]
Abstract
A series of propyl cellulose (PC) samples with different degrees of substitution (DS) ranging from 0.34 to 2.02 were prepared by a slurry method using propyl bromide as the etherification reagent. Two-dimensional nuclear magnetic resonance (NMR) studies were performed to identify the 1H and 13C chemical shifts of eight anhydroglucose units (AGUs) in PC chains including un-, 2-mono-, 3-mono-, 6-mono-, 2,3-di-, 2,6-di-, 3,6-di-, and 2,3,6-tri-substituted ones. In addition, the mole fractions (χ) of these AGUs in the studied PC samples and their changes with DS were determined from the quantitative 13C NMR spectra. The obtained χ-DS profiles were different from those of methyl and ethyl celluloses prepared by a similar slurry method, indicating that the molecular sizes of the substituent reagents utilized for cellulose ethers strongly affected their substituent distributions.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido, 059 1275, Japan.
| | - Jun Numata
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido, 059 1275, Japan
| |
Collapse
|
35
|
Gustavsson LH, Adolfsson KH, Hakkarainen M. Thermoplastic "All-Cellulose" Composites with Covalently Attached Carbonized Cellulose. Biomacromolecules 2020; 21:1752-1761. [PMID: 32049502 PMCID: PMC7307885 DOI: 10.1021/acs.biomac.9b01672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thermoplastic "all-cellulose" composites were synthesized by covalent functionalization of cellulose acetate (CA) with oxidized carbonized cellulose (OCC). The OCC were manufactured via microwave-assisted hydrothermal carbonization (HTC) of cellulose followed by oxidation and dialysis. The OCC were of micrometer-size, had plane morphology and contained a variety of oxygen functionalities, enabling transformation into acyl chlorinated OCC under moderate reaction conditions. The synthesis of OCC-modified CA composites and neat CA were performed in the recyclable ionic liquid 1-allyl-3-methylimidazolium chloride. The degree of acetylation and amount of OCC were varied to establish their influence on thermal and physical properties of the composites. The OCC-modified CA composites displayed a notably enhanced film-forming ability, which led to improved optical and mechanical properties compared to neat CA. In addition, it was shown that OCC-modified CA composites can be synthesized from waste products, such as paper tissues. The OCC-modification was demonstrated to be a promising route to transparent and strong thermoplastic "all-cellulose" composites with moderate flexibility.
Collapse
Affiliation(s)
- Lotta H Gustavsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Karin H Adolfsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| |
Collapse
|
36
|
Xu J, Andrews TD, Shi Y. Recent Advances in the Preparation and Characterization of Intermediately to Highly Esterified and Etherified Starches: A Review. STARCH-STARKE 2020. [DOI: 10.1002/star.201900238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jianteng Xu
- Department of Grain Science and IndustryKansas State University Manhattan KS 66506 USA
- Grain Processing Corporation Muscatine IA 52761 USA
| | | | - Yong‐Cheng Shi
- Department of Grain Science and IndustryKansas State University Manhattan KS 66506 USA
| |
Collapse
|
37
|
Bu D, Hu X, Yang Z, Yang X, Wei W, Jiang M, Zhou Z, Zaman A. Elucidation of the Relationship between Intrinsic Viscosity and Molecular Weight of Cellulose Dissolved in Tetra-N-Butyl Ammonium Hydroxide/Dimethyl Sulfoxide. Polymers (Basel) 2019; 11:E1605. [PMID: 31581542 PMCID: PMC6836168 DOI: 10.3390/polym11101605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022] Open
Abstract
The determination of molecular weight of natural cellulose remains a challenge nowadays, due to the difficulty in dissolving cellulose. In this work, tetra-n-butylammonium hydroxide (TBAH) and dimethyl sulfoxide (DMSO) aqueous solution (THDS) were used to dissolve cellulose in a few minutes under room temperature into true molecular solutions. That is to say, the cellulose was dissolved in the solution in molecular level, and the viscosity of the solution is linearly dependent on the concentration of cellulose. The relationship between the molecular weight of cellulose and the intrinsic viscosity tested in such dilute solutions has been established in the form of the Mark-Houwink equation, η=0.24×DP1.21. The value of 1.21 indicates that the cellulose molecules dissolve in THDS quite well. The cellulose dispersion in the THDS was proved to be in molecular level by atomic force microscope (AFM) and dynamic light scattering (DLS). The reliability of the established Mark-Houwink equation was cross-checked by the gel permeation chromatography (GPC) and traditional copper (II) ethylenediamine (CED) method. No considerate degradation was observed by comparing the intrinsic viscosity and the degree of polymerization (DP) values of the original with and the regenerated cellulose samples. The natural cellulose can be molecularly dispersed in the multiple-component solvent (THDS), and kept stable for a certain period. A time efficient and reliable method has been supplied for determination of the degree of polymerization and the molecular weight of cellulose.
Collapse
Affiliation(s)
- Daqin Bu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiangzhou Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhijie Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xue Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wei Wei
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Man Jiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zuowan Zhou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ahsan Zaman
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
38
|
Position of acetyl groups on anhydroglucose unit in acetylated starches with intermediate degrees of substitution. Carbohydr Polym 2019; 220:118-125. [DOI: 10.1016/j.carbpol.2019.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022]
|
39
|
Wang Z, Huang W, Yang G, Liu Y, Liu S. Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater. Carbohydr Polym 2019; 215:179-188. [DOI: 10.1016/j.carbpol.2019.03.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
|
40
|
Volokhova AS, Waugh JB, Arrington KJ, Matson JB. Effects of graft polymer compatibilizers in blends of cellulose triacetate and poly(lactic acid). POLYM INT 2019. [DOI: 10.1002/pi.5820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anastasia S Volokhova
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - John B Waugh
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - Kyle J Arrington
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| |
Collapse
|
41
|
Amaral HR, Cipriano DF, Santos MS, Schettino MA, Ferreti JV, Meirelles CS, Pereira VS, Cunha AG, Emmerich FG, Freitas JC. Production of high-purity cellulose, cellulose acetate and cellulose-silica composite from babassu coconut shells. Carbohydr Polym 2019; 210:127-134. [DOI: 10.1016/j.carbpol.2019.01.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/30/2022]
|
42
|
Olaru N, Anghel N, Pascariu P, Ailiesei G. Synthesis and testing of cellulose acetate nicotinate as adsorbent for rhodamine B dye. J Appl Polym Sci 2019. [DOI: 10.1002/app.47772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niculae Olaru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Aley, 41A Iasi 700487 Romania
| | - Narcis Anghel
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Aley, 41A Iasi 700487 Romania
| | - Petronela Pascariu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Aley, 41A Iasi 700487 Romania
| | - Gabriela Ailiesei
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Aley, 41A Iasi 700487 Romania
| |
Collapse
|
43
|
Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2576-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Nikolaeva D, Azcune I, Tanczyk M, Warmuzinski K, Jaschik M, Sandru M, Dahl PI, Genua A, Loïs S, Sheridan E, Fuoco A, Vankelecom IF. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Biswas A, Kim S, Ferro Furtado R, Roberto Alves C, Buttrum M, Boddu V, Cheng HN. Metal chloride-catalyzed acetylation of starch: Synthesis and characterization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1512465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Atanu Biswas
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Sanghoon Kim
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | | | - Megan Buttrum
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Veera Boddu
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - H. N. Cheng
- USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| |
Collapse
|
46
|
Harini K, Ramya K, Sukumar M. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydr Polym 2018; 201:329-339. [PMID: 30241826 DOI: 10.1016/j.carbpol.2018.08.081] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/25/2018] [Accepted: 08/19/2018] [Indexed: 01/24/2023]
Abstract
The principal aim of the present study is to develop a method for the production of cellulose nanofibers, from the banana peel (BP) and bract (BB). It is also the aim of this study to produce cellulose-based biopolymers through acetyl and lauroyl modifications. The microwave digestion method and ball milling assisted ultra-sonication method was optimized for sustainable extraction of micro and nano cellulose fibers, respectively. The microwave digestion method was found to be effective in the removal of hemicellulose and lignin. Micro and nano cellulose fibers of BP and BB were found to contain type I cellulose structure. Thermal stability and crystallinity index of cellulose nanofibers were examined to be higher than it's native micro cellulose. Nano cellulose fibers were examined to be a potential source for production of acetyl and lauroyl cellulose, with a high degree of substitution and thermal stability. Hence, microwave digestion and ball milling assisted ultra-sonication method was proven to be effective in the extraction of nano cellulose fiber for development of cellulose-based polymers.
Collapse
Affiliation(s)
- K Harini
- Centre for Food Technology, Anna University, Sardar Patel Road, Guindy, Chennai, Tamil Nadu, India
| | - K Ramya
- Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India
| | - M Sukumar
- Centre for Food Technology, Anna University, Sardar Patel Road, Guindy, Chennai, Tamil Nadu, India.
| |
Collapse
|
47
|
Laaksonen T, Helminen JKJ, Lemetti L, Långbacka J, Rico del Cerro D, Hummel M, Filpponen I, Rantamäki AH, Kakko T, Kemell ML, Wiedmer SK, Heikkinen S, Kilpeläinen I, King AWT. WtF-Nano: One-Pot Dewatering and Water-Free Topochemical Modification of Nanocellulose in Ionic Liquids or γ-Valerolactone. CHEMSUSCHEM 2017; 10:4879-4890. [PMID: 29112334 PMCID: PMC5765465 DOI: 10.1002/cssc.201701344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Indexed: 06/01/2023]
Abstract
Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water-free topochemical modification of the nanocellulose (a process denoted as "WtF-Nano"). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co-solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non-dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide-angle X-ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1 D and 2 D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters.
Collapse
Affiliation(s)
- Tiina Laaksonen
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Jussi K. J. Helminen
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Laura Lemetti
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
- Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityEspoo00076Finland
| | - Jesper Långbacka
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | | | - Michael Hummel
- Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityEspoo00076Finland
| | - Ilari Filpponen
- Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityEspoo00076Finland
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical EngineeringAuburn UniversityAuburn, AL36849-5127United States
| | - Antti H. Rantamäki
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Tia Kakko
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Marianna L. Kemell
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Susanne K. Wiedmer
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Sami Heikkinen
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Ilkka Kilpeläinen
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| | - Alistair W. T. King
- Chemistry DepartmentUniversity of HelsinkiAI Virtasen Aukio 1Helsinki00014Finland
| |
Collapse
|
48
|
Ramphul H, Bhaw-Luximon A, Jhurry D. Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydr Polym 2017; 178:238-250. [PMID: 29050590 DOI: 10.1016/j.carbpol.2017.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/21/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022]
Abstract
Bagasse is a waste product of sugar extraction from sugar-cane with approximately 30% cellulose content. Cellulose was successfully extracted from sugar-cane bagasse using a modified mercerization-bleaching approach with a 40% yield. Extracted cellulose was converted to cellulose acetate for enhanced electrospinnability and blended with poly-l-Lactide or polydioxanone before solution electrospinning. Physico-chemical evaluation of the electrospun mats showed variable miscibility of blends. In vitro cell studies with L929 mouse fibroblast cells was quite conclusive as regards the biocompatibility of the blended mats with proliferative behavior of cells, extracellular matrix deposition and characteristic features of healthy cellular response. MTT assay indicated that the cellulose blended mats induced higher cell densities than the controls. Cellulose content influenced parameters such as fiber diameter, porosity and cell-matrix interaction of mats impacting on cell growth and behavior. Preliminary assessment of biomineralization potential of the mats by SEM showed nano-hydroxyapatite deposits on the electrospun fibers.
Collapse
Affiliation(s)
- Honita Ramphul
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius.
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| |
Collapse
|
49
|
Wang H, Wen X, Zhang X, Liu C. Acetylation of Microcrystalline Cellulose by Transesterification in AmimCl/DMSO Cosolvent System. Molecules 2017; 22:molecules22091419. [PMID: 28846619 PMCID: PMC6151486 DOI: 10.3390/molecules22091419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, IL/cosolvent systems have generated a lot of interest as cellulose-dissolving solvents and reaction media for various kinds of cellulose modification. In the present study, both 1-allyl-3-methylimidazolium chloride (AmimCl)/dimethyl sulfoxide (DMSO) and AmimCl/N,N-dimethylformamide (DMF) systems were employed to synthesize cellulose acetate by transesterification. Microcrystalline cellulose, 1,8-diazabicyclo[5.4.0]undec-7-ene and isopropenyl acetate were chosen as the raw material, catalyst and acetylation reagent, respectively. The results revealed that DMSO was a suitable cosolvent for the transesterification in the homogeneous solution. Moreover, DMSO had a positive effect on the reaction as the cosolvent under the given conditions and the degree of the substitution of cellulose acetate could be significantly enhanced through increasing the molar ratio of DMSO. The synthesized products were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR), correlation spectroscopy (COSY), heteronuclear single quantum correlation (HSQC) spectroscopy, and X-ray diffraction (XRD) to confirm the chemical and physical structure of the cellulose acetate generated. The thermal properties were also evaluated using thermogravimetric analysis (TGA)/derivative thermogravimetry (DTG).
Collapse
Affiliation(s)
- Huihui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiaoxiang Wen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xueqin Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
50
|
Kono H, Oka C, Kishimoto R, Fujita S. NMR characterization of cellulose acetate: Mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances. Carbohydr Polym 2017; 170:23-32. [DOI: 10.1016/j.carbpol.2017.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/03/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
|