1
|
Liu H, Yang J, Tang Y, Xia X, Lin J. Carboxymethyl polysaccharides from Poria cocos (Schw.) wolf: Structure, immunomodulatory, anti-inflammatory, tumor cell proliferation inhibition and antioxidant activity. Int J Biol Macromol 2025; 299:140104. [PMID: 39842593 DOI: 10.1016/j.ijbiomac.2025.140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
This study comprehensively explores the relationship between the structure of carboxymethyl-pachymaran (CMP) and its diverse biological activities, including immunomodulation, anti-inflammatory effects, tumor cell proliferation inhibition, and antioxidant activity. By adjusting preparation parameters, highly purified CMP samples with varying degrees of substitution (DS) and molecular weights (Mw) were successfully obtained. The results indicate that CMP, composed primarily of β-D-glucan, exhibits different levels of activity depending on its structural characteristics. In terms of immunomodulation, CMP with medium Mw demonstrates the strongest activity, while CMP with a high DS promotes nitric oxide (NO) synthesis most effectively, and a moderate DS supports optimal tumor necrosis factor-alpha (TNF-α) synthesis. For anti-inflammatory activity, CMP with a moderate DS effectively inhibits NO production, while a low DS is most effective against TNF-α inhibition. Larger Mw consistently enhances the inhibitory effects on NO and TNF-α synthesis. Dectin-1 is identified as one of the receptors mediating CMP's immunomodulatory effects. Furthermore, CMP with a moderate DS and high Mw exhibit superior performance in inhibiting HepG-2 cell proliferation and scavenging DPPH free radicals, respectively. This study enriches understanding of β-glucan's structure-activity relationship and lays a theoretical foundation for its medical and healthcare applications.
Collapse
Affiliation(s)
- Haocheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No.133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Yuqian Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Xiaole Xia
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Jinxin Lin
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China..
| |
Collapse
|
2
|
Pan Y, Zhu C, Yue X, Liu C, Guo R, Guo Y. High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates. Int J Biol Macromol 2025; 296:139531. [PMID: 39761896 DOI: 10.1016/j.ijbiomac.2025.139531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity. Subsequent tests had also confirmed that the emulsion prepared under this pH condition had the best performance. As expected, droplet size, apparent viscosity, and viscoelasticity of HIPEs stabilized by PE-PPCs were related to varying degrees with pH values, PE-PPC concentrations (c), and oil phase volume fraction (φ). Finally, the optimal conditions (pH 10.0, PE-PPCs concentration of 30 mg/mL, φ = 0.77) were obtained. Our findings in this study can be helpful for the preparation of food-grade HIPEs, and also have reference value in the field of studying the stability of protein-polysaccharide conjugates at the oil-water interface.
Collapse
Affiliation(s)
- Yuqian Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China.
| | - Xiaoxia Yue
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Chu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Rui Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| |
Collapse
|
3
|
Li T, Wang Q, Rui C, Ren L, Dai M, Bi Y, Yang Y. Targeted isolation and AI-based analysis of edible fungal polysaccharides: Emphasizing tumor immunological mechanisms and future prospects as mycomedicines. Int J Biol Macromol 2025; 284:138089. [PMID: 39603293 DOI: 10.1016/j.ijbiomac.2024.138089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Edible fungal polysaccharides have emerged as significant bioactive compounds with diverse therapeutic potentials, including notable anti-tumor effects. Derived from various fungal sources, these polysaccharides exhibit complex biological activities such as antioxidant, immune-modulatory, anti-inflammatory, and anti-obesity properties. In cancer therapy, members of this family show promise in inhibiting tumor growth and metastasis through mechanisms like apoptosis induction and modulation of the immune system. This review provides a detailed examination of contemporary techniques for the targeted isolation and structural elucidation of edible fungal polysaccharides. Additionally, the review highlights the application of advanced artificial intelligence (AI) methodologies to facilitate efficient and accurate structural analysis of these polysaccharides. It also explores their interactions with immune cells within the tumor microenvironment and their role in modulating gut microbiota, which can enhance overall immune function and potentially reduce cancer risks. Clinical studies further demonstrate their efficacy in various cancer treatments. Overall, edible fungal polysaccharides represent a promising frontier in cancer therapy, leveraging their natural origins and minimal toxicity to offer novel strategies for comprehensive cancer management.
Collapse
Affiliation(s)
- Tingting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China; College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qin Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuang Rui
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lu Ren
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Mingcheng Dai
- Clinical Medical Institute, Harbin Medical University, Harbin, China
| | - Yong Bi
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; National Engineering Research Center of Edible Fungi; Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
4
|
Shi H, Zhang S, Zhu M, Li X, Jie W, Kan L. Extraction Optimization, Structural Analysis, and Potential Bioactivities of a Novel Polysaccharide from Sporisorium reilianum. Antioxidants (Basel) 2024; 13:965. [PMID: 39199211 PMCID: PMC11352142 DOI: 10.3390/antiox13080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Sporisorium reilianum is an important biotrophic pathogen that causes head smut disease. Polysaccharides extracted from diseased sorghum heads by Sporisorium reilianum exhibit significant medicinal and edible value. However, the structure and biological activities of these novel polysaccharides have not been explored. In this study, a novel polysaccharide (WM-NP'-60) was isolated and purified from the fruit bodies of S. reilianum and aimed to explore the structural characteristics and substantial antioxidant and antitumor properties of WM-NP'-60. Monosaccharide composition determination, periodate oxidation-Smith degradation, 1D/2D-NMR analysis, and methylation analysis revealed that WM-NP'-60 consisted mainly of β-1,6-D-Glcp, β-1,3-D-Glcp, and β-1,3,6-D-Glcp linkages. The antioxidant assays demonstrated that WM-NP'-60 exhibited great activities, including scavenging free radicals, chelating ferrous ions, and eliminating reactive oxygen species (ROS) within cells. The HepG2, SGC7901, and HCT116 cells examined by transmission electron microscopy (TEM) revealed typical apoptotic bodies. Therefore, a novel fungal polysaccharide (WM-NP'-60) was discovered, extracted, and purified in this experiment, with the aim of providing a reference for the development of a new generation of food and nutraceutical products suitable for human consumption.
Collapse
Affiliation(s)
- He Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Siyi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Mandi Zhu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Xiaoyan Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Weiguang Jie
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Lianbao Kan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| |
Collapse
|
5
|
Pang X, Wang H, Guan C, Chen Q, Cui X, Zhang X. Impact of Molecular Weight Variations in Dendrobium officinale Polysaccharides on Antioxidant Activity and Anti-Obesity in Caenorhabditis elegans. Foods 2024; 13:1040. [PMID: 38611346 PMCID: PMC11011358 DOI: 10.3390/foods13071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This research investigates the impact of Dendrobium officinale polysaccharides (DOP) with different molecular weights on antioxidant effects, lifespan enhancement, and obesity reduction, utilizing both in vitro analyses and the Caenorhabditis elegans (C. elegans) model. Through a series of experiments-ranging from the extraction and modification of polysaccharides, Gel Permeation Chromatography (GPC), and analysis of composition to the evaluation of antioxidant capabilities, this study thoroughly examines DOP and its derivatives (DOP5, DOP15, DOP25) produced via H2O2-Fe2+ degradation. The results reveal a direct relationship between the molecular weight of polysaccharides and their bioactivity. Notably, DOP5, with its intermediate molecular weight, demonstrated superior antioxidant properties, significantly extended the lifespan, and improved the health of C. elegans. Furthermore, DOP15 appeared to regulate lipid metabolism by affecting crucial lipid metabolism genes, including fat-4, fat-5, fat-6, sbp-1, and acs-2. These findings highlight the potential application of DOP derivatives as natural antioxidants and agents against obesity, contributing to the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuqing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (H.W.); (C.G.); (Q.C.); (X.C.)
| |
Collapse
|
6
|
Dai Y, Ma S, Zhu Y, Gontcharov AA, Liu Y, Wang Q. Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice. Molecules 2023; 28:5825. [PMID: 37570797 PMCID: PMC10421243 DOI: 10.3390/molecules28155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Flammulina rossica fermentation extract (FREP) was obtained by ethanol precipitation of the fermentation broth. The molecular weight of FREP is 28.52 kDa, and it mainly contains active ingredients such as polysaccharides, proteins, reducing sugars, and 16 amino acids. Among them, the polysaccharides were mannose, glucose, galactose, arabinose, and fucose and possessed β-glycosidic bonds. Furthermore, the immunoregulatory activities of FREP were investigated in vivo. The results demonstrated that FREP could increase the counts of CD4+ T lymphocytes and the ratio of CD4+/CD8+ in a dose-dependent manner in healthy mice. In addition, FREP significantly increased serum cytokines, including IL-2, IL-8, IL-10, IL-12, IL-6, IL-1β, INF-γ, C-rection protein, and TNF-α, and promoted splenocyte proliferation in healthy mice. Finally, FREP could restore the counts of white blood cells, red blood cells, secretory immunoglobulin A, and antibody-forming cells and significantly promote the serum haemolysin level in mice treated with cyclophosphamide. The findings indicated that FREP possessed immunoregulatory activity in healthy mice and could improve the immune functions in immunosuppressive mice. Therefore, FREP could be exploited as an immunomodulatory agent and potential immunotherapeutic medicine for patients with inadequate immune function.
Collapse
Affiliation(s)
- Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Sijia Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Yanyan Zhu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
| | - Andrey A. Gontcharov
- Institute of Biology and Soil Science, FEB RAS, 100-Letia Vladivostoka Prospect, 159, Vladivostok 690022, Russia;
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
| |
Collapse
|
7
|
Zhang S, Li Y, Li Z, Liu W, Zhang H, Ohizumi Y, Nakajima A, Xu J, Guo Y. Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydr Polym 2022; 295:119794. [DOI: 10.1016/j.carbpol.2022.119794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
|
8
|
Gong P, Long H, Guo Y, Wang S, Chen F, Chen X. Isolation, Structural Characterization, and Hypoglycemic Activities In Vitro of Polysaccharides from Pleurotus eryngii. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207140. [PMID: 36296732 PMCID: PMC9609144 DOI: 10.3390/molecules27207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Pleurotus eryngii (PE) is an edible mushroom with high nutritional value. Pleurotus eryngii polysaccharides (PEPs) are one of the main active ingredients and manifest a great variety of biological activities. This study mainly focused on the chemical characterization and biological activities of PEPs, which were separated into two fractions (named WPS and P-1). WPS is mainly dominated by β-glycosidic bonds and contains α-glycosidic bonds, and P-1 only contains α-glycosidic bonds. The molecular weights of WPS and P-1 were 4.5 × 105 Da and 2.2 × 104 Da. The result of GC indicated that two the fractions were composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose, with a ratio of 0.35:0.24:0.45:0.24:28.78:1.10 for WPS and 0.95:0.64:0.66:1.84:60.69:0.67 for P-1. The advanced structure studies indicated that the two fractions had no triple-helical structure, where WPS had a dense structure and P-1 had a loose structure. In addition, the antioxidant activity of WPS surpassed P-1, and the two fractions also exhibited a high hypoglycemic activity via inhibiting α-glycosidase activities and promoting the expression of PI3K-AKT signaling pathway based on in vitro assay and cell experiments.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Siyuan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: ; Tel.: +86-13772196479
| |
Collapse
|
9
|
Song X, Xu X, Chen W. Antioxidant and Immunostimulatory Activities of Fermented Sour Soybean Milk Added With Polypeptides From Pleurotus eryngii. Front Microbiol 2022; 13:750039. [PMID: 35783426 PMCID: PMC9240747 DOI: 10.3389/fmicb.2022.750039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The improved quality of sour soybean milk by adding polypeptide from Pleurotus eryngii was investigated in this study, and the immunomodulatory effect of sour soybean milk fermented with polypeptides from P. eryngii was also evaluated in immunosuppressed mice induced by cyclophosphamide. Results showed the physicochemical property of sour soybean milk fermented with small-molecular-weight polypeptide (<3 kDa) were superior to the others including the decrease of pH, and increase of acidity, water-holding capacity and lactic acid bacteria count. The animal experiment demonstrated that sour soybean milk with polypeptide could effectively reverse the decreasing trend of thymus/spleen index and hematological parameters, enhance murine immune functions including serum hemolysin and splenic lymphocyte proliferation, and inhibit oxidative stress. In addition, sour soybean milk fermented with polypeptide could increase the diversity of intestinal flora, and increase the abundances of Firmicutes, Bacteroides, and Lactobacillus. Taken together, it could provide a theoretical basis for developing an immunomodulatory agent or functional food additives with antioxidant activity.
Collapse
Affiliation(s)
- Xinling Song
- College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Ximin Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Wei Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
- *Correspondence: Wei Chen,
| |
Collapse
|
10
|
Wang X, Qu Y, Wang Y, Wang X, Xu J, Zhao H, Zheng D, Sun L, Tai G, Zhou Y, Cheng H. β-1,6-Glucan From Pleurotus eryngii Modulates the Immunity and Gut Microbiota. Front Immunol 2022; 13:859923. [PMID: 35585984 PMCID: PMC9108243 DOI: 10.3389/fimmu.2022.859923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Polysaccharides from Pleurotus eryngii exhibit a variety of biological activities. Here, we obtained a homogeneous branched β-1,6-glucan (APEP-A-b) from the fruiting bodies of P. eryngii and investigated its effect on immunity and gut microbiota. Our results showed that APEP-A-b significantly increases splenic lymphocyte proliferation, NK cell activity and phagocytic capacity of peritoneal cavity phagocytes. Furthermore, we found that the proportion of CD4+ and CD8+ T cells in lamina propria are significantly increased upon APEP-A-b treatment. Additionally, APEP-A-b supplementation demonstrated pronounced changes in microbiota reflected in promotion of relative abundances of species in the Lachnospiraceae and Rikenellaceae families. Consistently, APEP-A-b significantly increased the concentration of acetic and butyric acid in cecum contents. Overall, our results suggest that β-1,6-glucan from P. eryngii might enhance immunity by modulating microbiota. These results are important for the processing and product development of P. eryngii derived polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yifa Zhou
- *Correspondence: Yifa Zhou, ; Hairong Cheng,
| | | |
Collapse
|
11
|
Tao S, Ren Z, Yang Z, Duan S, Wan Z, Huang J, Liu C, Wei G. Effects of Different Molecular Weight Polysaccharides From Dendrobium officinale Kimura & Migo on Human Colorectal Cancer and Transcriptome Analysis of Differentially Expressed Genes. Front Pharmacol 2021; 12:704486. [PMID: 34925000 PMCID: PMC8678483 DOI: 10.3389/fphar.2021.704486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated the antitumor effects of four fractions of Dendrobium officinale Kimura & Migo (D. officinale) polysaccharides with different molecular weights (Mw), Astragalus membranaceus polysaccharides (APS) and Lentinus edodes polysaccharides (LNT) on colorectal cancer (CRC) using a zebrafish xenograft model. Transcriptome sequencing was performed to further explore the possible antitumor mechanisms of D. officinale polysaccharides. Fractions of D. officinale polysaccharides, LNT, and APS could significantly inhibit the growth of HT-29 cells in a zebrafish xenograft model. One fraction of D. officinale polysaccharides called DOPW-1 (Mw of 389.98 kDa) exhibited the strongest tumor inhibition. Compared with the control group, RNA-seq revealed that the DOPW-1–treated experimental group had 119 differentially expressed genes (DEGs), of which 45 had upregulated expression and 74 had downregulated expression. Analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes suggested that the pathway “apoptosis-multiple species” was the most significantly enriched. Our data indicated that 1) fractions of D. officinale polysaccharides of Mw 389.98 kDa were most suitable against CRC; 2) DOPW-1 could be developed into a clinical agent against CRC; and 3) an apoptosis pathway is important for DOPW-1 to inhibit the proliferation of HT-29 cells.
Collapse
Affiliation(s)
- Shengchang Tao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiyao Ren
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.,NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Central Laboratory, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Zerui Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuna Duan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Zhongxian Wan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Chenxing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shaoguan Institute of Danxia Dendrobium Officinale, Shaoguan, China
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Xu H, Hu Y, Hu Q, Liu J, Su A, Xie M, Ma G, Pei F, Mariga AM, Yang W. Isolation, characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes. Int J Biol Macromol 2021; 189:11-17. [PMID: 34411611 DOI: 10.1016/j.ijbiomac.2021.08.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.
Collapse
Affiliation(s)
- Hui Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ye Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gaoxing Ma
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box 972-60400, Meru, Kenya
| | - Wenjian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
13
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
14
|
Abreu H, Smiderle FR, Sassaki GL, Sovrani V, Cordeiro LM, Iacomini M. Naturally methylated mannogalactans from the edible mushrooms Pholiota nameko and Pleurotus eryngii. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Xiao L, Ge X, Yang L, Chen X, Xu Q, Rui X, Fan X, Feng L, Zhang Q, Dong M, Li W. Anticancer potential of an exopolysaccharide from Lactobacillus helveticus MB2-1 on human colon cancer HT-29 cells via apoptosis induction. Food Funct 2021; 11:10170-10181. [PMID: 33164019 DOI: 10.1039/d0fo01345e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed at investigating the anticancer activity of an exopolysaccharide (EPS) isolated from Lactobacillus helveticus MB2-1. The crude EPS from L. helveticus MB2-1 (LHEPS) was fractionated into three fractions, namely LHEPS-1, LHEPS-2 and LHEPS-3. LHEPS-1 exhibited the most effective anti-proliferative activity, which was associated with a stronger inhibition rate and increased lactate dehydrogenase leakage of human colon cancer HT-29 cells. Flow cytometry analysis and colorimetric assay revealed that LHEPS-1 induced cell cycle arrest by preventing G1 to S transition and increased the apoptosis rate. Furthermore, LHEPS-1 enhanced the production of intracellular reactive oxygen species (ROS) and the activity of caspases-8/9/3, increased the levels of pro-apoptotic Bax and mitochondrial cytochrome c, while decreased the anti-apoptotic Bcl-2 level, indicating that LHEPS-1 might induce the apoptosis of HT-29 cells through a ROS-dependent pathway and a mitochondria-dependent pathway. These findings suggest that LHEPS-1 may be developed as an effective food and/or drug for the prevention and therapeutics of cancer, especially human colon cancer.
Collapse
Affiliation(s)
- Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma G, Hu Q, Han Y, Du H, Yang W, Pan C, Cao X, Muinde Kimatu B, Pei F, Xiao H. Inhibitory effects of β-type glycosidic polysaccharide from Pleurotus eryngii on dextran sodium sulfate-induced colitis in mice. Food Funct 2021; 12:3831-3841. [PMID: 33977958 DOI: 10.1039/d0fo02905j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to determine the inhibitory effects and the potential underlying mechanisms of a novel Pleurotus eryngii β-type glycosidic polysaccharide (WPEP) on colitis. To achieve this, sixty CD-1 (ICR) mice were divided into six groups including healthy and colitic mice treated with or without WPEP at two different doses (n = 10). The results showed that WPEP displayed a significant inhibitory effect on colitis as indicated by the lowered disease activity index in the treated colitic mice compared to the untreated colitic mice (2.78 ± 0.50 to 1.80 ± 0.17). A decrease in pro-inflammatory cytokine concentrations and pro-inflammatory protein expressions and an increase in the colon length (9.31 ± 0.59 cm to 10.89 ± 1.20 cm) along with histological improvements were also observed in the treated colitic mice compared to the untreated colitic mice in the present study. Flow cytometry and western blotting analysis revealed that these anti-colitis effects were associated with decreased accumulation of CD45+ immune cells, CD45 + F4/80+ macrophages and CD45 + Gr1+ neutrophils. Moreover, the 16s rRNA sequencing analysis of the gut microbiota revealed that WPEP partially reversed gut microbiota dysbiosis in the colitic mice including the decreased abundance of Akkermansia muciniphila (35.80 ± 9.10% to 18.24 ± 6.23%) and Clostridium cocleatum (2.34 ± 1.78% to 0.011 ± 0.003%) and the increased abundance of Bifidobacterium pseudolongum (3.48 ± 2.72% to 9.65 ± 3.74%), Lactobacillus reuteri (0.007 ± 0.002% to 0.21 ± 0.12%), Lactobacillus salivarius (1.23 ± 0.87% to 2.22 ± 1.53%) and Ruminococcus bromii (0.009 ± 0.001% to 3.83 ± 1.98%). In summary, our results demonstrated that WPEP could be utilized as a functional food component in colitis management as well as a potential prebiotic agent to improve inflammation-related disorders.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China and Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Che Pan
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| | - Xiaoqiong Cao
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China and Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| | - Fei Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| |
Collapse
|
17
|
Promising anticancer activity of polysaccharides and other macromolecules derived from oyster mushroom (Pleurotus sp.): An updated review. Int J Biol Macromol 2021; 182:1628-1637. [PMID: 34022311 DOI: 10.1016/j.ijbiomac.2021.05.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
Cancer dominates among many causes of mortality worldwide. Traditional chemotherapeutic agents are powerful anti-cancer agents employed for treatment of this deadly disease. However, they are always associated with toxic side effects and immunosuppression making person more vulnerable to tumor relapse and fatalities. A promising alternative could be identification, isolation and transfer of naturally occurring bioactive macromolecules to the tumorigenic population. Oyster mushroom, a major source of nutraceuticals, belonging to class basidiomycetes of kingdom Mycota is known to have immense therapeutic properties. It is a reservoir of macromolecules like β-glucan, α-glucan, resveratrol, concanavalin A, cibacron blue affinity protein, p-hydroxybenzoic acid, ergosterol, linoleic acid etc. that are responsible for mediating anti-tumor, immunomodulatory, antioxidant, and anti-diabetic roles. Various studies have shown that extracts derived from oyster mushroom is rich in polysaccharides like β-glucan and other macro molecules which have an anti-proliferative effect against cancer cell lines, without harming the normal cells. This review presents a brief highlight of the work covering the overall significance of oyster mushroom in different types of cancer treatment. It also explores the immunomodulatory effects of polysaccharides, proteoglycans and polypeptides derived from oyster mushroom that boosts the immune system to overcome the limitation of traditional cancer therapies.
Collapse
|
18
|
Niego AG, Rapior S, Thongklang N, Raspé O, Jaidee W, Lumyong S, Hyde KD. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J Fungi (Basel) 2021; 7:397. [PMID: 34069721 PMCID: PMC8161071 DOI: 10.3390/jof7050397] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.
Collapse
Affiliation(s)
- Allen Grace Niego
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Iloilo Science and Technology University, La Paz, Iloilo 5000, Philippines
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, CEFE, CNRS, University Montpellier, EPHE, IRD, CS 14491, 15 Avenue Charles Flahault, CEDEX 5, 34093 Montpellier, France;
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Olivier Raspé
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.G.N.); (N.T.); (O.R.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
19
|
Sharma A, Sharma A, Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review. J Food Biochem 2021; 45:e13748. [PMID: 33998679 DOI: 10.1111/jfbc.13748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/27/2022]
Abstract
Mushrooms are consumed for their nutrients and therapeutic bioactive compounds and are used medicinally in Chinese and Japanese medicine traditions since time immemorial. Members of the genus Pleurotus form a heterogeneous group of edible species with outstanding nutritional profiles rich in fiber, vitamins (thiamine, riboflavin, ascorbic acid, ergosterine, and niacin), micro and macro-elements (phosphorus and iron), and carbohydrates. Pleurotus is one of the most diversified medicinal and edible mushrooms related to the composition of chemical structures such as polysaccharides, glycoproteins, and secondary metabolites such as alkaloids and betalains. The cultivation of Pleurotus spp. on lignocellulosic wastes represents one of the most economically and cost-effective organic recycling processes, especially for the utilization of different feasible and cheap recyclable residues. Also, several Pleurotus spp. have the ability to remove phenolic compounds from wastewater with the action of phenoloxidase activity. Here, we have reviewed the chemistry of such polysaccharides and their reported biological activities, namely, anti-inflammatory, immunomodulatory, anti-diabetic, anti-tumor, antioxidant, etc. The mechanism of action and effects of novel polysaccharides extracted from various species of Pleurotus have been studied. The current study will be beneficial for guiding future research projects on the above concept and investigating more deeply the health of human beings. PRACTICAL APPLICATIONS: Mushrooms are one of the most delicious foods around the globe and have many medicinal properties for decades. Various Pleurotus species have been in focus in recent years because of their palatability and medicinal importance too. It contains many bioactive compounds among which polysaccharides are valued to a great extent. Many biological activities are exerted by polysaccharides derived from the Pleurotus spp., namely, anti-tumor, antioxidant, and many more. They are responsible for significant physiological responses in animals, animal-alternative in vitro models, and humans. Their important physicochemical characteristics benefit their use in the food industry as well. So, the biological activities of these Pleurotus spp. polysaccharides will provide an insight to develop Pleurotus spp. as functional foods, because of their nutritional value and presence of bioactive components.
Collapse
Affiliation(s)
- Aparajita Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Sharma
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Astha Tripathi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
20
|
Lin X, Li W, Yuen H, Yuen M, Peng Q. Immunomodulatory effect of intracellular polysaccharide from mycelia of Agaricus bitorquis (QuéL.) Sacc. Chaidam by TLR4-mediated MyD88 dependent signaling pathway. Int J Biol Macromol 2021; 183:79-89. [PMID: 33901556 DOI: 10.1016/j.ijbiomac.2021.04.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 01/13/2023]
Abstract
Agaricus bitorquis (QuéL.) Sacc. Chaidam is a valuable edible fungus in Qinghai-Tibet plateau and ABSP is a novel intracellular polysaccharide from its mycelia. GC and NMR analysis determined ABSP is galactoglucomannan-like polysaccharide that may have immunomodulatory effect. This study used RAW264.7 as model cell to determine immunomodulatory effect of ABSP. After ABSP treatment, viability and phagocytic ability promoted, and NO, ROS, TNF-α levels also raised which proved ABSP had immune regulation to RAW264.7. WB and qRT-PCR determined the key proteins and genes expression of TLR4, MyD88, TRAF-6 and NF-κB significantly increased while protein and gene expression of TRAM had no significant increase. Also, TNF-α level extremely decreased by adding inhibitors of TLR4 and MyD88 which confirmed ABSP could immunologically regulate RAW264.7 byTLR4-MyD88 dependent pathway. This study would provide theoretical basis for further study on ABSP and be helpful for development of beneficial functionally foods and exploitation of this resource.
Collapse
Affiliation(s)
- Ximeng Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Wenxia Li
- Puredia Limited, No.12, Jing'er road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, PR China.
| | - Hywel Yuen
- Puredia Limited, No.12, Jing'er road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, PR China.
| | - Michael Yuen
- Puredia Limited, No.12, Jing'er road (North), Biological Technology Park, Chengbei District, Xining, Qinghai, PR China.
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
21
|
Chen Y, Luo X, Zou Z, Liang Y. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis. Curr Drug Targets 2021; 21:477-498. [PMID: 31736443 DOI: 10.2174/1389450120666191021110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients' life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.
Collapse
Affiliation(s)
- Yongfeng Chen
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingjing Luo
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yong Liang
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
22
|
Zhang C, Song X, Cui W, Yang Q. Antioxidant and anti-ageing effects of enzymatic polysaccharide from Pleurotus eryngii residue. Int J Biol Macromol 2021; 173:341-350. [PMID: 33434551 DOI: 10.1016/j.ijbiomac.2021.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
The wide industrial cultivation of Pleurotus eryngii (P. eryngii) has resulted in the massive production of mushroom residues (MR) with low-efficiency utilization. In the present study, the P. eryngii enzymatic residue polysaccharide (PERP) was obtained from the P. eryngii residues. The characterization analysis showed that PERP was polysaccharides comprised of five kinds of monosaccharides with molecular weight of 2.05 × 103 Da. PERP also showed rough surface and appeared as spherical structure dispersed in aqueous solution. The animal experiment analysis demonstrated that PERP exhibited potential anti-ageing effects on the brain, liver, kidney and skin, possibly by scavenging reactive radicals, improving the antioxidant status, supressing lipid peroxidation, enhancing organ functions and ameliorating histopathological damage. These results may provide a reference for the efficient utilization of P. eryngii residues in exploring MR-derived functional foods or drugs that delay the ageing process.
Collapse
Affiliation(s)
- Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an 271081, China.
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Tai'an 271081, China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Tai'an 271081, China
| | - Qihang Yang
- College of Life Science, Shandong Agricultural University, Tai'an 271081, China
| |
Collapse
|
23
|
Polysaccharides from Pleurotus eryngii: Selective extraction methodologies and their modulatory effects on THP-1 macrophages. Carbohydr Polym 2021; 252:117177. [DOI: 10.1016/j.carbpol.2020.117177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
|
24
|
Kan L, Cui D, Chai Y, Ma L, Li X, Zhao M. TMT-based quantitative proteomic analysis of antitumor mechanism of Sporisorium reilianum polysaccharide WM-NP-60 against HCT116 cells. Int J Biol Macromol 2020; 165:1755-1764. [PMID: 33068624 DOI: 10.1016/j.ijbiomac.2020.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022]
Abstract
Sporisorium reilianum is an active edible and medicinal phytopathogenic fungus. Our study indicated that the S. reilianum polysaccharide WM-NP-60 could inhibit the growth of HCT116 cells in a dose-dependent manner. In addition, WM-NP-60 could trigger the cell cycle of HCT116 arrest at the G1 phase and induce its apoptosis. In order to explore the anti-tumor mechanism of WM-NP-60, TMT-based quantitative proteomic analysis was used. Results indicated that 369 differentially expressed proteins including 240 up-regulated and 129 down-regulated proteins in WM-NP-60 treated HCT116 cells compared with normal HCT116 cells. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that 192 pathways were enriched containing 15 metabolic pathways with significant difference (P < 0.05). The levels of mRNA and protein up-regulated TGFβR1, P107, DP1 and down-regulated THBS1 related to TGF-β signaling pathway were verified with qRT-PCR and Western Blot (WB). These findings will provide theoretical basis for the important role of fungal polysaccharides in the field of tumor treatment.
Collapse
Affiliation(s)
- Lianbao Kan
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Northeast Petroleum University, Daqing 163318, PR China
| | - Daizong Cui
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Xiaoyan Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China.
| | - Min Zhao
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
25
|
Zhang Q, Du Z, Zhang Y, Zheng Z, Li Q, Wang K. Apoptosis induction activity of polysaccharide from Lentinus edodes in H22-bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization. Food Nutr Res 2020; 64:4364. [PMID: 33240031 PMCID: PMC7672475 DOI: 10.29219/fnr.v64.4364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lentinus edodes is a medicinal mushroom widely used in Asian countries for protecting people against some types of cancer and other diseases. Objective The objective of the present study was to investigate the direct antiproliferation activity and the antitumor mechanisms of water-extracted polysaccharide (WEP1) purified from L. edodes in H22 cells and H22-bearing mice. Design The extraction, isolation, purification, and structure determination of the water-soluted L. edodes polysaccharide WEP1 were performed. The growth inhibitory effects of WEP1 on H22 cells and H22-bearing mice were determined by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) method and animal studies. Flow cytometry, scanning electron microscopy, and laser scanning confocal microscopy were used to observe the morphological characteristics of apoptotic cells. The levels of intracellular reactive oxygen species (ROS) were detected by flow cytometry using 2',7'-dichlorofluorescein-3',6'-diacetate (DCFH-DA). Western blot was used to determine the expressions of cell cycle proteins and apoptosis-related proteins. Results Results showed that WEP1 with a molecular weight of 662.1 kDa exhibited direct antiproliferation activity on H22 cells in a dose-dependent manner. In vivo, WEP1 significantly inhibited the growth of tumor at different doses (50, 100, and 200 mg/kg) and the inhibition rates were 28.27, 35.17, and 51.72%, respectively. Furthermore, morphological changes of apoptosis and ROS overproduction were observed in H22 cells by WEP1 treatment. Cell cycle assay and western blot analyses indicated that the apoptosis induction activity of WEP1 was associated with arresting cell cycle at G2/M phase and activating mitochondrial-apoptotic pathway. Besides, WEP1 disrupted the microtubule network accompanied by alteration of cellular morphology. Conclusion Results suggested that the antitumor mechanisms of WEP1 might be related to arresting cell cycle at G2/M phase, inhibiting tubulin polymerization and inducing mitochondrial apoptosis. Therefore, WEP1 possibly could be used as a promising functional food for preventing or treating liver cancer.
Collapse
Affiliation(s)
- Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Zhaosong Du
- Department of Pharmacy, Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
XIA YG, ZHU RJ, SHEN Y, LIANG J, KUANG HX. A high methyl ester pectin polysaccharide from the root bark of Aralia elata: Structural identification and biological activity. Int J Biol Macromol 2020; 159:1206-1217. [DOI: 10.1016/j.ijbiomac.2020.05.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
|
27
|
Gong P, Wang S, Liu M, Chen F, Yang W, Chang X, Liu N, Zhao Y, Wang J, Chen X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res 2020; 494:108037. [DOI: 10.1016/j.carres.2020.108037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
28
|
Duan Z, Zhang Y, Zhu C, Wu Y, Du B, Ji H. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice. Int J Biol Macromol 2020; 162:533-547. [PMID: 32565302 DOI: 10.1016/j.ijbiomac.2020.06.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the basic structural features of phosphorylated Pleurotus ostreatus polysaccharide (PPOP) and study the protective effect of PPOP on liver injury induced by carbon tetrachloride in male Kunming mice. The phosphorylated polysaccharide was prepared from the natural polysaccharide extracted from Pleurotus ostreatus (POP). The structures of PPOP and POP were characterized by FT-IR, ESEM spectroscopy, and Congo red test. Chemical composition analysis revealed that PPOP was mainly composed of rhamnose, galacturonic acid, and xylose in a molar ratio of 0.10: 1.98: 1.00. Structural analysis indicated that PPOP had multi-strand structure and the absorption peaks of PO and P-O-C. Furthermore, animal experiments showed that the hepatoprotective effect of PPOP against liver injury was reflected by decreasing the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, trilaurin, and low-density lipoprotein cholesterol in the serum, increasing the content of high-density lipoprotein cholesterol and albumin in blood, reducing the content of malondialdehyde and promoting the activity of antioxidant enzymes in liver. PPOP exhibited stronger hepatoprotective effect and antioxidant activity in vivo than POP. The final results indicated that PPOP could be used in the treatment of chemical-induced hepatotoxicity based on the above biological research.
Collapse
Affiliation(s)
- Zhen Duan
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Biqi Du
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huijie Ji
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
29
|
Kan L, Chai Y, Li X, Zhao M. Structural analysis and potential anti-tumor activity of Sporisorium reilianum (Fries) polysaccharide. Int J Biol Macromol 2020; 153:986-994. [PMID: 31756475 DOI: 10.1016/j.ijbiomac.2019.10.228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
A neutral polysaccharide WM-NP-60 was successfully isolated and purified from a phytopathogenic fungus Sporisorium reilianum (Fries). The characteristics and potential antitumor activities of WM-NP-60 were studied. WM-NP-60 was a water-soluble polysaccharide. The molecular weight of WM-NP-60 was 15.6 kDa. The main chain of WM-NP-60 was composed of β-1,6-D-Glcp and its side chains were β-1,3-D-Glcp. The side chains bound to the main chain with glycosyl groups at the C-3 positions. Gal might be attached to the backbone as a side chain or bound to the linear β-1,3-D-Glcp side chain. WM-NP-60 could inhibit the proliferation of HepG2 and SGC7901 cells in a dose-dependently manner. In addition, it was found that WM-NP-60 triggered the HepG2 and SGC7901 cell cycle arrest at the G1 phase and induced apoptosis of HepG2 and SGC7901 cells. Taken together, these results suggested that WM-NP-60 possessed a tumor-suppressive activity and might be regarded as a potential natural anti-tumor drug.
Collapse
Affiliation(s)
- Lianbao Kan
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Northeast Petroleum University, Daqing 163318, PR China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaoyan Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China.
| | - Min Zhao
- School of Life Sciences, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
30
|
Zhao Y, Chen X, Jia W, Gong G, Zhao Y, Li G, Zhou J, Li X, Zhao Y, Ma W. Extraction, isolation, characterisation, antioxidant and anti‐fatigue activities of
Pleurotus eryngii
polysaccharides. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanyuan Zhao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Xuefeng Chen
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Wei Jia
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Guoli Gong
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Yanni Zhao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Guoliang Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Jie Zhou
- Xi’an Medical University Xi’an 710021China
| | - Xiaona Li
- Xi’an Medical University Xi’an 710021China
| | - Yu Zhao
- Xi’an Medical University Xi’an 710021China
| | - Wenjin Ma
- Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000China
| |
Collapse
|
31
|
ZHENG HG, CHEN JC, WENG MJ, AHMAD I, ZHOU CQ. Structural characterization and bioactivities of a polysaccharide from the stalk residue of Pleurotus eryngii. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.08619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | - Ijaz AHMAD
- Food & Biotechnology Research Center, Pakistan
| | - Chun-Quan ZHOU
- Fujian University of Traditional Chinese Medicine, China
| |
Collapse
|
32
|
He JQ, Zheng MX, Ying HZ, Zhong YS, Zhang HH, Xu M, Yu CH. PRP1, a heteropolysaccharide from Platycodonis Radix, induced apoptosis of HepG2 cells via regulating miR-21-mediated PI3K/AKT pathway. Int J Biol Macromol 2020; 158:542-551. [PMID: 32380108 DOI: 10.1016/j.ijbiomac.2020.04.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Two polysaccharides (PRP1 and PRP2) were isolated from Platycodonis Radix. Preliminary structural analysis indicated that PRP1 was composed of glucose, fructose, and arabinose in a molar ratio of 1:1.91:1.59 with a molecular weight of 440 kDa, whereas PRP2 was composed of arabinose, fructose, and galactose in a molar ratio of 1:1.39:1.18 with a molecular weight of 2.85 kDa. Compared with PRP2, PRP1 exerted stronger anticancer activity in vitro. Treatment with 5-30 μg/ml of PRP1 significantly inhibited the proliferation of HepG2 cells in vitro, and oral administration at the doses of 75-300 mg/kg also reduced the tumor growth in vivo. The miRNA expression patterns of human liver cancer cells HepG2 in vivo under PRP1 treatment were established, and microRNA-21 (miR-21) as the onco-miRNA was appreciably downregulated. PRP1 repressed the expression of miR-21, which directly targeted and suppressed PTEN (a negative regulator of the PI3K/Akt signaling cascade), and subsequently upregulated the expression of PTEN but downregulated the PI3K/AKT pathway, thereby promoting liver cancer cell apoptosis. These findings indicated that PRP1 inhibited the proliferation and induced the apoptosis of HepG2 mainly via inactivating the miR-21/PI3K/AKT pathway. Therefore, PRP1 could be used as a food supplement and candidate for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Min-Xia Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hua-Zhong Ying
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Yu-Sen Zhong
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Min Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China; Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
33
|
Zhang B, Li Y, Zhang F, Linhardt RJ, Zeng G, Zhang A. Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: A review. Int J Biol Macromol 2020; 150:1342-1347. [DOI: 10.1016/j.ijbiomac.2019.10.144] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
|
34
|
He N, Zhai X, Zhang X, Zhang X, Wang X. Extraction, purification and characterization of water-soluble polysaccharides from green walnut husk with anti-oxidant and anti-proliferative capacities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Oliveira RS, Biscaia SM, Bellan DL, Viana SR, Di-Medeiros Leal MC, Vasconcelos AFD, Lião LM, Trindade ES, Carbonero ER. Structure elucidation of a bioactive fucomannogalactan from the edible mushroom Hypsizygus marmoreus. Carbohydr Polym 2019; 225:115203. [DOI: 10.1016/j.carbpol.2019.115203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
|
36
|
Chu Q, Jia R, Chen M, Li Y, Yu X, Wang Y, Chen W, Ye X, Liu Y, Jiang Y, Zheng X. Tetrastigma hemsleyanum tubers polysaccharide ameliorates LPS-induced inflammation in macrophages and Caenorhabditis elegans. Int J Biol Macromol 2019; 141:611-621. [DOI: 10.1016/j.ijbiomac.2019.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/17/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
37
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
38
|
Wang L, Li C, Ren L, Guo H, Li Y. Production of Pork Sausages Using Pleaurotus eryngii with Different Treatments as Replacements for Pork Back Fat. J Food Sci 2019; 84:3091-3098. [PMID: 31627254 DOI: 10.1111/1750-3841.14839] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
The effects of four treatments of Pleurotus eryngii (king oyster mushroom) as replacements for pork back fat were evaluated for the physicochemical, technological, and sensory properties; nitrite content; and amino acid profile in pork sausages. Five batches were manufactured: one control (formulated with pork back fat) and four treatments with raw, boiled, deep-fried, and fried P. eryngii to replace the pork back fat in sausages. The results indicated that the fat content and energy value decreased, while the protein, moisture, total dietary fiber content, cooking loss, and water-holding capacity of the modified sausages increased. All samples were judged acceptable for their sensory characteristics, with the best one being the sausage containing deep-fried P. eryngii. The raw and fried P. eryngii decreased the residual nitrite content in the sausages. Boiled P. eryngii enhanced the essential amino acids content in the sausages, while the other P. eryngii treatments improved the nonessential amino acid content. In summary, P. eryngii may potentially replace fat in sausages. PRACTICAL APPLICATION: In manufacturing pork sausages, the mushroom P. eryngii can substitute pork back fat to improve the nutritional quality by reducing fat and energy value, while enhancing the protein and total dietary fiber content in the sausages. Raw and fried P. eryngii decreased the residual nitrite content in the sausages. This study provides a basis for preparing healthier alternatives to traditional sausages by substituting pork fat with mushrooms.
Collapse
Affiliation(s)
- Liyan Wang
- College of Food Science and Engineering, Jilin Agricultural Univ., 2888 Xincheng St., Changchun, 130118, China
| | - Cheng Li
- College of Food Science and Engineering, Jilin Agricultural Univ., 2888 Xincheng St., Changchun, 130118, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin Univ., 5988 Renmin St., Changchun, 130022, China
| | - Hongyue Guo
- College of Food Science and Engineering, Jilin Agricultural Univ., 2888 Xincheng St., Changchun, 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural Univ., 2888 Xincheng St., Changchun, 130118, China
| |
Collapse
|
39
|
Antioxidant Versus Pro-Apoptotic Effects of Mushroom-Enriched Diets on Mitochondria in Liver Disease. Int J Mol Sci 2019; 20:ijms20163987. [PMID: 31426291 PMCID: PMC6720908 DOI: 10.3390/ijms20163987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.
Collapse
|
40
|
Nie Y, Zhang P, Deng C, Xu L, Yu M, Yang W, Zhao R, Li B. Effects of Pleurotus eryngii (mushroom) powder and soluble polysaccharide addition on the rheological and microstructural properties of dough. Food Sci Nutr 2019; 7:2113-2122. [PMID: 31289659 PMCID: PMC6593381 DOI: 10.1002/fsn3.1054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Adding a certain proportion of Pleurotus eryngii can improve the nutritional value of wheat-flour foods and enhance the utilization of this mushroom. In this research, partial wheat flour was substituted with P. eryngii powder (PEP) or soluble polysaccharide (SPPE) at different addition levels, and the effects of PEP and SPPE on the rheological and microstructural properties of dough were investigated. Farinographic assay results suggested that PEP significantly (p < 0.05) increased the water absorption of wheat flour but decreased the development time and stability of dough significantly (p < 0.05). Furthermore, it was capable of providing weaker extensographic characteristics and harder dough with the increasing of PEP addition levels. The dynamic oscillatory tests indicated that the PEP addition approximately increased the storage (G') and loss (G″) moduli in the entire frequency range, while the tan δ roughly decreased with the increasing of PEP addition levels, which could be attributed to the low solubility and strong water-trapping capacity of the dietary fiber in PEP. Due to the good water solubility and easy formation of hydrogen bonds, the addition of SPPE had inconsistent results with the PEP addition. The inner microstructure of dough showed that the continuity of gluten networks had been disrupted by PEP and SPPE addition and then resulted in a weaker extension and harder dough. This research could provide a foundation for the application of PEP in wheat-flour foods, and PEP addition levels of 2.5%-5.0% are recommended.
Collapse
Affiliation(s)
- Yuanyang Nie
- College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- Postdoctoral Research BaseHenan Institute of Science and TechnologyXinxiangChina
| | - Penghui Zhang
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Chujun Deng
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Linshuang Xu
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Mingjun Yu
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Wei Yang
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Renyong Zhao
- College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Bo Li
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| |
Collapse
|
41
|
Mahmoud MG, Selim MS, Mohamed SS, Hassan AI, Abdal-Aziz SA. Study of the chemical structure of exopolysaccharide produced from streptomycete and its effect as an attenuate for antineoplastic drug 5-fluorouracil that induced gastrointestinal toxicity in rats. Anim Biotechnol 2019; 31:397-412. [PMID: 31081463 DOI: 10.1080/10495398.2019.1610416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapeutic medications, including 5 - fluorouracil (5FU), are the same old technique to most cancers and are associated with numerous peripheral toxicities. We investigated exopolysaccharide (EPSST) produced from the isolated streptomycete of the Mediterranean Sea for the capability to lower the severity of mucositis in vivo. The streptomycete was isolated from Mediterranean Sea sediment from the beaches of Port Said Governorates, Egypt and identified morphologically, physiologically, and biochemically and confirmed by molecularly 16S rDNA analysis. The EPSST was extracted from the supernatant of streptomycete by using 4 volumes chilled ethanol and then the functional groups, MW, and chemical evaluation have been detected via Fourier-transform infrared (FTIR), and high-performance liquid chromatography (HPLC). In addition, antioxidant activity was measured through the usage of 2, 2-diphenyl-1-picrylhydrazyl (DPPH). Thirty-two male rats (180-200 g) were randomly divided into a control group (normal saline), intraperitoneal injection of 5-fluorouracil (5-FU, 150 mg/kg), normal rats were treated with EPSST and 5-FU + EPSST group. These groups were continued up to the day of sacrifice (28 days post treatments). The isolated strain became recognized based totally on 16S rDNA sequence as Streptomyce sp. with accession number SAMN08349905. The chemical evaluations of EPSST were galacturonic, glucose, galactose, mannose, and arabinose with a relative ratio of 2.1: 1: 5.37: 1.62: 1.29 individually, with an average molecular weight (Mw) 9.687 × 103 g/mol. Also, the EPSST contained uronic acid (16%) and sulfate (12.149%) and no protein was detected. EPSST inhibited the DPPH radical activity. The findings of this study propose that EPSST inhibits 5-FU-induced mucositis through adjustment of oxidative stress, apoptosis, inflammatory factors, activation of antioxidant enzymes. The clinical administration of EPSST may recover the chemotherapy-induced intestinal dysfunction, consequently increasing the clinical efficiency of chemotherapy. In addition, the administration of EPSST reduced 5-FU-induced histopathological incongruities such as neutrophil infiltration, loss of cellular integrity, and villus and crypt distortion. The clinical administration of EPSST may recover the chemotherapy-induced intestinal dysfunction, consequently increasing the clinical efficiency of chemotherapy.
Collapse
Affiliation(s)
- Manal G Mahmoud
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Manal S Selim
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Sahar S Mohamed
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Samia A Abdal-Aziz
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
42
|
Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr Polym 2019; 210:412-428. [PMID: 30732778 DOI: 10.1016/j.carbpol.2019.01.064] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
|
43
|
Liu Y, Zheng D, Su L, Wang Q, Li Y. Protective effect of polysaccharide from Agaricus bisporus in Tibet area of China against tetrachloride-induced acute liver injury in mice. Int J Biol Macromol 2018; 118:1488-1493. [DOI: 10.1016/j.ijbiomac.2018.06.179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
|
44
|
Bouzgarrou C, Amara K, Reis FS, Barreira JCM, Skhiri F, Chatti N, Martins A, Barros L, Ferreira ICFR. Incorporation of tocopherol-rich extracts from mushroom mycelia into yogurt. Food Funct 2018; 9:3166-3172. [PMID: 29862404 DOI: 10.1039/c8fo00482j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Consumers are well-informed about food additives and it is likely that they prefer natural additives over their synthetic analogues. Antioxidants represent a major class of food preservatives, among which tocopherols stand out as one of the most important examples. Interestingly, these compounds are present in relevant amounts in the mycelia of in vitro cultured mushrooms. Accordingly, the mycelia from Ganoderma lucidum, Pleurotus ostreatus and Pleurotus eryngii were used as alternative sources of tocopherols. These extracts were incorporated into different yogurt formulations, which were further compared among each other and with yogurts containing commercial α-tocopherol (E307), regarding their nutritional parameters, fatty acid profile and antioxidant activity. The proposed approach was validated as an effective functionalization strategy, particularly in the case of the G. lucidum mycelium, which showed the highest antioxidant potential, most likely as a result of its tocopherol profile. Furthermore, yogurts prepared with each mycelium extract allowed maintaining the nutritional properties observed in the "blank" yogurt formulation.
Collapse
Affiliation(s)
- Chaima Bouzgarrou
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cultivated and wild Pleurotus ferulae ethanol extracts inhibit hepatocellular carcinoma cell growth via inducing endoplasmic reticulum stress- and mitochondria-dependent apoptosis. Sci Rep 2018; 8:13984. [PMID: 30228276 PMCID: PMC6143524 DOI: 10.1038/s41598-018-32225-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Pleurotus ferulae is a kind of editable mushroom and has various biological functions such as antitumor, antioxidation and immunoregulation. Wild P. ferulae was successfully domesticated but the antitumor function and mechanisms of cultivated and wild P. ferulae need to be compared and explored. Here, we prepared cultivated and wild P. ferulae ethanol extracts (PFEE-C and PFEE-W) and compared their antitumor effect on hepatocellular carcinoma. Our data showed that PFEE-C and PFEE-W significantly inhibited the growth of H22 and HepG2 cells through induction of apoptosis. PFEE-W exhibited higher antitumor activity than PFEE-C. Both PFEE-C and PFEE-W induced endoplasmic reticulum (ER) stress characterized by the up-regulated levels of phosphorylated JNK, cleaved caspase-12 and HSP70, and mitochondrial dysfunction characterized by the reduction of mitochondrial membrane potential and the release of cytochrome c, which promoted the cleavage of caspase-3, -7, -9 and PARP. Moreover, PFEE-C and PFEE-W significantly increased ROS generation in H22 cells and suppressed H22 cell migration through reducing the levels of matrix metalloproteinase -2 and -9. Further, PFEE-C inhibited H22 tumor growth in mouse model and improved the survival of tumor mice. These results indicated that PFEE-C and PFEE-W could inhibit hepatocellular carcinoma cell growth through ER stress- and mitochondria-dependent apoptotic pathways.
Collapse
|
46
|
A critical review on the health promoting effects of mushrooms nutraceuticals. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Chen Y, Jiang X, Xie H, Li X, Shi L. Structural characterization and antitumor activity of a polysaccharide from ramulus mori. Carbohydr Polym 2018; 190:232-239. [DOI: 10.1016/j.carbpol.2018.02.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022]
|
48
|
Jin X, Wang Q, Yang X, Guo M, Li W, Shi J, Adu-Frimpong M, Xu X, Deng W, Yu J. Chemical characterisation and hypolipidaemic effects of two purified Pleurotus eryngii
polysaccharides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xing Jin
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Qilong Wang
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xia Yang
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Min Guo
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Wenjing Li
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jixiang Shi
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Ximing Xu
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Wenwen Deng
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jiangnan Yu
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
49
|
Liu LQ, Nie SP, Shen MY, Hu JL, Yu Q, Gong D, Xie MY. Tea Polysaccharides Inhibit Colitis-Associated Colorectal Cancer via Interleukin-6/STAT3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4384-4393. [PMID: 29656647 DOI: 10.1021/acs.jafc.8b00710] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interleukin-6 (IL-6)/signal transducer and activator of transcription (STAT)-3 signaling pathway regulates proliferation and survival of intestinal epithelial cells and has profound impact on the tumorigenesis of colitis-associated cancer (CAC). Tea polysaccharides (TPS) are the major nutraceutical component isolated from tea-leaves and are known to possess antioxidant, anti-inflammatory, and antitumor bioactivities. Here, we investigated the antitumor activities of TPS on CAC using the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and IL-6-induced colorectal cancer cell line (CT26) and determined whether TPS exerted its antitumor effects through the IL-6/STAT3 pathway. Results demonstrated that TPS significantly decreased the tumor incidence, tumor size, and markedly inhibited the infiltration of pro-inflammatory cells and the secretion of pro-inflammatory cytokines via balancing cellular microenvironment. Furthermore, we found that TPS suppressed the activation of STAT3 and transcriptionally regulated the expressions of downstream genes including MMP2, cyclin Dl, survivin, and VEGF both in vivo and in vitro. Thus, it was concluded that TPS attenuated the progress of CAC via suppressing IL-6/STAT3 pathway and downstream genes' expressions, which indicated that TPS may be a hopeful antitumor agent for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Deming Gong
- New Zealand Institute of Natural Medicine Research , Auckland 2104 , New Zealand
| | | |
Collapse
|
50
|
Composition characterization, antioxidant capacities and anti-proliferative effects of the polysaccharides isolated from Trametes lactinea (Berk.) Pat. Int J Biol Macromol 2018; 115:114-123. [PMID: 29655889 DOI: 10.1016/j.ijbiomac.2018.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate the chemical characterization and bioactivity of the Trametes lactinea (Berk.) Pat polysaccharides (TLP). The crude TLP was fractionated into two fractions, namely TLP-1 and TLP-2 with Cellulose DEAE-52 and Sephadex G-150. HPLC and FT-IR analysis showed that TLP-1 and TLP-2 were heteropolysaccharides mainly composed of glucose with the average molecular weights of 443.19kDa and 388.83kDa, respectively. TLP-1 from water elution possessed of higher reducing power and scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide radical and hydroxyl radical than TLP-2 eluted by 0.1M of NaCl. In comparison with TLP-2, TLP-1 showed stronger growth inhibition against human hepatoblastoma HepG-2 cells and caused higher LDH leakage. However, TLP-1 showed lower growth inhibition against normal hepatocyte L-02 cells and lower LDH leakage than TLP-2. Flow cytometric analysis showed that TLP-1 had a stimulatory effect on apoptosis of HepG-2 cells. These findings suggested that the polysaccharides, especially TLP-1 could contribute to the potential anticancer effects of T. lactinea (Berk.) Pat, which might be valuable as a natural antioxidant source applied in both healthy medicine and food industry for health benefits.
Collapse
|