1
|
Ma C, Dou Y, Li R, Zhang L, Zhou Z, Guo S, Wang R, Tao K, Liu Y, Yang X. Carboxymethyl chitosan/polyacrylamide double network hydrogels based on hydrogen bond cross-linking as potential wound dressings for skin repair. Int J Biol Macromol 2024; 280:135735. [PMID: 39293622 DOI: 10.1016/j.ijbiomac.2024.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
An ideal biomedical hydrogel should imitate natural tissues with high water absorption, high toughness and superior biocompatibility. However, hydrogels constructed from biomolecules such as polysaccharides have low mechanical strength and limited applications. Based on carboxymethyl chitosan (CMCS) and polyacrylamide (PAM), a facile process is presented for preparing double network hydrogels (CMCS/PAM) with improved mechanical properties. According to the systematic characterization, carboxymethyl chitosan and polyacrylamide form a double network hydrogel through hydrogen bonding. The introduction of carboxymethyl chitosan alters the microscopic structure of PAM hydrogel, resulting in a consistent porosity pattern. Hydrogels with double networks exhibit high tensile properties, high stiffness, and good energy dissipation. Furthermore, the hydrogel exhibits effective adhesion to other hydrophilic surfaces. The CMCS/PAM network hydrogels possess excellent properties such as high swelling capacity, injectability, and cellular biocompatibility, making them potentially valuable for biomedical applications.
Collapse
Affiliation(s)
- Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yehang Dou
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Lufeng Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Ziqi Zhou
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Silin Guo
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ruipeng Wang
- School of Future Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kanzhi Tao
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yitong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd., China
| |
Collapse
|
2
|
Zhang Y, Qi X, Zhang X, Huang Y, Ma Q, Guo X, Wu Y. β-Cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel for enhanced adsorption and fluorescence detection of levofloxacin. Carbohydr Polym 2024; 340:122306. [PMID: 38858025 DOI: 10.1016/j.carbpol.2024.122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
In this study, a novel hydrogel, β-cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel (βCCH), was fabricated for removal and fluorescence determination of levofloxacin (LEV). A comprehensive analysis was performed to characterize its physicochemical properties. Batch adsorption experiments were conducted, revealing that βCCH reached a maximum adsorption capacity of 1376.9 mg/g, consistent with both Langmuir and pseudo-second-order models, suggesting that the adsorption process of LEV on βCCH was primarily driven by chemical adsorption. The removal efficiency of βCCH was 99.2 % under the fixed conditions (pH: 6, initial concentration: 20 mg/L, contact time: 300 min, temperature: 25 °C). The removal efficiency of βCCH for LEV still achieved 97.3 % after five adsorption-desorption cycles. By using βCCH as a fluorescent probe for LEV, a fast and sensitive method was established with linear ranges of 1-120 mg/L and 0.2-1.0 μg/L and a limit of detection (LOD) as low as 0.09 μg/L. The viability of βCCH was estimated based on the economic analysis of the synthesis process and the removal of LEV, demonstrating that βCCH was more cost-effective than commercial activated carbon. This study provides a novel approach for preparing a promising antibiotic detection and adsorption material with the advantages of stability, and cost-effectiveness.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Dardeer HM, Gad AN, Mahgoub MY. Promising superabsorbent hydrogel based on carboxymethyl cellulose and polyacrylic acid: synthesis, characterization, and applications in fertilizer engineering. BMC Chem 2024; 18:144. [PMID: 39103926 DOI: 10.1186/s13065-024-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
The combination of hydrogel and fertilizer as slow release fertilizer hydrogel (SRFH) has become one of the most promising materials to overcome the shortcomings of conventional fertilizer by decreasing fertilizer loss rate, supplying nutrients sustainably, and lowering the frequency of irrigation. The hydrogel based on carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) (CMC/PAA) was synthesized. All materials, Vinasse, hydrogel (CMC/PAA) and (Vinasse/CMC-PAA) were characterized by FTIR, XRD, and SEM. The formed hydrogel was applied to control the salinity of Vinasse to use it as a cheap and economical fertilizer. The results showed that using the prepared hydrogel with Vinasse (V/CMC-PAA) as a slow-release organic fertilizer decreased the EC value through the first six hours from 1.77 to 0.35 mmohs/cm. Also, using V/CMC-PAA can control and keep the potassium as fertilizer for 50 days. The productivity per feddan from the sugar cane crop increased by about 15%, and the number of irrigations decreased from 5 to 4 times.
Collapse
Affiliation(s)
- Hemat M Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed N Gad
- Research and Development Center, Egyptian Sugar & Integrated Industries Company 'ESIIC', Cairo, Egypt
| | - Mohamed Y Mahgoub
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
4
|
Savekar PL, Nadaf SJ, Killedar SG, Kumbar VM, Hoskeri JH, Bhagwat DA, Gurav SS. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive β-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int J Biol Macromol 2024; 274:133366. [PMID: 38914385 DOI: 10.1016/j.ijbiomac.2024.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and β-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and β-CD controlled the physicochemical parameters of developed PPE/CA/β-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/β-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/β-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.
Collapse
Affiliation(s)
- Pranav L Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus 416310, Maharashtra, India.
| | - Suresh G Killedar
- Anandi Pharmacy College, Kalambe Tarf Kale 416205, Maharashtra, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Nehru Nagar, Belagavi 590 010, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, Karnataka, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India.
| |
Collapse
|
5
|
Sirach R, Dave PN. Artificial neural network modelling and experimental investigations of malachite green adsorption on novel carboxymethyl cellulose/ β-cyclodextrin/nickel cobaltite composite. Heliyon 2024; 10:e33820. [PMID: 39040424 PMCID: PMC11261892 DOI: 10.1016/j.heliyon.2024.e33820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
This study presents a novel polymer nanocomposite based on carboxymethyl cellulose and β-cyclodextrin crosslinked with succinic acid (CMC-SA-β-CD) containing nickel cobaltite (NCO) nano-reinforcement. Various analytical techniques have been employed to investigate the structural, thermal, and morphological features of the resulting nanocomposite. The CMC-SA-β-CD/NCO nanocomposite has been utilized as an adsorbent for the removal of bisphenol-A (BPA, R% <40 %), malachite green (MG, R% > 75 %)), and Congo red (CR, no adsorption) from the synthetic wastewater. The study systematically explored the impact of various parameters on the adsorption process, and the interactions between MG and CMC-SA-β-CD/NCO were discussed. The adsorption data were fitted to different models to elucidate the kinetics and thermodynamics of the adsorption process. An artificial neural network (ANN) analysis was employed to train the experimental dataset for predicting adsorption outcomes. Despite a low BET surface area (0.798 m2 g-1), CMC-SA-β-CD/NCO was found to exhibit high MG adsorption capacity. CMC-SA-β-CD/NCO exhibited better MG adsorption performance at pH 5.5, 40 mg L-1 MG dye concentration, 170 min equilibrium time, 20 mg CMC-SA-β-CD/NCO dose with more than 90 % removal efficiency. Moreover, the thermodynamic studies suggest that the adsorption of MG was exothermic with ΔH° value -9.93 ± 0.76 kJ mol-1. The isotherm studies revealed that the Langmuir model was the best model to describe the adsorption of MG on CMC-SA-β-CD/NCO indicating monolayer surface coverage with Langmuir adsorption capacity of 182 ± 4 mg g-1. The energy of adsorption (11.4 ± 0.8 kJ mol-1) indicated chemisorption of MG on the composite surface. The kinetics studies revealed that the pseudo-first-order model best described the adsorption kinetics with q e = 86.7 ± 2.9 mg g-1. A good removal efficiency (>70 %) was retained after five regeneration reuse cycles. The ANN-trained data showed good linearity between predicted and actual data for the adsorption capacity (R-value>0.99), indicating the reliability of the prediction model. The developed nanocomposite, composed predominantly of biodegradable material, is facile to synthesize and exhibited excellent monolayer adsorption of MG providing a new sustainable adsorbent for selective MG removal.
Collapse
Affiliation(s)
- Ruksana Sirach
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Pragnesh N. Dave
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| |
Collapse
|
6
|
Gupta SK, Deshpande AP, Kumar R. Rheological and dielectric behavior of sodium carboxymethyl cellulose (NaCMC)/Ca 2+ and esterified NaCMC/Ca 2+ hydrogels: Correlating microstructure and dynamics with properties. Carbohydr Polym 2024; 335:122049. [PMID: 38616088 DOI: 10.1016/j.carbpol.2024.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyelectrolyte-based conductive hydrogels are being extensively explored for applications in energy storage and as electrode materials for batteries. We synthesized ionically crosslinked sodium carboxymethyl cellulose (NaCMC), esterified NaCMC, and Ca2+ doped esterified NaCMC hydrogels. This work aims to understand the effect of Ca2+ ions on the NaCMC and esterified NaCMC. FTIR, SEM, Rheology and EIS studies were performed to understand the structure and dynamics of hydrogels. Results confirmed that Ca2+ ions have an important role in determining the rheological and dielectric response of hydrogels. Power law behavior was observed in their rheological response with exponent (n) of 0.81 for G' and 0.76 for G″ of ionically crosslinked NaCMC, 5.38 for G' and 4.70 for G″ of esterified NaCMC, whereas, negative exponents -1.44 for G' and -1.10 for G″ of Ca2+ ion doped esterified NaCMC. Ionically crosslinked NaCMC hydrogels have relaxation times (τ) in the range of 8.9 × 10-5 s-2.8 × 10-5 s may be due to the formation of temporary dipoles by electrostatic bridge formations with dc conductivity of (0.1 S/cm-5 S/cm), whereas, esterified NaCMC showed relaxation times (10-3 s-8.9 × 10-5 s) with increasing ester crosslinks and dc conductivity of (0.05 S/cm-0.8 S/cm). Interestingly, Ca2+ ion doped esterified hydrogels showed multiple dielectric relaxations on Ca2+ ion addition with different relaxation times may be due to change in ionic environment. The understanding obtained from this work may be useful for designing tuneable hydrogels with optimum electrical and mechanical properties.
Collapse
Affiliation(s)
- Sateesh Kumar Gupta
- Department of Physics, Dr. Harisingh University, Sagar 470003, Madhya Pradesh, India.
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ranveer Kumar
- Department of Physics, Dr. Harisingh University, Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
7
|
Nazir A, Abbas M, Iqbal DN, Ameen F, Al-Mijalli SH, Ahmad N, Iqbal M. Fabrication of CMC/PVA/Dextrin-Based Polymeric Membrane for Controlled Release of Cefixime With Enhanced Antibacterial Activity. Dose Response 2024; 22:15593258241264951. [PMID: 38912332 PMCID: PMC11193932 DOI: 10.1177/15593258241264951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
This study focuses on the investigation of the significance of polymers in drug delivery approaches. The carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and dextrin-based hydrogel membrane were prepared and employed for the sustained release of third-generation oral antibiotic (cefixime). Different proportions of CMC, PVA and dextrin were blended and hydrogel membranes were fabricated via solvent casting method. The prepared membrane was characterized by FTIR, SEM, UV-visible, TGA and swelling analysis. Cefixime drug was incorporated in the CMC/PVA/dextrin matrix and drug release was investigated. The sustained release of the tested drug (cefixime) was investigated and the drug was released in 120 min in the phosphate-buffered saline (PBS) solution. The antibacterial activity of the prepared membrane was promising against Proteus vulgaris, salmonella typhi, Escherichia coli and Bacillus subtilis strains. The swelling capabilities, thermal stability and non-toxic nature of the prepared CMC/PVA/dextrin membrane could have potential applications for cefixime drug in delivery in a controlled way for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Basic Science (Section Biochemistry), University of Veterinary and Animals Science Lahore, Jhang, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Fadia Ameen
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
8
|
Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, Ghotekar S. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int J Biol Macromol 2024; 265:130991. [PMID: 38521336 DOI: 10.1016/j.ijbiomac.2024.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The most prevalent carbohydrate on Earth is cellulose, a polysaccharide composed of glucose units that may be found in diverse sources, such as cell walls of wood and plants and some bacterial and algal species. The inherent availability of this versatile material provides a natural pathway for exploring and identifying novel uses. This study comprehensively analyzes cellulose and its derivatives, exploring their structural and biochemical features and assessing their wide-ranging applications in tissue fabrication, surgical dressings, and pharmaceutical delivery systems. The use of diverse cellulose particles as fundamental components gives rise to materials with distinct microstructures and characteristics, fulfilling the requirements of various biological applications. Although cellulose boasts substantial potential across various sectors, its exploration has predominantly unfolded within industrial realms, leaving the biomedical domain somewhat overlooked in its initial stages. This investigation, therefore, endeavors to shed light on the contemporary strides made in synthesizing cellulose and its derivatives. These innovative techniques give rise to distinctive attributes, presenting a treasure trove of advantages for their compelling integration into the intricate tapestry of biomedical applications.
Collapse
Affiliation(s)
- Satheesh Selvaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Ankush Chauhan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vishal Dutta
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ritesh Verma
- Department of Physics, Amity University, Gurugram, Haryana 122413, India
| | - Subha Krishna Rao
- Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute for Science and Technology, Chennai 600119, India
| | - Arunkumar Radhakrishnan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India; Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa 396230, UT of DNH & DD, India.
| |
Collapse
|
9
|
Cui C, Li D, Wang LJ, Wang Y. Curdlan/sodium carboxymethylcellulose composite adsorbents: A biodegradable solution for organic dye removal from water. Carbohydr Polym 2024; 328:121737. [PMID: 38220329 DOI: 10.1016/j.carbpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Composite adsorbent comprised of curdlan (CURD) and sodium carboxymethylcellulose (CMC) were fabricated through a single-step heating process, targeting the removal of methylene blue (MB) from wastewater. The CURD/CMC composite adsorbents had a honeycomb porous structure. The integration of CMC not only increased the storage modulus of the CURD/CMC composite hydrogels but also affected the thermal stability and swelling behavior of the composite adsorbents in different pH solutions. Specifically, the addition of 1.2 % CMC increased the peak temperature (184.73 °C) of CURD/CMC composite adsorbent melting by 5.99 °C compared to CURD adsorbent. The addition of CMC improved the swelling ratio of the composite adsorbent at pH 3,7, and 12 with swelling ratio up to 918.07 %. The synergistic interaction between CURD and CMC led to an enhanced adsorption capacity of the aerogel for MB, achieving a maximum adsorption capability of 385.85 mg/g. Adsorption isotherm assessments further demonstrated that the Langmuir isotherm model well fitted the adsorption data of the composite adsorbent on MB. Collectively, these findings underscore the potential of the developed biodegradable adsorbents as promising adsorbents for efficiently eliminating organic dyes from water.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Lima PHCD, Ribeiro-Viana RM, Plath AMS, Grillo R. Lignocellulosic-biomolecules conjugated systems: green-engineered complexes modified by covalent linkers. J Mater Chem B 2024; 12:2471-2480. [PMID: 38345783 DOI: 10.1039/d3tb02581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignocellulosic biomass represents an abundant and eco-friendly material widely explored in recent years. The main lignocellulosic fractions include cellulose, hemicellulose, and lignin. Nonetheless, the heterogeneity and complexity of these components pose challenges in achieving the desired properties. Conversely, their attractive functional groups can covalently link with other biomolecules, facilitating the creation and enhancement of material properties. Lignocellulosic molecules can form different linkages with other biomolecules through classic and modern methods. Bioconjugation has emerged as a suitable alternative to create new nuances, empowering the linkage between lignocellulosic materials and biomolecules through linkers. These conjugates (lignocellulosic-linkers-biomolecules) attract attention from stakeholders in medicine, chemistry, biology, and agriculture. The plural formations of these biocomplexes highlight the significance of these arrangements. Therefore, this review provides an overview of the progress of lignocellulosic-biomolecule complexes and discusses different types of covalent bioconjugated systems, considering the formation of linkers, applicability, toxicity, and future challenges.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| | - Renato Márcio Ribeiro-Viana
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | | | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| |
Collapse
|
11
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
12
|
Ibrahim MA, Salama A, Zahran F, Abdelfattah MS, Alsalme A, Bechelany M, Barhoum A. Fabrication of cellulose nanocrystals/carboxymethyl cellulose/zeolite membranes for methylene blue dye removal: understanding factors, adsorption kinetics, and thermodynamic isotherms. Front Chem 2024; 12:1330810. [PMID: 38370094 PMCID: PMC10869571 DOI: 10.3389/fchem.2024.1330810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
This study introduces environmentally-friendly nanocellulose-based membranes for AZO dye (methylene blue, MB) removal from wastewater. These membranes, made of cellulose nanocrystals (CNCs), carboxymethyl cellulose (CMC), zeolite, and citric acid, aim to offer eco-friendly water treatment solutions. CNCs, obtained from sugarcane bagasse, act as the foundational material for the membranes. The study aims to investigate both the composition of the membranes (CMC/CNC/zeolite/citric acid) and the critical adsorption factors (initial MB concentration, contact time, temperature, and pH) that impact the removal of the dye. After systematic experimentation, the optimal membrane composition is identified as 60% CNC, 15% CMC, 20% zeolites, and 5% citric acid. This composition achieved a 79.9% dye removal efficiency and a 38.3 mg/g adsorption capacity at pH 7. The optimized membrane exhibited enhanced MB dye removal under specific conditions, including a 50 mg adsorbent mass, 50 ppm dye concentration, 50 mL solution volume, 120-min contact time, and a temperature of 25°C. Increasing pH from neutral to alkaline enhances MB dye removal efficiency from 79.9% to 94.5%, with the adsorption capacity rising from 38.3 mg/g to 76.5 mg/g. The study extended to study the MB adsorption mechanisms, revealing the chemisorption of MB dye with pseudo-second-order kinetics. Chemical thermodynamic experiments determine the Freundlich isotherm as the apt model for MB dye adsorption on the membrane surface. In conclusion, this study successfully develops nanocellulose-based membranes for efficient AZO dye removal, contributing to sustainable water treatment technologies and environmental preservation efforts.
Collapse
Affiliation(s)
- Mostafa Ahmed Ibrahim
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
- Production and R&D Unit, NanoFab Technology Company, Giza, Egypt
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, Giza, Egypt
| | - Fouad Zahran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
- Gulf University for Science and Technology, GUST, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
13
|
Wang Z, Li R, Liu H, Liu X, Zheng F, Yu C. Reduced graphene oxide/SiC nanowire composite aerogel prepared by a hydrothermal method with excellent thermal insulation performance and electromagnetic wave absorption performance. NANOTECHNOLOGY 2024; 35:135703. [PMID: 38134441 DOI: 10.1088/1361-6528/ad183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
In aerospace and downhole exploration, materials must function reliably in challenging environments characterized by high temperatures and complex electromagnetic (EM) interference. Graphene oxide (GO) aerogels are promising materials for thermal insulation, and the incorporation of silicon carbide nanowires can enhance their mechanical properties, thermal stability and EM absorption efficiency. In this context, citric acid acts as both a cross-linking and reducing agent, facilitating the formation of a composite aerogel comprising GO and SiC nanowires (rGO/m-SiC NWs). Compared with GO aerogels, the representative composite aerogel sample rGS4 demonstrated significantly improved mechanical properties (yield strength increased by 0.031 MPa), outstanding thermal stability (ability to withstand temperatures up to 800 °C) and remarkably low thermal conductivity (measuring just 0.061 W m-1K-1). Importantly, the composite aerogels displayed impressive EM absorption characteristics, including a slim profile (2.5 mm), high absorption capacity (-42.23 dB) and an exceptionally broad effective absorption bandwidth (7.47 GHz). Notably, the specific effective absorption bandwidth of composite aerogels exceeded that of similar composite materials. In conclusion, rGO/m-SiC NWs exhibited exceptional mechanical properties, remarkable thermal stability, efficient thermal insulation and outstanding microwave absorption capabilities. These findings highlight their potential for use in high-temperature and electromagnetically challenging environments.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Rong Li
- College of Mechanical and Electrical Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - He Liu
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| | - Xingmin Liu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Feng Zheng
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| | - Chen Yu
- CNPC Bohai Drilling Engineering Company Ltd., Tianjin 300457, People's Republic of China
| |
Collapse
|
14
|
Poursadegh H, Amini-Fazl MS, Javanbakht S, Kazeminava F. Magnetic nanocomposite through coating mannose-functionalized metal-organic framework with biopolymeric pectin hydrogel beads: A potential targeted anticancer oral delivery system. Int J Biol Macromol 2024; 254:127702. [PMID: 37956806 DOI: 10.1016/j.ijbiomac.2023.127702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
This study designed magnetic nanocomposite hydrogel beads for a potential targeted anticancer oral delivery system. To end this, nanohybrids of Fe3O4/MIL-88(Fe) (FM) were synthesized through in-situ method by the treatment of terephthalic acid (TPA) and (Fe(NO3)3·9H2O) in the presence of Fe3O4 nanoparticles. They were then modified with mannose sugar as an anticancer receptor to achieve a targeted drug delivery system. After loading methotrexate (MTX), they were coated with pH-sensitive pectin hydrogel beads in the presence of a calcium chloride crosslinker for possible transferring the nanohybrids to the intestine through the acidic environment of the digestive system. The results of different analysis techniques showed that the materials were properly synthesized, coated, and loaded. The designed magnetic nanocomposite hydrogel beads showed pH-sensitive swelling and drug release rate, protecting MTX from the acidic environment of the stomach. MTT test revealed a good cytotoxicity toward colon cancer HT29 cell lines. Remarkably, the functionalization of MTX-loaded FM nanohybrids with mannose (MTX-MFM) enhanced their anticancer properties up to about 20 %. The results recommended that the prepared novel magnetic nanocomposite hydrogel beads have a good potential to be used as a targeted anticancer oral delivery system.
Collapse
Affiliation(s)
- Hossein Poursadegh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Siamak Javanbakht
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
He Y, Zheng Y, Liu C, Zhang H, Shen J. Citric acid cross-linked β-cyclodextrins: A review of preparation and environmental/biomedical application. Carbohydr Polym 2024; 323:121438. [PMID: 37940303 DOI: 10.1016/j.carbpol.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
The β-cyclodextrins (β-CD) are biocompatible macrocyclic candidates for the preparation of various composites with enhanced functions. While nontoxic and biodegradable citric acid (CA) is the favorite crosslinking agent for fabricating hierarchical advanced structures. The carboxyl and hydroxyl groups on CA can serve as "structural bridges" and enhance the solubility of β-CD. Leading to the construction of CA cross-linked β-CD with marvelous complicated structures and targeted functions. Here, we directly categorized the grafted composite materials into two main types such as organic and inorganic materials. Particularly, some representative composite materials are listed and analyzed in detail according to their preparation, advantages of unique characteristics, as well as the possible applications in environmental and biomedical fields such as adsorption of pollutants, sensors, and biomedical applications.
Collapse
Affiliation(s)
- Ye He
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yangyang Zheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jian Shen
- School of Chemistry, Chemical and Environmental Engineering, Weifang University, Weifang, Shandong 261061, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore.
| |
Collapse
|
16
|
Zhang Y, Zhang J, Ding Z, Zhang L, Deng L, Yao L, Yang HY. Cationic Defect-Modulated Li-Ion Migration in High-Voltage Li-Metal Batteries. ACS NANO 2023; 17:25519-25531. [PMID: 38061890 DOI: 10.1021/acsnano.3c09415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Li metal exhibits high potential as an anode material for next-generation high-energy density batteries. However, the nonuniform transport of Li+ ions causes Li-dendrite growth at the metal electrode, leading to severe capacity decay and a short cycling life. In this study, negatively charged lithiophilic sites (such as cationic metal vacancies) were used as hosts to regulate the atomic-scale Li+-ion deposition in Li-metal batteries (LMBs). As a proof of concept, three-dimensional (3D) carbon nanofibers (CNFs) decorated with negatively charged TiNbO4 grains (labeled CNF/nc-TNO) were confirmed to be promising Li hosts. Cationic vacancies caused by the carbothermal reduction of Nb5+ and Ti4+ ions generated a negatively charged fiber surface and strong electrostatic interactions that guided the Li+-ion flux to the shadowed areas underneath the fiber and throughout the fibrous mat. Consequently, circumferential Li-metal plating was observed in the CNF/nc-TNO host, even at a high current density of 10 mA cm-2. Moreover, CNF/nc-TNO asymmetric cells delivered a significantly more robust and stable Coulombic efficiency (CE) (99.2% over 380 cycles) than cells comprising electrically neutral CNFs without cationic defects (which exhibits rapid failure after 20 cycles) or Cu foil (which exhibits rapid CE decay, with a CE of 87.1% after 100 cycles). Additionally, CNF/nc-TNO exhibited high stability and low-voltage hysteresis during repeated Li plating/stripping (for over 4000 h at 2 mA cm-2) with an areal capacity of 2 mAh cm-2. It was further paired with high-voltage LiNi0.8Co0.1Mn0.1 (NCM811) cathodes, and the full cells showed long-term cycling (220 cycles) with a CE of 99.2% and a steady rate capability.
Collapse
Affiliation(s)
- Yingmeng Zhang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianhua Zhang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zaohui Ding
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lixuan Zhang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| |
Collapse
|
17
|
Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2023; 29:22. [PMID: 38202605 PMCID: PMC10779990 DOI: 10.3390/molecules29010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Citric acid finds broad applications in various industrial sectors, such as the pharmaceutical, food, chemical, and cosmetic industries. The bioproduction of citric acid uses various microorganisms, but the most commonly employed ones are filamentous fungi such as Aspergillus niger and yeast Yarrowia lipolytica. This article presents a literature review on the properties of citric acid, the microorganisms and substrates used, different fermentation techniques, its industrial utilization, and the global citric acid market. This review emphasizes that there is still much to explore, both in terms of production process techniques and emerging new applications of citric acid.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
18
|
Borhani M, Dadpour S, Haghighizadeh A, Etemad L, Soheili V, Memar B, Vafaee F, Rajabi O. Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharm Dev Technol 2023; 28:962-977. [PMID: 37943117 DOI: 10.1080/10837450.2023.2278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Burns can result in infection, disability, psychosocial and economic issues. Advanced wound dressings like hydrogel absorb exudate and maintain moisture. Considering the antimicrobial properties of silver nanoparticles and iron oxide nanoparticles, the efficiency of cross-linked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles for burn wounds repair was investigated in animal model. Cellulose hydrogel dressing made from carboxymethylcellulose and hydroxyethylcellulose crosslinked with different concentrations of citric acid (10, 15, 20, and 30%) was produced. The physicochemical characteristics of the synthetized hydrogels including Fourier-Transform Infrared spectroscopy, Thermal behavior, Swelling properties, and Scanning Electron Microscope (SEM) were evaluated. The silver nanoparticles and iron nanoparticles were produced and the characteristics, cytotoxicity, antimicrobial activities and their synergistic effect were investigated. After adding nanoparticles to hydrogels, the effects of the prepared wound dressings were investigated in a 14-day animal model of burn wound. The results showed that the mixture comprising 12.5 ppm AgNps, and IONPs at a concentration ≤100 ppm was non-cytotoxic. Moreover, the formulations with 20% CA had a swelling ratio of almost 250, 340, and 500 g/g at pHs of 5, 6.2, and 7.4 after one hour, which are lower than those of formulations with 5 and 10% CA. The total mass loss (59.31%) and the exothermic degradation happened in the range of 273-335 °C and its Tm was observed at 318.52 °C for hydrogels with 20% CA. Thus, the dressing comprising 20% CA which was loaded with 12.5 ppm silver nanoparticles (AgNPs) and 100 ppm iron oxide nanoparticles (IONPs) indicated better physicochemical, microbial and non-cytotoxic characteristics, and accelerated the process of wound healing after 14 days. It was concluded that the crosslinked hydrogel loaded with 12.5 ppm AgNPs and 100 ppm IONPs possesses great wound healing activity and could be regarded as an effective topical burn wound healing treatment.
Collapse
Affiliation(s)
- Mina Borhani
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atoosa Haghighizadeh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Farzad Vafaee
- Department of Pharmaceutical Control, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Aswathy SH, NarendraKumar U, Manjubala I. The influence of molecular weight of cellulose on the properties of carboxylic acid crosslinked cellulose hydrogels for biomedical and environmental applications. Int J Biol Macromol 2023; 239:124282. [PMID: 37023878 DOI: 10.1016/j.ijbiomac.2023.124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Hydrogels a three-dimensional network structure of hydrophilic polymers have gained significant interest in the field of biomedicine due to its high-water absorption properties and its resemblance to native extracellular matrix. However, the hydrogel's physicochemical properties are important in its ability to serve as a matrix in biomedical applications. The variations on the molecular weight of polymers on the preparation of crosslinked hydrogels may alter the properties. Different molecular weight carboxymethyl cellulose polymers were employed in this work to determine the effect of molecular weight on the physicochemical parameters of the hydrogel's crosslinking reaction. For this study, two distinct molecular weight carboxymethyl cellulose (CMC) polymers (Mw, 250,000 and 700,000) and various concentrations of crosslinker solution were used. The hydrogels were prepared through a chemical crosslinking reaction combining CMC and citric acid, which results in the formation of an ester bond between the two polymer chains. The crosslinking reaction is confirmed by Fourier transform infrared spectroscopy and total carboxyl content analysis. According to the physicochemical, thermal, and mechanical analysis, we have identified that 7 %, 9 % and 10 % citric acid showed the most promising hydrogels and found 7CMC hydrogel had superior quality. In vitro results demonstrated that the citric acid crosslinked CMC had excellent hemocompatibility and cytocompatibility.
Collapse
Affiliation(s)
- S H Aswathy
- Department of Biosciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - U NarendraKumar
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - I Manjubala
- Department of Biosciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
20
|
Synthesis and characterization of citric acid crosslinked carboxymethyl tamarind gum-polyvinyl alcohol hydrogel films. Int J Biol Macromol 2023; 236:123969. [PMID: 36898456 DOI: 10.1016/j.ijbiomac.2023.123969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/11/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
The aim of present work was to synthesize and characterize carboxymethyl tamarind gum-polyvinyl alcohol (CMTG-PVA) hydrogel films using citric acid (CA) as a crosslinker. Hydrogel films were prepared by solvent casting technique. The films were evaluated for total carboxyl content (TCC), tensile strength, protein adsorption, permeability properties, hemocompatibility, swellability, moxifloxacin (MFX) loading and release, in-vivo wound healing activity and characterized using instrumental techniques. An optimal increase in amount of PVA and CA increased the TCC and tensile strength of the hydrogel films. Hydrogel films exhibited low protein adsorption and microbial permeation, good permeability to water vapour and oxygen, and sufficient hemocompatibility. The films prepared using high concentration of PVA and low concentration of CA showed good swellability in phosphate buffer and simulated wound fluids. MFX loading in the hydrogel films was found in the range of 384-440 mg/g. The hydrogel films sustained the release of MFX up to 24 h. The release followed Non-Fickian mechanism. ATR-FTIR, solid state 13C NMR and TGA analysis indicated formation of ester crosslinks. In-vivo study revealed good wound healing activity for hydrogel films. From the overall study, it can be concluded that the citric acid crosslinked CMTG-PVA hydrogel films can be effectively used for wound treatment.
Collapse
|
21
|
Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr Polym 2023; 313:120760. [PMID: 37182939 DOI: 10.1016/j.carbpol.2023.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Cyclodextrin and its derivative (CDs) are natural building blocks for linking with other components to afford functional biomaterials. Hydrogels are polymer network systems that can form hydrophilic three-dimensional network structures through different cross-linking methods and are developing as potential materials in biomedical applications. Natural polysaccharide hydrogels (NPHs) are widely adopted in biomedical field with good biocompatibility, biodegradability, low cytotoxicity, and versatility in emulating natural tissue properties. Compared with conventional NPHs, CD regulated natural polysaccharide hydrogels (CD-NPHs) maintain good biocompatibility, while improving poor mechanical qualities and unpredictable gelation times. Recently, there has been increasing and considerable usage of CD-NPHs while there is still no review comprehensively introducing their construction, classification, and application of these hydrogels from the material point of view regarding biomedical fields. To draw a complete picture of the current and future development of CD-NPHs, we systematically overview the classification of CD-NPHs, and provide a holistic view on the role of CD-NPHs in different biomedical fields, especially in drug delivery, wound dressing, cell encapsulation, and tissue engineering. Moreover, the current challenges and prospects of CD-NPHs are discussed rationally, providing an insight into developing vibrant fields of CD-NPHs-based biomedicine, and facilitating their translation from bench to clinical medicine.
Collapse
|
22
|
Ji S, Sun R, Wang W, Xia Q. Preparation, characterization, and evaluation of tamarind seed polysaccharide-carboxymethylcellulose buccal films loaded with soybean peptides-chitosan nanoparticles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
23
|
Mazurek AH, Szeleszczuk Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems. Int J Mol Sci 2023; 24:ijms24043648. [PMID: 36835054 PMCID: PMC9963175 DOI: 10.3390/ijms24043648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Cyclodextrins, cyclic oligosaccharides composed of five or more α-D-glucopyranoside units linked by α-1,4 glycosidic bonds, are widely used both in their native forms as well as the components of more sophisticated materials. Over the last 30 years, solid-state nuclear magnetic resonance (ssNMR) has been used to characterize cyclodextrins (CDs) and CD-including systems, such as host-guest complexes or even more sophisticated macromolecules. In this review, the examples of such studies have been gathered and discussed. Due to the variety of possible ssNMR experiments, the most common approaches have been presented to provide the overview of the strategies employed to characterize those useful materials.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Żwirki i Wigury 81 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-501-255-121
| |
Collapse
|
24
|
Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review. Pharmaceutics 2023; 15:pharmaceutics15010296. [PMID: 36678924 PMCID: PMC9865107 DOI: 10.3390/pharmaceutics15010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
In the early 2000s, a method for cross-linking cyclodextrins (CDs) with citric acid (CTR) was developed. This method was nontoxic, environmentally friendly, and inexpensive compared to the others previously proposed in the literature. Since then, the CD/CTR biopolymers have been widely used as a coating on implants and other materials for biomedical applications. The present review aims to cover the chemical properties of CDs, the synthesis routes of CD/CTR, and their applications as drug-delivery systems when coated on different substrates. Likewise, the molecules released and other pharmaceutical aspects involved are addressed. Moreover, the different methods of pretreatment applied on the substrates before the in situ polymerization of CD/CTR are also reviewed as a key element in the final functionality. This process is not trivial because it depends on the surface chemistry, geometry, and physical properties of the material to be coated. The biocompatibility of the polymer was also highlighted. Finally, the mechanisms of release generated in the CD/CTR coatings were analyzed, including the mathematical model of Korsmeyer-Peppas, which has been dominantly used to explain the release kinetics of drug-delivery systems based on these biopolymers. The flexibility of CD/CTR to host a wide variety of drugs, of the in situ polymerization to integrate with diverse implantable materials, and the controllable release kinetics provide a set of advantages, thereby ensuring a wide range of future uses.
Collapse
|
25
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
26
|
Yavuz B, Kondolot Solak E, Oktar C. Preparation of biocompatible microsphere-cryogel composite system and controlled release of mupirocin. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Burcu Yavuz
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Chemistry and Chemical Processing Technologies, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| | - Ceren Oktar
- Department of Chemical Engineering, Gazi University, Ankara, Turkey
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
| |
Collapse
|
27
|
Double-Network Hydrogel Films Based on Cellulose Derivatives and κ-Carrageenan with Enhanced Mechanical Strength and Superabsorbent Properties. Gels 2022; 9:gels9010020. [PMID: 36661788 PMCID: PMC9858413 DOI: 10.3390/gels9010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Covalently crosslinked sodium carboxymethyl cellulose (CMC)-hydroxyethyl cellulose (HEC) hydrogel films were prepared using citric acid (CA) as the crosslinking agent. Thereafter, the physically crosslinked κ-carrageenan (κ-CG) polymer was introduced into the CMC-HEC hydrogel structure, yielding κ-CG/CMC-HEC double network (DN) hydrogels. The κ-CG physical network provided sacrificial bonding, which effectively dissipated the stretching energy, resulting in an increase in the tensile modulus, tensile strength, and fracture energy of the DN hydrogels by 459%, 305%, and 398%, respectively, compared with those of the CMC-HEC single network (SN) hydrogel. The dried hydrogels exhibited excellent water absorbency with a maximum water-absorption capacity of 66 g/g in distilled water. Compared with the dried covalent SN gel, the dried DN hydrogels exhibited enhanced absorbency under load, attributed to their improved mechanical properties. The water-absorption capacities and kinetics were dependent on the size of the dried gel and the pH of the water.
Collapse
|
28
|
Sustainable Plant-Based Biopolymer Membranes for PEM Fuel Cells. Int J Mol Sci 2022; 23:ijms232315245. [PMID: 36499574 PMCID: PMC9741098 DOI: 10.3390/ijms232315245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Carboxycellulose nanofibers (CNFs) promise to be a sustainable and inexpensive alternative material for polymer electrolyte membranes compared to the expensive commercial Nafion membrane. However, its practical applications have been limited by its relatively low performance and reduced mechanical properties under typical operating conditions. In this study, carboxycellulose nanofibers were derived from wood pulp by TEMPO oxidation of the hydroxyl group present on the C6 position of the cellulose chain. Then, citric acid cross-linked CNF membranes were prepared by a solvent casting method to enhance performance. Results from FT-IR spectroscopy, 13C NMR spectroscopy, and XRD reveal a chemical cross-link between the citric acid and CNF, and the optimal fuel cell performance was obtained by cross-linking 70 mL of 0.20 wt % CNF suspension with 300 µL of 1.0 M citric acid solution. The membrane electrode assemblies (MEAs), operated in an oxygen atmosphere, exhibited the maximum power density of 27.7 mW cm-2 and the maximum current density of 111.8 mA cm-2 at 80 °C and 100% relative humidity (RH) for the citric acid cross-linked CNF membrane with 0.1 mg cm-2 Pt loading on the anode and cathode, which is approximately 30 times and 22 times better, respectively, than the uncross-linked CNF film. A minimum activation energy of 0.27 eV is achieved with the best-performing citric acid cross-linked CNF membrane, and a proton conductivity of 9.4 mS cm-1 is obtained at 80 °C. The surface morphology of carboxycellulose nanofibers and corresponding membranes were characterized by FIB/SEM, SEM/EDX, TEM, and AFM techniques. The effect of citric acid on the mechanical properties of the membrane was assessed by tensile strength DMA.
Collapse
|
29
|
Hafiz Rozaini MN, Saad B, Lim JW, Yahaya N, Ramachandran MR, Mohd Ridzuan ND, Kiatkittipong W, Pasupuleti VR, Lam SM, Sin JC. Competitive removal mechanism to simultaneously incarcerate bisphenol A, triclosan and 4-tert-octylphenol within beta-cyclodextrin crosslinked citric acid used for encapsulation in polypropylene membrane protected-micro-solid-phase extraction. CHEMOSPHERE 2022; 309:136626. [PMID: 36181856 DOI: 10.1016/j.chemosphere.2022.136626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Endocrine disrupting compounds (EDCs) are extensively found in the environment and severely impacting human health. In addressing this issue, the beta-cyclodextrin crosslinked citric acid (BCD-CA) had been previously employed in membrane-protected micro-solid phase extraction for sequestering EDCs from water medium; and the findings revealed that BCD-CA possessed a selectivity property. On that account, the potential of BCD-CA towards competitive adsorption of selected EDCs was investigated in terms of adsorption mechanism and selectivity property. Factors that affected the removal efficiencies such as sample pH, sorbent dosage, contact time and initial concentration were evaluated. The characterization results revealed that the carbon percentage of BCD-CA had increased by 2.04%, while the hydrogen percentage had reduced by 1.83%, signifying the successful crosslinking of BCD-CA. Besides, the amount of active BCD was calculated to be 3.2 × 10-7 mol, while the amount of carboxyl group was 2.48 × 10-5 mol per 4 mg of BCD-CA. Moreover, BCD-CA was stable in an aqueous medium with the zeta potential obtained at -36.5 mV and had a high-water retention capacity (∼150%). The competitive adsorption mechanism by BCD-CA with EDCs followed the pseudo-second-order kinetics and Freundlich isotherm, suggesting that the adsorption process was dominated by chemisorption on the heterogeneous surface of the adsorbent. Thermodynamic results revealed that adsorption of 4-tert-octylphenol had the most negative ΔG value, indicating most favorable to be adsorbed by BCD-CA as opposed to triclosan and bisphenol A, which was coherent with the apparent formation constant results. These unique properties manifested the practicality of BCD-CA as a selective adsorbent to detect and remove EDCs from the water medium.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | | | - Nur Diyan Mohd Ridzuan
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Visweswara Rao Pasupuleti
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, 560064, Bangalore, Karnataka, India
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
30
|
Mahmood H, Asif M, Khalid SH, Khan IU, Chauhdary Z, Abdul Razzaq F, Asghar S. Design of a multifunctional carrageenan-tannic acid wound dressing Co-loaded with simvastatin and geranium oil. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Aswathy SH, NarendraKumar U, Manjubala I. Physicochemical Properties of Cellulose-Based Hydrogel for Biomedical Applications. Polymers (Basel) 2022; 14:4669. [PMID: 36365661 PMCID: PMC9654850 DOI: 10.3390/polym14214669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Hydrogels are three-dimensional network structures of hydrophilic polymers, which have the capacity to take up an enormous amount of fluid/water. Carboxymethyl cellulose (CMC) is a commercially available cellulose derivative that can be used for biomedical applications due to its biocompatibility. It has been used as a major component to fabricate hydrogels because of its superabsorbent nature. In this study, we developed carboxylic acid crosslinked carboxymethyl cellulose hydrogels for biomedical applications. The physicochemical, morphological, and thermal properties were analyzed to confirm the crosslinking of carboxymethyl cellulose. Fourier-transform infrared spectra confirmed the crosslinking of carboxymethyl cellulose with the presence of peaks due to an esterification reaction. The distinct peak at 1718 cm-1 in hydrogel samples is due to the carbonyl group vibrations of the ester bond from the crosslinking reaction. The total carboxyl content of the sample was measured with crosslinker immersion time. The swelling of crosslinked hydrogels showed an excellent swelling capacity for CG02 that is much higher than CG01 in water and PBS. Morphological analysis of the hydrogel showed it has a rough surface. The thermal degradation of hydrogel showed stability with respect to temperature. However, the mechanical analysis showed that CG01 has a higher compressive strength than CG01. The optimum swelling ratio and higher compressive strength of CG01 hydrogels could give them the ability to be used in load-bearing tissue regeneration. These results inferred that the carboxylic acid crosslinked CMC hydrogels could be a suitable matrix for biomedical or tissue-engineering applications with improved stability.
Collapse
Affiliation(s)
- Sreeja Harikumar Aswathy
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uttamchand NarendraKumar
- Department of Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Inderchand Manjubala
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
32
|
Sethi V, Kaur M, Thakur A, Rishi P, Kaushik A. Unravelling the role of hemp straw derived cellulose in CMC/PVA hydrogel for sustained release of fluoroquinolone antibiotic. Int J Biol Macromol 2022; 222:844-855. [PMID: 36174867 DOI: 10.1016/j.ijbiomac.2022.09.212] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
Cellulose fibres derived from hemp stalks, a prevalent biowaste in Northern India, were effectively converted into carboxymethyl cellulose (HS-CMC). Novel environmentally benign hydrogels were synthesized from HS-CMC and polyvinyl alcohol (PVA) using citric acid, a green crosslinker employing freeze-drying method. The HS-CMC/PVA hydrogels were successfully used for sustained release of fluoroquinolone antibiotic, norfloxacin. The hydrogels were characterized using FTIR, XRD, FE-SEM, EDS and thermal stability and evaluated for their carbonyl content, swelling ratio, in-vitro drug release behaviour and bactericidal properties. Successful isolation of cellulose from hemp stalks and its conversion into hydrogel with the presence of ester and carbonyl linkages was confirmed by FTIR. Thermal stability was impaired when cellulose fibres were converted into HS-CMC via carboxymethylation, as the crystalline structure was utterly disrupted. For the hydrogel, the equilibrium swelling ratios at pH -1.2 and 7.4 were assessed as 378.4 % and 538.7 %, respectively, higher than reported CMC hydrogels. The norfloxacin (NFX) encapsulated hydrogels exhibited good bactericidal properties with zone of inhibition of 19.2 ± 0.3 mm against E. coli and 16.4 ± 0.4 mm against S. aureus. The in-vitro release of NFX at pH 1.2 was 91 %, higher than pH 7.4 at 82 % with strong adherence to Higuchi kinetics model signifying that the release of NFX is via dissolution and diffusion. The release kinetics at different pH revealed Fickian behaviour establishing the potential of HS-CMC hydrogel for sustained release of norfloxacin.
Collapse
Affiliation(s)
- Vinny Sethi
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh 160014, India
| | - Abhishek Thakur
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
33
|
Roy A, Guha Ray P, Bose A, Dhara S, Pal S. pH-Responsive Copolymeric Network Gel Using Methacrylated β-Cyclodextrin for Controlled Codelivery of Hydrophilic and Hydrophobic Drugs. ACS APPLIED BIO MATERIALS 2022; 5:3530-3543. [PMID: 35734869 DOI: 10.1021/acsabm.2c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In medical science, sometimes two drugs with different solubilities are simultaneously required in combination to treat various diseases. Herein, a pH-responsive, copolymeric, antioxidant, biocompatible, and chemically crosslinked network gel is prepared to explore its capability as a matrix for controlled release of both hydrophobic [ibuprofen (IB)] and hydrophilic [tetracycline hydrochloride (TCH)] drugs, simultaneously. This three-dimensional β-CD-Meth-cl-(PHPMA-co-PAAc) network hydrogel is synthesized via two steps: (I) methacrylation of β-cyclodextrin and (II) grafting of poly(hydroxypropyl methacrylate) and poly(acrylic acid), followed by crosslinking of poly(ethylene glycol) diacrylate onto the backbone of methacrylated β-cyclodextrin (β-CD-Meth). The successful synthesis of the hydrogel is confirmed using several physiochemical characterizations. The β-CD-Meth-cl-(PHPMA-co-PAAc) hydrogel has an excellent network-like surface morphology. The potential pH-responsive high swelling behavior and excellent shrinking features suggest the reversible nature of the synthesized gel. Besides, rheological analyses affirm its excellent viscoelastic nature. This network gel is biodegradable and its non-cytotoxic nature toward human dermal fibroblast cells is demonstrated. Moreover, the dual drug release pattern from the copolymer under both in vitro and in vivo conditions portrays that this hydrogel has superior ability to be used as a controlled release matrix for both hydrophobic and hydrophilic drugs (TCH and IB) with varying solubilities concurrently.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sagar Pal
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| |
Collapse
|
34
|
α-Hydroxy acids modified β-cyclodextrin capped iron nanocatalyst for rapid reduction of nitroaromatics: A sonochemical approach. Int J Biol Macromol 2022; 209:1504-1515. [PMID: 35469942 DOI: 10.1016/j.ijbiomac.2022.04.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
Abstract
This study reports a sonochemical approach for the synthesis and catalytic performance of zerovalent iron nanoparticles (nZVI) capped with two cyclodextrin (CD) crosslinked polymers derived from Lactic acid and Citric acid (CDLA and CDCA respectively). The polymers and the catalysts were characterized by NMR, FTIR, HRTEM, DLS, Zeta potential, FESEM, EDAX, VSM, XRD, XPS, TGA analysis. The catalysts proved to be sustainable and recyclable for rapid sonochemical reduction of nitroaromatics under ambient conditions. The isolated yield of the derivatives was found to be greater than 90%. The results suggest excellent dispersibility, stability, high iron content and smaller size of CDLA polymer capped nZVI compared to CDCA capped nZVI, leading to two-fold higher catalytic activity. The effect of various crucial catalysis parameters was investigated and optimized. The scope of the reaction was extended to other nitroaromatics under the optimized conditions. Being magnetically separable, the cost effective and non-toxic catalysts exhibited high recycling efficiency (~13 cycles), high turnover number (TON) and turnover frequency (TOF). The recyclable catalysts could be low-cost and sustainable options for organic transformation in water via sonochemical approach in aqueous medium.
Collapse
|
35
|
Yang J, Zhang X, Chen L, Zhou X, Fan X, Hu Y, Niu X, Xu X, Zhou G, Ullah N, Feng X. Antibacterial aerogels with nano‑silver reduced in situ by carboxymethyl cellulose for fresh meat preservation. Int J Biol Macromol 2022; 213:621-630. [PMID: 35623462 DOI: 10.1016/j.ijbiomac.2022.05.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/20/2023]
Abstract
Bacterial cellulose (BC) was used as a reinforcing agent, citric acid (CA) as a cross-linking agent, and CMC@AgNPs as antibacterial nanomaterials, in which CMC@AgNPs were reduced from AgNO3 in situ by carboxymethyl cellulose (CMC) as a reducing agent and stabilizer to fight microbial corruption. Its potential application in packaging fresh meat has been investigated. Results showed that the antibacterial CMC@AgNPs/BC/CA aerogels with excellent structural integrity and outstanding water absorption were developed by adding 0.3% BC and 0.25% CA. The CMC@AgNPs/BC/CA aerogel significantly reduced the color change and the total viable bacterial counts (TVC) in fresh meat after 7 days of refrigerated storage. The results indicated that CMC@AgNPs/BC/CA aerogels can effectively extend the shelf life of fresh meat, and can be used for meat packaging as a biologically active absorption pad.
Collapse
Affiliation(s)
- Jingwen Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianhao Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xuening Niu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with pH-Dependent Solubility. Polymers (Basel) 2022; 14:polym14102127. [PMID: 35632009 PMCID: PMC9142934 DOI: 10.3390/polym14102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/01/2022] Open
Abstract
A challenge in the pharmaceutical sector is the development of controlled release dosage forms for oral administration of poorly soluble drugs, in particular, drugs characterized by pH-dependent solubility through the gastrointestinal tract, which itself shows wide variability in terms of environmental pHs. The best approach is to increase the dissolution rate of the drugs at the different pHs and only then modify its release behavior from the pharmaceutical form. This work aims to demonstrate the ability of properly designed polymeric nanofibers in enhancing the release rate of model drugs with different pH-dependent solubility in the different physiological pHs of the gastrointestinal tract. Polymeric nanofibers loaded with meloxicam and carvedilol were prepared using the electrospinning technique and were then included in properly designed tablet formulations to obtain fast or sustained release dosage forms. The nanofibers and the tablets were characterized for their morphological, physico-chemical and dissolution properties. The tablets are able to deliver the dose according to the expected release behavior, and zero-order, first-order, Higuchi, Korsmeyer–Peppas and Hixon–Crowell kinetics models were used to analyze the prevailing release mechanism of the tablets. This study shows that the electrospun fibers can be advantageously included in oral dosage forms to improve their release performances.
Collapse
|
37
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
38
|
Cross-linking polymerization of beta-cyclodextrin with acrylic monomers; characterization and study of drug carrier properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04130-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Diaz-Gomez L, Gonzalez-Prada I, Millan R, Da Silva-Candal A, Bugallo-Casal A, Campos F, Concheiro A, Alvarez-Lorenzo C. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydr Polym 2022; 278:118924. [PMID: 34973742 DOI: 10.1016/j.carbpol.2021.118924] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
This work aims to use carboxymethyl cellulose (CMC) as main structural and functional component of 3D printed scaffolds for healing of diabetic wounds. Differently from previous inks involving small contents in CMC, herein sterile (steam-heated) concentrated CMC solely dispersions (10-20%w/v) were screened regarding printability and fidelity properties. CMC (15%w/v)-citric acid inks showed excellent self-healing rheological properties and stability during storage. CMC scaffolds loaded with platelet rich plasma (PRP) sustained the release of relevant growth factors. CMC scaffolds both with and without PRP promoted angiogenesis in ovo, stem cell migration in vitro, and wound healing in a diabetic model in vivo. Transparent CMC scaffolds allowed direct monitoring of bilateral full-thickness wounds created in rat dorsum. CMC scaffolds facilitated re-epithelialization, granulation, and angiogenesis in full-thickness skin defects, and the performance was improved when combined with PRP. Overall, CMC is pointed out as outstanding component of active dressings for diabetic wounds.
Collapse
Affiliation(s)
- Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Iago Gonzalez-Prada
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosendo Millan
- Centro de Biomedicina Experimental da USC (CEBEGA), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Andres Da Silva-Candal
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Neurovascular Diseases Laboratory, Neurology Service, University Hospital Complex of A Coruña, Biomedical Research Institute (INIBIC), 15706 A Coruña, Spain
| | - Ana Bugallo-Casal
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
40
|
Bhowmik M, Dharmalingam K, Halder S, Muthukumar P, Anandalakshmi R. Fabrication, characterization, and evaluation of desiccant doped hydrogel films for potential
air‐dehumidification
applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mrinal Bhowmik
- School of Energy Science and Engineering Indian Institute of Technology Guwahati Assam India
| | - Koodalingam Dharmalingam
- Advance Energy & Materials Systems Laboratory, Department of Chemical Engineering Indian Institute of Technology Guwahati Assam India
| | - Sayan Halder
- Advance Energy & Materials Systems Laboratory, Department of Chemical Engineering Indian Institute of Technology Guwahati Assam India
| | - Palanisamy Muthukumar
- School of Energy Science and Engineering Indian Institute of Technology Guwahati Assam India
- Department of Mechanical Engineering Indian Institute of Technology Guwahati Assam India
| | - Ramalingam Anandalakshmi
- Advance Energy & Materials Systems Laboratory, Department of Chemical Engineering Indian Institute of Technology Guwahati Assam India
| |
Collapse
|
41
|
Utzeri G, Murtinho D, Maria TM, Pais AA, Sannino F, Valente AJ. Amine-β-cyclodextrin-based nanosponges. The role of cyclodextrin amphiphilicity in the imidacloprid uptake. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Liu J, Tian B, Liu Y, Wan JB. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int J Mol Sci 2021; 22:13516. [PMID: 34948312 PMCID: PMC8703588 DOI: 10.3390/ijms222413516] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
Hydrogels possess porous structures, which are widely applied in the field of materials and biomedicine. As a natural oligosaccharide, cyclodextrin (CD) has shown remarkable application prospects in the synthesis and utilization of hydrogels. CD can be incorporated into hydrogels to form chemically or physically cross-linked networks. Furthermore, the unique cavity structure of CD makes it an ideal vehicle for the delivery of active ingredients into target tissues. This review describes useful methods to prepare CD-containing hydrogels. In addition, the potential biomedical applications of CD-containing hydrogels are reviewed. The release and degradation process of CD-containing hydrogels under different conditions are discussed. Finally, the current challenges and future research directions on CD-containing hydrogels are presented.
Collapse
Affiliation(s)
- Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China;
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China;
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| |
Collapse
|
43
|
Martwong E, Chuetor S, Junthip J. Adsorption of Paraquat by Poly(Vinyl Alcohol)-Cyclodextrin Nanosponges. Polymers (Basel) 2021; 13:4110. [PMID: 34883612 PMCID: PMC8658895 DOI: 10.3390/polym13234110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The contamination of hydrosoluble pesticides in water could generate a serious problem for biotic and abiotic components. The removal of a hazardous agrochemical (paraquat) from water was achieved by adsorption processes using poly(vinyl alcohol)-cyclodextrin nanosponges, which were prepared with various formulations via the crosslinking between citric acid and β-cyclodextrin in the presence of poly(vinyl alcohol). The physicochemical properties of nanosponges were also characterized by different techniques, such as gravimetry, thermogravimetry, microscopy (SEM and Stereo), spectroscopy (UV-visible, NMR, ATR-FTIR, and Raman), acid-base titration, BET surface area analysis, X-ray diffraction, and ion exchange capacity. The C10D-P2 nanosponges displayed 60.2% yield, 3.14 mmol/g COOH groups, 0.335 mmol/g β-CD content, 96.4% swelling, 94.5% paraquat removal, 0.1766 m2 g-1 specific surface area, and 5.2 × 10-4 cm3 g-1 pore volume. The presence of particular peaks referring to specific functional groups on spectroscopic spectra confirmed the successful polycondensation on the reticulated nanosponges. The pseudo second-order model (with R2 = 0.9998) and Langmuir isotherm (with R2 = 0.9979) was suitable for kinetics and isotherm using 180 min of contact time and a pH of 6.5. The maximum adsorption capacity was calculated at 112.2 mg/g. Finally, the recyclability of these nanosponges was 90.3% of paraquat removal after five regeneration times.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
44
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
45
|
Hu Y, Qiu C, McClements DJ, Qin Y, Fan L, Xu X, Wang J, Jin Z. Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11006-11014. [PMID: 34491745 DOI: 10.1021/acs.jafc.1c02722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many phytochemicals suffer from poor water dispersity and storage stability, which restrict their application within aqueous-based commercial products. β-Cyclodextrin (β-CD) is a water-dispersible molecule with a hydrophobic core that can encapsulate and protect non-polar substances. The functional attributes of β-CD can be further enhanced by chemical modification. In this study, a simple and effective dry-heating process was applied to fabricate succinic acid (SA)-modified β-CD (SACD) through esterification. SACD showed better encapsulation property than non-modified β-CD to guest molecules such as methyl orange (up to 1.41-folds of β-CD) and curcumin (with an encapsulation efficiency of up to 10 mg/g). Meanwhile, higher water solubility (up to 469.30 g per 100 g of H2O) was achieved for SACD, indicating that a high dose of SACD could be applied in an aqueous food matrix. Such a simple strategy exhibiting low cytotoxicity shows great potential incorporating bioactive compounds into functional foods.
Collapse
Affiliation(s)
- Yao Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
46
|
Designing gelatin-based swellable hydrogels system for controlled delivery of salbutamol sulphate: characterization and toxicity evaluation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03629-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Vasile C, Baican M. Progresses in Food Packaging, Food Quality, and Safety-Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021; 26:1263. [PMID: 33652755 PMCID: PMC7956554 DOI: 10.3390/molecules26051263] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time-temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.
Collapse
Affiliation(s)
- Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 70487 Iasi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, 16 University Street, 700115 Iaşi, Romania;
| |
Collapse
|
49
|
Liu Y, Lin T, Cheng C, Wang Q, Lin S, Liu C, Han X. Research Progress on Synthesis and Application of Cyclodextrin Polymers. Molecules 2021; 26:1090. [PMID: 33669556 PMCID: PMC7922926 DOI: 10.3390/molecules26041090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclodextrins (CDs) are a series of cyclic oligosaccharides formed by amylose under the action of CD glucosyltransferase that is produced by Bacillus. After being modified by polymerization, substitution and grafting, high molecular weight cyclodextrin polymers (pCDs) containing multiple CD units can be obtained. pCDs retain the internal hydrophobic-external hydrophilic cavity structure characteristic of CDs, while also possessing the stability of polymer. They are a class of functional polymer materials with strong development potential and have been applied in many fields. This review introduces the research progress of pCDs, including the synthesis of pCDs and their applications in analytical separation science, materials science, and biomedicine.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.L.); (T.L.); (Q.W.); (S.L.)
| | | | | | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.L.); (T.L.); (Q.W.); (S.L.)
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.L.); (T.L.); (Q.W.); (S.L.)
| |
Collapse
|
50
|
Salem KS, Naithani V, Jameel H, Lucia L, Pal L. Lignocellulosic Fibers from Renewable Resources Using Green Chemistry for a Circular Economy. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000065. [PMID: 33552552 PMCID: PMC7857128 DOI: 10.1002/gch2.202000065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Indexed: 06/01/2023]
Abstract
The sustainable development of lignocellulose fibers exhibits significant potential to supplant synthetic polymer feedstocks and offers a global platform for generating sustainable packaging, bioplastics, sanitary towels, wipes, and related products. The current research explores the dynamics of fiber production from wood, non-wood, and agro-residues using carbonate hydrolysis and a mild kraft process without bleaching agents. With respect to carbonate hydrolysis, high yield, and good coarseness fibers are attained using a simple, low-cost, and ecofriendly process. Fibers produced using a mild kraft process have lower Klason lignin, carboxyl content, surface charges, and higher fiber length, and crystallinity. Eucalyptus fibers show the highest crystallinity while softwood carbonate fibers show the lowest crystallinity. Hemp hurd fibers contain the highest concentration of hard-to-remove water, and thus, suffer maximum flattening visualized by the microscopic images. The relatively high yield sustainable fibers with versatile properties can provide a significant economic benefit since fiber is the dominant cost for producing various bioproducts to meet society's current and future needs.
Collapse
Affiliation(s)
- Khandoker S. Salem
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Ved Naithani
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Hasan Jameel
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Lucian Lucia
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| | - Lokendra Pal
- Department of Forest BiomaterialsNC State UniversityRaleighNC27695–8005USA
| |
Collapse
|