1
|
Song J, Tu G, Liu Y, Liu S, Zhang Y, Yang W, Pang X, Chen X, Liang H, Zhang J, Ma B. Hydroxyl groups introducing NMR strategy for structural elucidation of a heptasaccharide isolated from Trillium tschonoskii. Carbohydr Res 2025; 549:109359. [PMID: 39709710 DOI: 10.1016/j.carres.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
A heptasaccharide was isolated from an active fraction of Trillium tschonoskii using HILIC and high-temperature PGC chromatography methods. UHPLC-Q/TOF-MS analysis gave this oligosaccharide a degree of polymerization (DP) of 7 and MS/MS showed that it has a six-carbon aldehyde glucan structure with the possible chain 1 → 4 connected. The structure was determined by series 1D and 2D NMR in two solvents D2O and DMSO‑d6. Using 1H resonances of the -OH groups as the starting point and HSQC-TOCSY on the covalent structure definition for structural elucidation allowed this heptasaccharide to be uncovered. This heptasaccharide was elucidated as maltoheptaose via complete assignment of 1H and 13C with jigsaw H-C-OH pieces produced by HSQC-TOCSY at increasing mixing time. The significance of identifying maltoheptaose in Trillium tschonoskii indicates the high potential of -OH introducing strategy for other oligosaccharides' structural determination with relatively higher DP.
Collapse
Affiliation(s)
- Juan Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guangzhong Tu
- Beijing Institute of Microchemistry, Beijing, 100091, China
| | - Yue Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Si Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuting Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenxi Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Kreitschitz A, Gorb SN. Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1603-1618. [PMID: 39691206 PMCID: PMC11650531 DOI: 10.3762/bjnano.15.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels. Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope. Mucilage serves several important biological functions, such as supporting seed germination, protecting seeds against pathogens and predators, and allowing the seed to attach to diverse surfaces (e.g., soil or animals). The attachment properties of mucilage are thus responsible for seed dispersal. Mucilage represents a hydrophilic, three-dimensional network of polysaccharides (cellulose, pectins, and hemicelluloses) and is able to absorb large amounts of water. Depending on the water content, mucilage can behave as an efficient lubricant or as strong glue. The current work attempts to summarise the achievements in the research on the mucilage envelope, primarily in the context of its structure and physical properties, as well as biological functions associated with these properties.
Collapse
Affiliation(s)
- Agnieszka Kreitschitz
- University of Wrocław, Department of Plant Developmental Biology, ul. Kanonia 6/8, 50-328 Wrocław, Poland
- Kiel University, Department of Functional Morphology and Biomechanics, Am Botanischen Garten 9, D-24098 Kiel, Germany
| | - Stanislav N Gorb
- Kiel University, Department of Functional Morphology and Biomechanics, Am Botanischen Garten 9, D-24098 Kiel, Germany
| |
Collapse
|
3
|
Tosif MM, Bains A, Sridhar K, Dhull SB, Ali N, Parvez MK, Chawla P, Sharma M. From plant to nanomaterial: Green extraction of nanomucilage from Cordia dichotoma fruit and its multi-faceted biological and photocatalytic attributes. Int J Biol Macromol 2024; 282:136522. [PMID: 39419143 DOI: 10.1016/j.ijbiomac.2024.136522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to evaluate the extraction efficiency of mucilage from Cordia dichotoma fruits using various aqueous extraction methods, including microwave-assisted water extraction (MWE), hot-water extraction (HWE), and cold-water extraction (CWE). Different analytical techniques were employed to characterize the Cordia dichotoma mucilage (CDM). Additionally, the functional properties, anti-microbial, anti-inflammatory, and dye reduction potential of CDM were assessed. The results indicated a significantly (p < 0.05) higher yield of CDM (13.44 ± 0.94 %) using MWE compared to HWE (12.08 ± 0.82 %) and CWE (7.59 ± 0.73 %). The optimal extraction condition was utilized for the spray-drying process, yielding a spray-dried mucilage powder (SDMP) with a yield of 9.52 ± 1.27 %. The presence of galactose and arabinose as major sugar and functional groups such as OH, COOH, CH, and NH from proteins, uronic acids, and sugars were identified. CDM particles exhibited an irregular morphology and demonstrated thermal stability, with maximum weight loss occurring between 221.83 and 478.66 °C. The particle size of CDM was 681.16 ± 2.18 nm with a zeta potential of -21.46 ± 1.72 mV. Rheological analysis revealed that CDM exhibited shear-thinning behavior. Furthermore, CDM displayed inherent biological activities, including antimicrobial and anti-inflammatory properties. The dye reduction potential of CDM was evidenced by an 88.67 % degradation of indigo carmine dye. In summary, this study provides insights into the cost-effective extraction methods for CDM and its potential utilization as an eco-friendly material for dye reduction.
Collapse
Affiliation(s)
- Mansuri M Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
4
|
Liew CY, Li WL, Ni CK. Structural determination of fructooligosaccharides and raffinose family oligosaccharides using logically derived sequence tandem mass spectrometry. Analyst 2024; 149:5714-5727. [PMID: 39523940 DOI: 10.1039/d4an00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fructooligosaccharides (FOS) and raffinose family oligosaccharides (RFOs) are two highly abundant water-soluble carbohydrates in plants. The typical procedures for the FOS and RFO structural determination using mass spectrometry involve permethylation, followed by the hydrolysis of the permethylated oligosaccharides into monosaccharides, and then the identification of linkage positions using GC mass spectrometry. However, the determination of linkage position sequence is not straightforward, thus this method is limited to small oligosaccharides or oligosaccharides with simple linkages. In this study, we employed a new mass spectrometry method, logically derived sequence tandem mass spectrometry, to determine the structures of FOS and RFOs. We first showed that the monosaccharide and disaccharide CID spectra of aldohexose and ketohexose can be rationalized using dissociation mechanisms. Then we demonstrated that the linkage positions of FOS and RFOs can be identified, the sequence of the linkages can be determined, and the ketohexose and aldohexose in FOS and RFOs can be differentiated, suggesting this new method is useful for structural determination of FOS and RFOs.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
| | - Wun-Long Li
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
5
|
Zare T, Fournier-Level A, Ebert B, Roessner U. Chia (Salvia hispanica L.), a functional 'superfood': new insights into its botanical, genetic and nutraceutical characteristics. ANNALS OF BOTANY 2024; 134:725-746. [PMID: 39082745 PMCID: PMC11560377 DOI: 10.1093/aob/mcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers owing to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of the fatty acids and proteins in chia seeds have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE This review article aims to provide an overview of the botanical, morphological and biochemical features of chia plants, seeds and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical and agricultural applications of chia. In this context, we discuss the latest research on chia and the questions that remain unanswered, and we identify areas that require further exploration. CONCLUSIONS Nutraceutical compounds associated with significant health benefits, including ω-3 polyunsaturated fatty acids, proteins and phenolic compounds with antioxidant activity, have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial and antifungal effects of chia seeds. The recently published genome of chia and gene-editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection and large-scale transcriptomic datasets for chia.
Collapse
Affiliation(s)
- Tannaz Zare
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Berit Ebert
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biology and Biotechnology, The Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
6
|
Wang DD, Zhang R, Tang LY, Long GQ, Yan H, Yang YC, Guo ZF, Zheng YY, Wang Y, Jia JM, Wang AH. (±)-Salvicatone A: A Pair of C 27-Meroterpenoid Enantiomers with Skeletons from the Roots and Rhizomes of Salvia castanea Diels f. tomentosa Stib. J Org Chem 2024; 89:12894-12901. [PMID: 37976373 DOI: 10.1021/acs.joc.3c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
(±)-Salvicatone A (1), a C27-meroterpenoid featuring a unique 6/6/6/6/6-pentacyclic carbon skeleton with a 7,8,8a,9,10,10a-hexahydropyren-1 (6H)-one motif, was isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Its structure was characterized by comprehensive spectroscopic analyses along with computer-assisted structure elucidation, including ACD/structure elucidator and quantum chemical calculations with 1H/13C NMR and electronic circular dichroism. Biogenetically, compound 1 was constructed from decarboxylation following [4 + 2] Diels-Alder cycloaddition reaction between caffeic acid and miltirone analogue. Bioassays showed that (-)-1 and (+)-1 inhibited nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophage cells with an IC50 value of 6.48 ± 1.25 and 15.76 ± 5.55 μM, respectively. The structure-based virtual screening based on the pharmacophores in ePharmaLib, as well as the molecular docking and molecular dynamics simulations study, implied that (-)-1 and (+)-1 may potentially bind to retinoic acid receptor-related orphan receptor C to exert anti-inflammatory activities.
Collapse
Affiliation(s)
- Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lian-Yu Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Qing Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hui Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yong-Cheng Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zi-Feng Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Ying Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
7
|
Sui Y, Xu D. Isolation and identification of anti-inflammatory and analgesic polysaccharides from Coix seed ( Coix lacryma-jobi L.var. Ma-yuen (Roman.) Stapf). Nat Prod Res 2024; 38:2165-2174. [PMID: 36584288 DOI: 10.1080/14786419.2022.2162896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Coix seed is a nutrient-rich food and traditional Chinese medicine with anti-inflammatory and analgesic properties. Polysaccharides from Coix seed have been rarely investigated for structure and activities. In this study, the analgesic and anti-inflammatory effects were investigated in vivo and in vitro. The results showed that Coix seed had a significant influence on reducing the number of writhing, increasing the pain threshold and alleviating the swelling degree caused by acute inflammation. Column chromatography was used to obtain two active compounds of Coix seed. Compound 1 was (1→6)-α-glucan with a molecular weight of 6.81 × 105 Da. The chemical connection of compound 2 was as follows: α-Frup (2→ [1)-α-Glcp (6]5→1)-α-Glcp (4→1)-α-Glcp, which was isolated in Coix seed for the first time. LPS-induced inflammation in RAW264.7 cells was well inhibited by compounds. These findings offered a preliminary investigation into the analgesic and anti-inflammatory properties of Coix seed, which may be helpful for application.
Collapse
Affiliation(s)
- Yingling Sui
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Deping Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Krümmel A, Pagno CH, Malheiros PDS. Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules. Foods 2024; 13:1141. [PMID: 38672814 PMCID: PMC11049105 DOI: 10.3390/foods13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The synthesis of active films with natural antimicrobials from renewable sources offers an alternative to conventional non-biodegradable packaging and synthetic additives. This study aimed to develop cassava starch films with antimicrobial activity by incorporating either free carvacrol or chia mucilage nanocapsules loaded with carvacrol (CMNC) and assess their impact on the physical, mechanical, and barrier properties of the films, as well as their efficacy against foodborne pathogens. The addition of free carvacrol led to a reduction in mechanical properties due to its hydrophobic nature and limited interaction with the polymeric matrix. Conversely, CMNC enhanced elongation at break and reduced light transmission, with a more uniform distribution in the polymeric matrix. Films containing 8% carvacrol exhibited inhibitory effects against Salmonella and Listeria monocytogenes, further potentiated when encapsulated in chia mucilage nanocapsules. These findings suggest that such films hold promise as active packaging materials to inhibit bacterial growth, ensuring food safety and extending shelf life.
Collapse
Affiliation(s)
- Aline Krümmel
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Carlos Henrique Pagno
- Laboratory of Phenolic Compounds, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Patrícia da Silva Malheiros
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| |
Collapse
|
9
|
Song J, Liu Y, Yin X, Nan Y, Shi Y, Chen X, Liang H, Zhang J, Ma B. Isolation and structural elucidation of prebiotic oligosaccharides from Ziziphi Spinosae Semen. Carbohydr Res 2023; 534:108948. [PMID: 37783055 DOI: 10.1016/j.carres.2023.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Six oligosaccharides were discovered and isolated for the first time from Ziziphi Spinosae Semen. On the basis of spectroscopic analysis, their structures were determined to be verbascose (1), verbascotetraose (2), stachyose (3), manninotriose (4), raffinose (5), and melibiose (6). The prebiotic effect of the oligosaccharide fraction was assayed by eight gut bacterial growth in vitro, revealing a significant increase in cell density, up to 4-fold, for Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus johnsonii. The impact of six oligosaccharides with different degrees of polymerization (DPs) and structures on the growth of Lactobacillus acidophilus was evaluated. As a result, stachyose and raffinose demonstrated superior support for bacterial growth compared to the other oligosaccharides. This study explored the structure-activity relationship of raffinose family oligosaccharides (RFOs) and showed that the more the monosaccharide type, the more supportive the gut bacteria growth when oligosaccharides have the same molecular weight.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yue Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China
| | - Xiangchang Yin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi Nan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhao Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Lijina P, Manjunatha JR, Gnanesh Kumar BS. Characterization of free oligosaccharides from garden cress seed aqueous exudate using PGC LC-MS/MS and NMR spectroscopy. Carbohydr Res 2023; 532:108914. [PMID: 37541111 DOI: 10.1016/j.carres.2023.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Garden cress seeds produces mucilage that has found various food applications, however, there is little information on the free oligosaccharides (FOS) contents in these seeds. Herein, we explored the presence of FOS in cress seed aqueous exudate. PGC-LC MS/MS analysis indicated the presence of mainly hexose containing oligosaccharides such as raffinose, stachyose and verbascose belonging to raffinose family of oligosaccharides (RFOs). In addition, minor fraction of planteose, isomeric tri- and tetrasaccharides were also observed. Further, the structural confirmation of the abundant tri- and tetrasaccharide were obtained through 1D and 2D NMR analysis. Thus, the RFOs presence in cress seeds would enhance its bio-functionalities.
Collapse
Affiliation(s)
- P Lijina
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - J R Manjunatha
- Central Instrumentation Facility and Service, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570020, Karnataka, India
| | - B S Gnanesh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Lijina P, Gnanesh Kumar BS. Discrimination of raffinose and planteose based on porous graphitic carbon chromatography in combination with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123758. [PMID: 37245448 DOI: 10.1016/j.jchromb.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Raffinose and planteose are non-reducing, isomeric trisaccharides present in many higher plants. Structurally, they differ in the linkage of α-D-galactopyranosyl to either glucose C(6) or to C (6') of fructose, respectively and thus differentiating each other is very challenging. The negative ion mode mass spectrometric analysis is shown to distinguish planteose and raffinose. However, to facilitate the robust identification of planteose in complex mixtures, herein, we have demonstrated the use of porous graphitic carbon (PGC) chromatography combined with QTOF-MS2 analysis. The separation of planteose and raffinose was achieved on PGC, wherein both have recorded different retention time. Detection through MS2 analysis revealed the specific fragmentation patterns for planteose and raffinose that are distinctive to each other. The applicability of this method on oligosaccharides pool extracted from different seeds showed clear separation of planteose that allowed unambiguous identification from complex mixtures. Therefore, we propose PGC-LC-MS/MS can be employed for sensitive, throughput screening of planteose from wider plant sources.
Collapse
Affiliation(s)
- P Lijina
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - B S Gnanesh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Ang ME, Cowley JM, Yap K, Hahn MG, Mikkelsen D, Tucker MR, Williams BA, Burton RA. Novel constituents of Salvia hispanica L. (chia) nutlet mucilage and the improved in vitro fermentation of nutlets when ground. Food Funct 2023; 14:1401-1414. [PMID: 36637177 DOI: 10.1039/d2fo03002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Upon wetting, chia (Salvia hispanica L.) nutlets produce a gel-like capsule of polysaccharides called mucilage that comprises a significant part of their dietary fibre content. Seed/nutlet mucilage is often used as a texture modifying hydrocolloid and bulking dietary fibre due to its water-binding ability, though the utility of mucilage from different sources is highly structure-function dependent. The composition and structure of chia nutlet mucilage is poorly defined, and a better understanding will aid in exploiting its dietary fibre functionality, particularly if, and how, it is utilised by gut microbiota. In this study, microscopy, chromatography, mass spectrometry and glycome profiling techniques showed that chia nutlet mucilage is highly complex, layered, and contains several polymer types. The mucilage comprises a novel xyloamylose containing both β-linked-xylose and α-linked-glucose, a near-linear xylan that may be sparsely substituted, a modified cellulose domain, and abundant alcohol-soluble oligosaccharides. To assess the dietary fibre functionality of chia nutlet mucilage, an in vitro cumulative gas production technique was used to determine the fermentability of different chia nutlet preparations. The complex nature of chia nutlet mucilage led to poor fermentation where the oligosaccharides appeared to be the only fermentable substrate present in the mucilage. Of note, ground chia nutlets were better fermented than intact whole nutlets, as judged by short chain fatty acid production. Therefore, it is suggested that the benefits of eating chia as a "superfood", could be notably enhanced if the nutlets are ground rather than being consumed whole, improving the bioaccessibility of key nutrients including dietary fibre.
Collapse
Affiliation(s)
- Main Ern Ang
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Kuok Yap
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Deirdre Mikkelsen
- The University of Queensland, Australian Research Council Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia.,School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Barbara A Williams
- The University of Queensland, Australian Research Council Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
13
|
Renoldi N, Melchior S, Calligaris S, Peressini D. Application of high-pressure homogenization to steer the technological functionalities of chia fibre-protein concentrate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes. Food Microbiol 2022; 108:104116. [DOI: 10.1016/j.fm.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
|
15
|
Huang X, Ai C, Yao H, Zhao C, Xiang C, Hong T, Xiao J. Guideline for the extraction, isolation, purification, and structural characterization of polysaccharides from natural resources. EFOOD 2022. [DOI: 10.1002/efd2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Chao Ai
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Chengang Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Chunhong Xiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| |
Collapse
|
16
|
Li C, Wang Y. Non-Targeted Analytical Technology in Herbal Medicines: Applications, Challenges, and Perspectives. Crit Rev Anal Chem 2022; 54:1951-1970. [PMID: 36409298 DOI: 10.1080/10408347.2022.2148204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herbal medicines (HMs) have been utilized to prevent and treat human ailments for thousands of years. Especially, HMs have recently played a crucial role in the treatment of COVID-19 in China. However, HMs are susceptible to various factors during harvesting, processing, and marketing, affecting their clinical efficacy. Therefore, it is necessary to conclude a rapid and effective method to study HMs so that they can be used in the clinical setting with maximum medicinal value. Non-targeted analytical technology is a reliable analytical method for studying HMs because of its unique advantages in analyzing unknown components. Based on the extensive literature, the paper summarizes the benefits, limitations, and applicability of non-targeted analytical technology. Moreover, the article describes the application of non-targeted analytical technology in HMs from four aspects: structure analysis, authentication, real-time monitoring, and quality assessment. Finally, the review has prospected the development trend and challenges of non-targeted analytical technology. It can assist HMs industry researchers and engineers select non-targeted analytical technology to analyze HMs' quality and authenticity.
Collapse
Affiliation(s)
- Chaoping Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
17
|
Shao S, Xu W, Xie Z, Li M, Zhao J, Yang X, Yu P, Yang H. Distinctive carbohydrate profiles of black ginseng revealed by IM-MS combined with PMP labeling and multivariate data analysis. Curr Res Food Sci 2022; 5:2243-2250. [DOI: 10.1016/j.crfs.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
|
18
|
Okazawa A, Baba A, Okano H, Tokunaga T, Nakaue T, Ogawa T, Shimma S, Sugimoto Y, Ohta D. Involvement of α-galactosidase OmAGAL2 in planteose hydrolysis during seed germination of Orobanche minor. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1992-2004. [PMID: 34850875 PMCID: PMC8982430 DOI: 10.1093/jxb/erab527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Root parasitic weeds of the Orobanchaceae, such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.), cause serious losses in agriculture worldwide, and efforts have been made to control these parasitic weeds. Understanding the characteristic physiological processes in the life cycle of root parasitic weeds is particularly important to identify specific targets for growth modulators. In our previous study, planteose metabolism was revealed to be activated soon after the perception of strigolactones in germinating seeds of O. minor. Nojirimycin inhibited planteose metabolism and impeded seed germination of O. minor, indicating a possible target for root parasitic weed control. In the present study, we investigated the distribution of planteose in dry seeds of O. minor by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Planteose was detected in tissues surrounding-but not within-the embryo, supporting its suggested role as a storage carbohydrate. Biochemical assays and molecular characterization of an α-galactosidase family member, OmAGAL2, indicated that the enzyme is involved in planteose hydrolysis in the apoplast around the embryo after the perception of strigolactones, to provide the embryo with essential hexoses for germination. These results indicate that OmAGAL2 is a potential molecular target for root parasitic weed control.
Collapse
Affiliation(s)
- Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Atsuya Baba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hikaru Okano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Tomoya Tokunaga
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Tsubasa Nakaue
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shuichi Shimma
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
19
|
Hsieh KC, Lin TC, Kuo MI. Effect of whole chia seed flour on gelling properties, microstructure and texture modification of tofu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Muñoz LA, Vera C. N, Zúñiga-López MC, Moncada M, Haros CM. Physicochemical and functional properties of soluble fiber extracted from two phenotypes of chia (Salvia hispanica L.) seeds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Dybka-Stępień K, Otlewska A, Góźdź P, Piotrowska M. The Renaissance of Plant Mucilage in Health Promotion and Industrial Applications: A Review. Nutrients 2021; 13:nu13103354. [PMID: 34684354 PMCID: PMC8539170 DOI: 10.3390/nu13103354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Plant mucilage is a renewable and cost-effective source of plant-based compounds that are biologically active, biodegradable, biocompatible, nontoxic, and environmentally friendly. Until recently, plant mucilage has been of interest mostly for technological purposes. This review examined both its traditional uses and potential modern applications in a new generation of health-promoting foods, as well as in cosmetics and biomaterials. We explored the nutritional, phytochemical, and pharmacological richness of plant mucilage, with a particular focus on its biological activity. We also highlighted areas where more research is needed in order to understand the full commercial potential of plant mucilage.
Collapse
|
22
|
Application of chia (Salvia hispanica) mucilage as an ingredient replacer in foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
The composition of Australian Plantago seeds highlights their potential as nutritionally-rich functional food ingredients. Sci Rep 2021; 11:12692. [PMID: 34135417 PMCID: PMC8209032 DOI: 10.1038/s41598-021-92114-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
When wetted, Plantago seeds become covered with a polysaccharide-rich gel called mucilage that has value as a food additive and bulking dietary fibre. Industrially, the dry husk layer that becomes mucilage, called psyllium, is milled off Plantago ovata seeds, the only commercial-relevant Plantago species, while the residual inner seed tissues are either used for low value animal feed or discarded. We suggest that this practice is potentially wasting a highly nutritious resource and here describe the use of histological, physicochemical, and chromatographic analyses to compare whole seed composition/characteristics of P. ovata with 11 relatives already adapted to harsh Australian conditions that may represent novel commercial crop options. We show that substantial interspecific differences in mucilage yield and macromolecular properties are mainly a consequence of differences in heteroxylan and pectin composition and probably represent wide differences in hydrocolloid functionality that can be exploited in industry. We also show that non-mucilage producing inner seed tissues contain a substantial mannan-rich endosperm, high in fermentable sugars, protein, and fats. Whole seed Plantago flour, particularly from some species obtained from harsh Australian environments, may provide improved economic and health benefits compared to purified P. ovata psyllium husk, by retaining the functionality of the seed mucilage and providing additional essential nutrients.
Collapse
|
24
|
Yao HYY, Wang JQ, Yin JY, Nie SP, Xie MY. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res Int 2021; 143:110290. [PMID: 33992390 DOI: 10.1016/j.foodres.2021.110290] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/31/2022]
Abstract
Nuclear magnetic resonance (NMR) has been widely used as an analytical chemistry technique to investigate the molecular structure and conformation of polysaccharides. Combined with 1D spectra, chemical shifts and coupling constants in both homo- and heteronuclear 2D NMR spectra are able to infer the linkage and sequence of sugar residues. Besides, NMR has also been applied in conformation, quantitative analysis, cell wall in situ, degradation, polysaccharide mixture interaction analysis, as well as carbohydrates impurities profiling. This review summarizes the principle and development of NMR in polysaccharides analysis, and provides NMR spectra data collections of some common polysaccharides. It will help to promote the application of NMR in complex polysaccharides of biochemical interest, and provide valuable information on commercial polysaccharide products.
Collapse
Affiliation(s)
- Hao-Ying-Ye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
25
|
Klassen L, Xing X, Tingley JP, Low KE, King ML, Reintjes G, Abbott DW. Approaches to Investigate Selective Dietary Polysaccharide Utilization by Human Gut Microbiota at a Functional Level. Front Microbiol 2021; 12:632684. [PMID: 33679661 PMCID: PMC7933471 DOI: 10.3389/fmicb.2021.632684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human diet is temporally and spatially dynamic, and influenced by culture, regional food systems, socioeconomics, and consumer preference. Such factors result in enormous structural diversity of ingested glycans that are refractory to digestion by human enzymes. To convert these glycans into metabolizable nutrients and energy, humans rely upon the catalytic potential encoded within the gut microbiome, a rich collective of microorganisms residing in the gastrointestinal tract. The development of high-throughput sequencing methods has enabled microbial communities to be studied with more coverage and depth, and as a result, cataloging the taxonomic structure of the gut microbiome has become routine. Efforts to unravel the microbial processes governing glycan digestion by the gut microbiome, however, are still in their infancy and will benefit by retooling our approaches to study glycan structure at high resolution and adopting next-generation functional methods. Also, new bioinformatic tools specialized for annotating carbohydrate-active enzymes and predicting their functions with high accuracy will be required for deciphering the catalytic potential of sequence datasets. Furthermore, physiological approaches to enable genotype-phenotype assignments within the gut microbiome, such as fluorescent polysaccharides, has enabled rapid identification of carbohydrate interactions at the single cell level. In this review, we summarize the current state-of-knowledge of these methods and discuss how their continued development will advance our understanding of gut microbiome function.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Kristin E. Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L. King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Greta Reintjes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
26
|
Waghmare R, R P, Moses JA, Anandharamakrishnan C. Mucilages: sources, extraction methods, and characteristics for their use as encapsulation agents. Crit Rev Food Sci Nutr 2021; 62:4186-4207. [PMID: 33480265 DOI: 10.1080/10408398.2021.1873730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increasing interest in the use of natural ingredients has driven keen research and commercial interest in the use of mucilages for a range of applications. Typically, mucilages are polysaccharide hydrocolloids with distinct physicochemical and structural diversity, possessing characteristic functional and health benefits. Apart from their role as binding, thickening, stabilizing, and humidifying agents, they are valued for their antimicrobial, antihypertensive, antioxidant, antiasthmatic, hypoglycemic, and hypolipidemic activities. The focus of this review is to present the range of mucilages that have been explored as encapsulating agents. Encapsulation of food ingredients, nutraceutical, and pharmaceutical ingredients is an attractive technique to enhance the stability of targeted compounds, apart from providing benefits on delivery characteristics. The most widely adopted conventional and emerging extraction and purification methods are explained and supplemented with information on the key criteria involved in characterizing the physicochemical and functional properties of mucilages. The unique traits and benefits of using mucilages as encapsulation agents are detailed with the different methods used by researchers to encapsulate different food and bioactive compounds.
Collapse
Affiliation(s)
- Roji Waghmare
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Preethi R
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
27
|
Tingley JP, Low KE, Xing X, Abbott DW. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:16. [PMID: 33422151 PMCID: PMC7797155 DOI: 10.1186/s13068-020-01869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common "-omics"-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.
Collapse
Affiliation(s)
- Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
28
|
Okazawa A, Wakabayashi T, Muranaka T, Sugimoto Y, Ohta D. The effect of nojirimycin on the transcriptome of germinating Orobanche minor seeds. JOURNAL OF PESTICIDE SCIENCE 2020; 45:230-237. [PMID: 33304192 PMCID: PMC7691558 DOI: 10.1584/jpestics.d20-057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/29/2020] [Indexed: 06/02/2023]
Abstract
Orobanchaceae root parasitic weeds cause serious agricultural damage worldwide. Although numerous studies have been conducted to establish an effective control strategy for the growth and spread of root parasitic weeds, no practical method has been developed so far. Previously, metabolomic analyses were conducted on germinating seeds of a broomrape, Orobanche minor, to find novel targets for its selective control. Interestingly, planteose metabolism was identified as a possible target, and nojirimycin (NJ) selectively inhibited the germination of O. minor by intercepting planteose metabolism, although its precise mode of action was unclear. Here, transcriptome analysis by RNA-Seq was conducted to obtain molecular insight into the effects of NJ on germinating O. minor seeds. Differential gene expression analysis results suggest that NJ alters sugar metabolism and/or signaling, which is required to promote seed germination. This finding will contribute to understanding the effect of NJ and establishing a novel strategy for parasitic weed control.
Collapse
Affiliation(s)
- Atsushi Okazawa
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Takatoshi Wakabayashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University
- Department of Agrobioscience, Graduate School of Agricultural Sciences, Kobe University
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Sciences, Kobe University
| | - Daisaku Ohta
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
29
|
Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2020; 342:128258. [PMID: 33508899 DOI: 10.1016/j.foodchem.2020.128258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Due to a number of unparalleled advantages such as fastness, accuracy, intactness, nuclear magnetic resonance spectroscopy (NMR) has fulfilled a significant role in determining structures and dynamics of various physical, chemical and biological systems in the field of food analysis. This study introduced the principle of NMR, key NMR techniques such as 1H NMR, DOSY, NOESY, HSQC, etc., and the knowledge of NMR applications on the evaluation of complex food system, especially the interactions of food components. The reviewed research work provides sufficient evidence that NMR spectroscopy has been an invaluable tool and will play an increasingly important role in specific technical support for food assessment. In addition, NMR combined with various other technologies could give a complete picture of the mechanism of the performance of functional food compounds, which are vital for human health and influence the intrinsic food properties during processing, storage and transportation at the molecular level.
Collapse
Affiliation(s)
- Ruge Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianya Cao
- Institute of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
| | - Aili Wang
- Key laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Haidian, Beijing 100081, China.
| |
Collapse
|
30
|
Câmara AKFI, Paglarini CDS, Vidal VAS, Dos Santos M, Pollonio MAR. Meat products as prebiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:223-265. [PMID: 32892834 DOI: 10.1016/bs.afnr.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
31
|
Zare T, Rupasinghe TW, Boughton BA, Roessner U. The changes in the release level of polyunsaturated fatty acids (ω-3 and ω-6) and lipids in the untreated and water-soaked chia seed. Food Res Int 2019; 126:108665. [DOI: 10.1016/j.foodres.2019.108665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/24/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022]
|
32
|
Li J, Wang D, Xing X, Cheng TJR, Liang PH, Bulone V, Park JH, Hsieh YS. Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc. Int J Biol Macromol 2019; 135:29-37. [DOI: 10.1016/j.ijbiomac.2019.05.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
33
|
Kobus-Cisowska J, Szymanowska D, Maciejewska P, Kmiecik D, Gramza-Michałowska A, Kulczyński B, Cielecka-Piontek J. In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
McKenna KR, Li L, Baker AG, Ujma J, Krishnamurthy R, Liotta CL, Fernández FM. Carbohydrate isomer resolutionviamulti-site derivatization cyclic ion mobility-mass spectrometry. Analyst 2019; 144:7220-7226. [DOI: 10.1039/c9an01584a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic ion mobility-tandem mass spectrometry enhances the separation and identification of small carbohydrate isomers.
Collapse
Affiliation(s)
- Kristin R. McKenna
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| | - Li Li
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| | | | | | | | - Charles L. Liotta
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| | - Facundo M. Fernández
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| |
Collapse
|
35
|
Zettel V, Hitzmann B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|